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KNOTTING CODIMENSION 2 SUBMANIFOLDS LOCALLY

by Mikiya Masuda and Makoto Sakuma

Introduction

Let L be a connected oriented n-dimensional closed manifold smoothly
embedded in a connected oriented (n + 2)-dimensional closed manifold M,
and let K be an oriented n-dimensional smooth knot in the oriented Sn + 2.

Then we consider the connected sum (M, L) tt (Sn + 2, K). In other words,

we knot L locally using K. It yields another embedding of L in M ;

however, it does not always give a new embedding. In fact, the lightbulb
theorem says that the connected sum of (S2 x Sl, {*} x S1) with any knot
in S3 is always equivalent to the original embedding. Moreover, by the

prime decomposition theorem for knots in 3-manifolds [My], (S2 x S1, {*} x S1)

is essentially the only embedding of a circle with the above property.
Litherland [Li] has generalized the lightbulb theorem to the higher dimensional

cases. In the appendix of [V], Yiro exhibits an example of a 2-knot
whose connected sum with the standard projective plane in S4 does not
change the isotopy type of the projective plane. (See also [La].)

The purpose of this paper is to study under what conditions this
phenomenon occurs (or does not occur). The first named author [Ms]
studied this problem when the codimension is greater than 2.

Put it in another way. Let „ be the set of isotopy classes of oriented
rc-knots diffeomorphic to Sn in the oriented Sn + 2. The set forms an abelian
monoid under connected sum for pairs. Analogously to the inertia group of
a manifold, we define

/(AT, L) {(Sn + 2, K) g jfJ (M, L) It (Sn + 2, K) (M, L)}

where => in the parenthesis indicates that there is an orientation preserving
diffeomorphism of pairs. The set forms a submonoid of and describes
the effect of knotting L locally. We are also concerned with the following
intermediate submonoid

I0(M, L) {(S"+2, K)eI(M,L)I (M, L) » (S"+2, K) (M, L)}
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where indicates that there is an orientation preserving diffeomorphism
of pairs which is concordant to the identity map as a diffeomorphism of
the ambient space M.

Our results suggest that 7(M, L) and 70(M, L) depend only on the order
of a meridian of L in tu1(M —L) or HfM — L; Z). Roughly speaking,

according as the order is infinite, 1, or p (1 <p< oo), they can be distinguished
by (at least) these three types :

Type 1 7(A7, L) {ON}

Type 2 I(M, L) „, /0(M, L) ker a

Type 3 {0} <= 7(M, L) <= „, {0} <= 70(M, L) c ker a

(see section 4 for a(S" + 2, K)).

We refer the reader to 1.1, 2.6, 3.4, 5.1, 5.2, and 5.8 for the precise

statement.
This paper consists of five sections. In Section 1, we deduce a necessary

condition for 70(M, L), which is valid for any (M, L). We treat type 1 in
Section 2. Type 2 is discussed in Sections 3, 4 and type 3 is discussed in
Section 5. We will find that type 3 is closely related to the generalized
Smith conjecture.

The authors would like to express their hearty thanks to Professors

A. Kawauchi and T. Maeda for helpful conversations and suggestions.

§ 1. General remarks on /0(M, L)

It is known (and it is easily verified) that the signature of a Seifert

surface of an oriented n-knot K in Sn + 2 is independent of the choice of a

Seifert surface; so it is an invariant of the oriented knot K. The invariant
is called the signature of the knot K and denoted by Sign (Sn + 2,K). We

note that Sign(S" + 2, K) is trivially zero unless n + 1 0 (4).

As is seen in Section 3, there is a pair (M" + 2, Ln) such that /(M, L) Jf n

for any n ^ 3. In contrast, we can deduce a necessary condition for
J0(M, L) which holds for any pair (M, L).

Theorem 1.1. If (Sn + 2, K) e 70(M, L), then Sign (Sn + 2, K) 0.

Proof Let F be a Seifert surface of K. Since Sn+2 dDn+3, we can

push the interior of V into the interior of Dn + 3 so that V is transverse

to Sn + 2. This yields an oriented pair (D" + 3, V) having (Sn + 2,K) as the

boundary.
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