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KNOTTING CODIMENSION 2 SUBMANIFOLDS LOCALLY

by Mikiya MasupA and Makoto SAKUMA

INTRODUCTION

Let L be a connected oriented n-dimensional closed manifold smoothly
embedded in a connected oriented (n+ 2)-dimensional closed manifold M,
and let K be an oriented n-dimensional smooth knot in the oriented S"*2.
Then we consider the connected sum (M, L)t (S"*2, K). In other words,
we knot L locally using K. It yields another embedding of L mn M;
however, it does not always give a new embedding. In fact, the lightbulb
theorem says that the connected sum of (S*x S, {*}x S') with any knot
in §° is always equivalent to the original embedding. Moreover, by the
prime decomposition theorem for knots in 3-manifolds [My], (S* x S%, {*} x 1)
is essentially the only embedding of a circle with the above property.
Litherland [Li] has generalized the lightbulb theorem to the higher dimen-
sional cases. In the appendix of [V], Viro exhibits an example of a 2-knot
whose connected sum with the standard projective plane in S* does not
change the isotopy type of the projective plane. (See also [La].)

The purpose of this paper is to study under what conditions this
phenomenon occurs (or does not occur). The first named author [Ms]
studied this problem when the codimension is greater than 2.

Put it in another way. Let ', be the set of isotopy classes of oriented
n-knots diffeomorphic to S” in the oriented S"*2. The set forms an abelian
monoid under connected sum for pairs. Analogously to the inertia group of
a manifold, we define

IM,L) = {(S""?,K)e ', |(M, L) 4(S""% K) = (M, L)}

where = in the parenthesis indicates that there is an orientation preserving
difftomorphism of pairs. The set forms a submonoid of #, and describes

the effect of knotting L locally. We are also concerned with the following
intermediate submonoid

Io(M, L) = {(S""*, K)e I(M,L)| (M, L)  (S"*2, K) = (M, L)}
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where = indicates that there is an orientation preserving diffeomorphism
of pairs which is concordant to the identity map as a diffecomorphism of
the ambient space M.

Our results suggest that I(M, L) and I,(M, L) depend only on the order
of a meridian of L in m,(M—L) or H,(M—L;Z). Roughly speaking,
according as the order is infinite, 1, or p (1 <p < o0), they can be distinguished
by (at least) these three types:

Type 1 I(M, L) = {ON},

Type 2 IM,L) = #,, I(M,L)=kero,

Type 3 {0} = I(M, L) = A, {0} 5 I(M, L) = ker o,
(see section 4 for o(S""?, K)).

We refer the reader to 1.1, 2.6, 3.4, 5.1, 5.2, and 5.8 for the precise
statement.

This paper consists of five sections. In Section 1, we deduce a necessary
condition for I,(M, L), which is valid for any (M, L). We treat type 1 in
Section 2. Type 2 is discussed in Sections 3, 4 and type 3 is discussed in
Section 5. We will find that type 3 is closely related to the generalized
Smith conjecture.

The authors would like to express their hearty thanks to Professors
A. Kawauchi and T. Maeda for helpful conversations and suggestions.

§ 1. GENERAL REMARKS ON [4(M, L)

It is known (and it is easily verified) that the signature of a Seifert
surface of an oriented n-knot K in §"*?2 is independent of the choice of a
Seifert surface; so it is an invariant of the oriented knot K. The invariant
is called the signature of the knot K and denoted by Sign (S**2, K). We
note that Sign (S"*2, K) is trivially zero unless n + 1 = 0 (4).

As is seen in Section 3, there is a pair (M"*2, L") such that (M, L) = A,
for any n > 3. In contrast, we can deduce a necessary condition for
Io(M, L) which holds for any pair (M, L).

THEOREM 1.1. If (S"*2, K)ely(M, L), then Sign(S"*2 K) = 0.

Proof. Let V be a Seifert surface of K. Since S""? = dD"*3, we can
push the interior of V into the interior of D"*3 so that V is transverse
to S"T2. This yields an oriented pair (D"*3, V) having (S"*?% K) as the
boundary.

