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22 M. MASUDA AND M. SAKUMA

where = indicates that there is an orientation preserving diffeomorphism
of pairs which is concordant to the identity map as a diffecomorphism of
the ambient space M.

Our results suggest that I(M, L) and I,(M, L) depend only on the order
of a meridian of L in m,(M—L) or H,(M—L;Z). Roughly speaking,
according as the order is infinite, 1, or p (1 <p < o0), they can be distinguished
by (at least) these three types:

Type 1 I(M, L) = {ON},

Type 2 IM,L) = #,, I(M,L)=kero,

Type 3 {0} = I(M, L) = A, {0} 5 I(M, L) = ker o,
(see section 4 for o(S""?, K)).

We refer the reader to 1.1, 2.6, 3.4, 5.1, 5.2, and 5.8 for the precise
statement.

This paper consists of five sections. In Section 1, we deduce a necessary
condition for I,(M, L), which is valid for any (M, L). We treat type 1 in
Section 2. Type 2 is discussed in Sections 3, 4 and type 3 is discussed in
Section 5. We will find that type 3 is closely related to the generalized
Smith conjecture.

The authors would like to express their hearty thanks to Professors
A. Kawauchi and T. Maeda for helpful conversations and suggestions.

§ 1. GENERAL REMARKS ON [4(M, L)

It is known (and it is easily verified) that the signature of a Seifert
surface of an oriented n-knot K in §"*?2 is independent of the choice of a
Seifert surface; so it is an invariant of the oriented knot K. The invariant
is called the signature of the knot K and denoted by Sign (S**2, K). We
note that Sign (S"*2, K) is trivially zero unless n + 1 = 0 (4).

As is seen in Section 3, there is a pair (M"*2, L") such that (M, L) = A,
for any n > 3. In contrast, we can deduce a necessary condition for
Io(M, L) which holds for any pair (M, L).

THEOREM 1.1. If (S"*2, K)ely(M, L), then Sign(S"*2 K) = 0.

Proof. Let V be a Seifert surface of K. Since S""? = dD"*3, we can
push the interior of V into the interior of D"*3 so that V is transverse
to S"T2. This yields an oriented pair (D"*3, V) having (S"*?% K) as the
boundary.
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The boundary connected sum (M, L) x I§(D"*3, V) gives a cobordism
between (M, L) # (S"*2, K) and (M, L). We note that the ambient space of the
cobordism is diffeomorphic to M x I. Since (S"*?, K) € I,(M, L), there is an
orientation preserving diffeomorphism f:(M, L) # (S"*2, K) — (M, L) which
is concordant to the identity when regarded as a diffeomorphism of the
ambient space M. We paste togethor (M, L) # (S"*2, K) and (M, L) by f to
get an oriented pair of closed manifolds. Since f is concordant to the
identity, the resulting ambient space is diffeomorphic to M x S'. We shall
denote by X the resulting oriented closed submanifold of M x S*.

The additivity property of the signature (see [AS, p. 588]) says that

Sign X = SignL x I + SignV = SignV,

-where Sign L x I = 0 follows easily from the definition of the signature
of a manifold with boundary. By the Hirzebruch signature theorem (see
[MS, § 19]) we have

Sign X = Z(X)[X]

where the right hand side means the Hirzebruch L-class #(X) of X
evaluated on the fundamental class [X] of X. In the sequel we shall show
Z(X)[X] = 0.

Let j: X - M x S' be the inclusion map. Then it is not difficult to
see that

(1.2) j«[X]=[LxS7 in H,, (MxS';Z)

where [Lx S'] denotes the homology class represented by L x Sl
Let v be the normal bundle to X in M x S By the multiplicativity
of L-class we have

LX) = L) *LM x SY)
(1.3)
LM xS = (M) x L(SY) = n*L(M)

where m: M x S' - M is the projection map. Since dimv = 2, we have
(1.4) LMV) =14 pi(v)/3 =1+ e(v)?/3

where p; and e denote the first Pontrjagin class and the Euler class
respectively.

On the other hand it is known that

(1.5) e(v) = j*j, (1)
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where j, : H(X ;Z) - H*"*(M x S*;Z) denotes the Gysin homomorphism
and le H %X ;Z) is the unit element. Remember the definition of J, -
It 1s defined so that the following diagram commutes:

Jy

HY(X;Z) > HI"?(MxSY;Z)

l« n[X] i N[M x S1}
Hyoi—o(X32) 3 Hyoyro(MxSZ)

where the vertical maps are the Poincaré dualities. It says that
Jy ) n M xS = j,[X].
This together with (1.2) means that
j, () en*H*(M ;Z).
Hence it follows from (1.4) and (1.5) that
Z(v) € J*n*H*(M ; Q)
and hence
| LX) € FrEH*M ; Q)
by (1.3). This together with (1.2) implies that
L(X)X] =0. Q.E.D.

Theorem 1.1 gives a necessary condition for ($"*"2 K) to belong to
I(M, L). When we consider the converse problem, ie. the problem to find
(8"*2, K) in Io(M, L), we apply the relative s-cobordism theorem. We shall
state it as a lemma for later convenience’s sake.

LEMMA 1.6. Suppose there exists a cobordism (U, Z) between (M, L)
b (S""2, K) and (M, L) such that

(1) Z is diffeomorphic to L x I,
(2) the exterior E(Z) of Z is an s-cobordism relative boundary.

Then (S"*2 K)e I, (M, L).

Proof. The relative s-cobordism theorem says that E(Z) is diffeomorphic
to E(L) x I where the difffomorphism can be taken as the identity on
E(L) x {0} and (9E(L)) x I. Therefore it extends to a diffeomorphism:
(U, Z) - (M, L) x I which is the identity on the O-level. This means that
(S""2, K)e I,(M,L). Q.ED.
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