MR
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The boundary connected sum (M, L) x I§(D"*3, V) gives a cobordism
between (M, L) # (S"*2, K) and (M, L). We note that the ambient space of the
cobordism is diffeomorphic to M x I. Since (S"*?, K) € I,(M, L), there is an
orientation preserving diffeomorphism f:(M, L) # (S"*2, K) — (M, L) which
is concordant to the identity when regarded as a diffeomorphism of the
ambient space M. We paste togethor (M, L) # (S"*2, K) and (M, L) by f to
get an oriented pair of closed manifolds. Since f is concordant to the
identity, the resulting ambient space is diffeomorphic to M x S'. We shall
denote by X the resulting oriented closed submanifold of M x S*.

The additivity property of the signature (see [AS, p. 588]) says that

Sign X = SignL x I + SignV = SignV,

-where Sign L x I = 0 follows easily from the definition of the signature
of a manifold with boundary. By the Hirzebruch signature theorem (see
[MS, § 19]) we have

Sign X = Z(X)[X]

where the right hand side means the Hirzebruch L-class #(X) of X
evaluated on the fundamental class [X] of X. In the sequel we shall show
Z(X)[X] = 0.

Let j: X - M x S' be the inclusion map. Then it is not difficult to
see that

(1.2) j«[X]=[LxS7 in H,, (MxS';Z)

where [Lx S'] denotes the homology class represented by L x Sl
Let v be the normal bundle to X in M x S By the multiplicativity
of L-class we have

LX) = L) *LM x SY)
(1.3)
LM xS = (M) x L(SY) = n*L(M)

where m: M x S' - M is the projection map. Since dimv = 2, we have
(1.4) LMV) =14 pi(v)/3 =1+ e(v)?/3

where p; and e denote the first Pontrjagin class and the Euler class
respectively.

On the other hand it is known that

(1.5) e(v) = j*j, (1)
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where j, : H(X ;Z) - H*"*(M x S*;Z) denotes the Gysin homomorphism
and le H %X ;Z) is the unit element. Remember the definition of J, -
It 1s defined so that the following diagram commutes:

Jy

HY(X;Z) > HI"?(MxSY;Z)

l« n[X] i N[M x S1}
Hyoi—o(X32) 3 Hyoyro(MxSZ)

where the vertical maps are the Poincaré dualities. It says that
Jy ) n M xS = j,[X].
This together with (1.2) means that
j, () en*H*(M ;Z).
Hence it follows from (1.4) and (1.5) that
Z(v) € J*n*H*(M ; Q)
and hence
| LX) € FrEH*M ; Q)
by (1.3). This together with (1.2) implies that
L(X)X] =0. Q.E.D.

Theorem 1.1 gives a necessary condition for ($"*"2 K) to belong to
I(M, L). When we consider the converse problem, ie. the problem to find
(8"*2, K) in Io(M, L), we apply the relative s-cobordism theorem. We shall
state it as a lemma for later convenience’s sake.

LEMMA 1.6. Suppose there exists a cobordism (U, Z) between (M, L)
b (S""2, K) and (M, L) such that

(1) Z is diffeomorphic to L x I,
(2) the exterior E(Z) of Z is an s-cobordism relative boundary.

Then (S"*2 K)e I, (M, L).

Proof. The relative s-cobordism theorem says that E(Z) is diffeomorphic
to E(L) x I where the difffomorphism can be taken as the identity on
E(L) x {0} and (9E(L)) x I. Therefore it extends to a diffeomorphism:
(U, Z) - (M, L) x I which is the identity on the O-level. This means that
(S""2, K)e I,(M,L). Q.ED.

WA
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§2. TyPE 1 CASE

In this section we consider the case where a meridian of L in M"*?
has infinite order in H (M —L;Z). We shall denote by [m] the homology
class in H{(M —L;Z) represented by a meridian m of L in M. For a
manifold pair (X, Y) of codimension 2 and an epimorphism y from 7;(X —Y)
to a finite group, let (X, Y), be the branched covering of (X, Y) corresponding
to y. Each knot group m;(S""*>—K) has a natural epimorphism to Z, for any
positive integer p, and the corresponding p-fold branched cyclic covering of
(s7*2, K) is denoted by ($**?, K),.

LemMa 2.1.  Suppose [m] is of infinite order. Then if (S**2, K)e I(M, L)
then (S"*2,K), is a homotopy (n+2)-sphere for any positive integer p.

Proof. Since [m] represents a nontrivial element in the finitely generated
free abelian group By(M —L) = H,(M—L;Z)/Tor H(M—L;Z), there is a
positive integer r and a primitive element x in B,(M — L) such that [m] = rx
in B,(M—L). For each positive integer p, ler y, be the canonical epi-
morphism n,(M—L) - B;(M—L) ® Z,,. Noting the naturality of the
homomorphism v,, we can see the following:

(M, L),, = (M, L) # (S"*%, K)),,.s,
= (M, L),,# d,(S"*% K),

Here f is a diffeomorphism (M, L) # (S"*%, K) — (M, L) and d,, is the order
of B(M—L)® Z,, divided by p. Hence H(S""% K),:Z) ~ H(S""?;Z)
and m,((S"*2, K),) ~ 1 by the existence of prime decompositions of finitely
generated groups into free products [Wg]. Q.E.D.

It is conjectured that those knots which satisfy the conclusion of the
above lemma are trivial. In fact, for n = 1, it follows from the Smith

conjecture [MB]. As a supporting evidence for higher dimensional cases,
we have

LEMMA. Suppose that (S""?,K), is a homology (n+2)-sphere for
every positive integer p. Then the Alexander modules of K are trivial.

| Proof. Let E(K) be the infinite cyclic cover of the exterior E(K) of K
in §"*2, and let t denote the automorphism of the homology group of
E(K) induced by the action of a meridian. Then, by the arguments of [Sm1],
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we can see that (? — 1:Hq(E(K);Z,) — HQ(E(K);Z,) is an isomor-
phism for any positive integers p, g, and r. Assume r is prime. Then
Hq(E(K);Z,) is a finite abelian group, since it is a finitely generated
torsion module over the principal ideal domain Z,<t> (see [Le3, p. 8]). So
the automorphism ¢ on Hq(E(K);Z,) has a finite order, say d, and we
have t* — 1 = 0. Hence Hq(E(K);Z,) = 0, and by the universal coefficient
theorem, the following holds for any prime r and any positive integer g:

(2.3) H,(EK);Z)® Z, = 0
(2.4) Tor (H,(E(K);Z), Z,) = 0

By (2.4), Hq(E(K);Z) has no nontrivial elements of finite order; so it
has a square presentation matrix M(t) as a Z<t>-module by [Le3, Pro-
position 3.5]. By (2.3) the g-th Alexander polynomial det M (t) (eZ <t>)
is a unit mod. r for any prime r. Hence it is a unit in Z<t>, and we
have H,(E(K);Z) = 0 for any positive integer .  Q.E.D.

Thus, as a consequence of Lemmas 2.1 and 2.2 and the results of
[Le2] and [T], we have the following:

ProrosiTiON 2.5. Suppose [m] is of infinite order. Then any knot
in I(M, L) has trivial Alexander modules and is null cobordant.

Hence the only obstruction for a knot (S"*2, K) in I(M, L) to be trivial
lies in the knot group m;(S"*?—K). For the special case where [m] generates
H,(M—L), we can apply the result of Maeda [Ma] (cf. [DF]), and obtain
the following:

THEOREM 2.6. Suppose n =3 and H;(M—L) is the infinite cyclic
group generated by [m]. Then I(M, L) is trivial.

Proof. Let (S"*2 K) be a knot in I(M, L). Note that w,(M—L) is
isomorphic to the amalgamated free product wn,(M—L) * m,(S""*—K).

Then we can conclude w;(S"*?—K) ~ Z by the result of [Ma] (cf. [DF])
which asserts the existence of a prime decomposition of a finitely presented
group G with G/[G, G] ~ Z with respect to such amalgamated free products.
Combined with Proposition 2.5, we see S"*? — K is homotopy equivalent to
a circle. Hence (S"*2, K) is trivial by [Lel].
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§ 3. TYPE 2 CASE

In this section and the next section, we treat the case where a meridian
of L" in M"*2 is null homotopic in M — L. The following lemma follows
from [Li, Lemma 1]. We shall give an alternative proof which is interesting
by itself (the argument is also given in [Ms, Theorem 4.2]).

LEMMA 3.1. I(S"x S% S"x{x}) = A", if n= 3.

Proof. Let (S"*2, K) be an n-knot and consider (S"xS? S"x {*})
4 (S""2 K). A subset S" x {*} K uU {xo} x S* (x0eS") is exactly the
wedge sum of S” and S% As easily observed the complement of an open
regular neighborhood of the subset is contractible and hence diffeomorphic
to D""% as n + 2 > 5. This means that one can express

(S"x 82, 8"x {*}) #(S""%, K) = (S"x S%, §"x {*}) # =

where X is a homotopy (n+ 2)-sphere and the connected sum at the right
hand side is done away from the submanifold S" x {*}.

On the other hand the ambient manifold must be diffefomorphic to
S" x S? because it is the connected sum of §” x §? with S""2. These
mean that X belongs to the inertia group of §” x S2. But the group is trivial
([Sc]), so X must be the standard sphere. This proves the lemma. Q.E.D.

We shall denote by <m> the class in n;(M—L) represented by a
meridian of L in M.

LEMMA 3.2. Suppose M is spin, L is diffeomorphic to S", and
nz3 If <m> =1 for (M,L), then (M,L) = (S"xS% S"x{x})§ M
with a closed oriented manifold M’ of dimension n + 2.

Proof. Since <m> =1 and dim M > 5, the meridian m bounds a
2-disk in M — L. Therefore L V S? is embedded in M. The normal bundle
to L in M is trivial, because it is classified by the Euler class sitting
in H¥L;Z) and H¥L;Z) = 0 as L = $" and n > 3. The normal bundle
of the embedded S is also trivial, because it is classified by the second
Stiefel-Whitney class and it vanishes as M is spin. Hence the closed regular
neighborhood of L V S? in M is diffeomorphic to that of §” V $? naturally
embedded in S" x S% In particular its boundary is diffeomorphic to §"*!.

This implies the lemma. Q.E.D.
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Remark 3.3. A similar argument works even if M is not spin. But this
time two cases arise according as the normal bundle of the embedded S?*
is trivial or not. If it is trivial, then the same conclusion as above holds.
If it 1s not trivial, we have

(M, L) = (S"%S2, S") 4 M’ .

Here S” X S* denotes the total space of the sphere bundle associated with
the nontrivial (n+ 1)-dimensional vector bundle over S? (note that it is
unique as 7,(SO(n+1)) ~ Z, for n > 2) and the submanifold S" denotes a
fiber.

Combining Lemma 3.1 with 3.2, we obtain

THEOREM 3.4. Suppose M is spin, L is diffeomorphic to S", and
n=3 Thenif <m> =1 for (M,L), then IM,L) = X,.

Remark 3.5. If the inertia group I(S"xS?) is trivial, then the same
argument as the proof of Lemma 3.1 proves that I(S"x S?, S") = 4, and
hence one could drop the spin condition for M by Remark 3.3.

If L # S", then the above argument does not work. For a general L
we construct an s-cobordism between pairs (M, L) §(S"*2, K) and (M, L)
and apply lemma 1.6. We denote the set of all null-cobordant n-knots
by A0 According to Kervaire [K] (cf. [KW, Chap. IV]) X, = A°°
if n is even, but A7, # A0 if n is odd.

PROPOSITION 3.6. Suppose <m> =1 for (M"*? L") and n > 3.
Then IoM, L) contains 0. In particular, if n is even > 4, then
Io(M,L) = IM,L) = XA,.

Proof. Let (S"*2, K) bound a disk pair (D""3 D), where D is a
(n+1)-disk. The boundary connected sum (M, L) x I§(D""3 D) at the
1-level gives a cobordism between (M, L) and (M, L) #(S"*2, K).

We shall check the conditions (1) and (2) in Lemma 1.6 for this
cobordism. First, since D is diffeomorphic to D"** L x I 1D is diffeo-
morphic to L x I; so (1) is satisfied. Hence E(L xI §D) gives a cobordism
relative boundary between E(L) and E(L #K). We note that

(3.7) E(LxI4D) = E(LxI)u E(D)

where E(L x I) and E(D) are pasted together along D"*! x S! embedded in
their boundaries. The S* factor corresponds to meridians of L x I and D.
Then the van Kampen’s theorem says that
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ny(E(LxT§ D)) =~ ny(E(LxD) *_ m,(ED)

~ 1 (E(L x ) * (ny(E(D))/ <m>)

where the latter isomorphism is because <m> = 1 in n;(E(LxI)) by the
assumption. Since ;(E(D))/<m> =~ my(D""%) ~ {1}, we have

(3.8) ny(E(Lx I §D)) ~ my(E(Lx I)) ~ m,(E(L)) .

Here the inclusion map i: E(L) = E(L) x {0} - E(LxI §D) induces the
isomorphism.

We shall observe that i is a simple homotopy equivalence. For that
purpose we consider the lifting of i to the universal covers. Since the map
n,(E(D)) — my(E(L x I § D)) induced by the inclusion map is trivial as observed
above, it follows from (3.7) that

(3.9) E(LxI4D) = E(LxI)u E(D) x I

where T1 = n,(E(LxI D)) = ny(M—L) and E(LxI) and E(D) x II are
pasted together IT-equivariantly along D"*!' x S! x II embedded in their
boundaries. This means that f*:Hq(b:(L);Z)—)Hq(E(LxI 1D);Z) is an
isomorphism as Z[II]-modules. Hence i,: n,(E(L)) » m (E(Lx I D)) is an
isomorphism by Namioka’s theorem (see [WIl, §4]) and hence i is a
homotopy equivalence.

The assumption <m> = 1 together with (3.9) tells us that the Whitehead
torsion t(i) € Wh(II) of the map i comes from an element of Wh(1) through
the map: Wh(l) > Wh(IT) induced from the inclusion 1 — II. However
Wh(1) = 0 and hence 1(i) = 0. This shows that E(L x I §D) is an s-cobordism
relative boundary. The proposition then follows from Lemma 1.6. Q.E.D.

Proposition 3.6 gives a complete answer to the case where n is even
= 4. It would be interesting to ask if the same conclusion still holds in
the case n = 2.

In the next section we will improve Proposition 3.6 when n is odd > 5.

§4. AN IMPROVEMENT

Throughout this section we assume n is odd > 5. Let V"*! be a Seifert
surface of an m-knot K in S""2. The normal bundle to V in S$"*2 is
trivial. We give the stable normal bundle of $"*? a canonical framing so
that V' can be viewed as a framed manifold.
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Remember that 0V = K = §". We make V contractible by framed
surgery without touching the boundary. As is well known this is always
possible in case dimV = n + 1 is odd. But in case n + 1 is even, we
encounter an obstruction which is detected by

Sign V e Z if n+1=0(@4)
cVyeZ/2Z if n+1=2@4

where ¢(V) 1s the Kervaire invariant of V.

Remark 4.1. Since 0V is diffeomorphic to S*, ¢(V) = 0 if n + 1 is not
of the form 2% — 2 ([Br)).

One can see that Seifert surfaces of K are framed cobordant relative
boundary to each other. Hence the values Sign V' and ¢(V) are independent
of the choice of V. We set

SignV  if n+1=0(),
o(S""%, K) = { V) if n+1=2%—2forsomek,
0 otherwise.

PROPOSITION 4.2. Suppose <m> =1 for (M"*? L") and n is
odd >=5. Then (S""%, K)ely,M,L) if o(S""% K) = 0. In particular,
Io(M,L) = A, ifneither n+1=0(@4) nor n+ 1 =2 —2 for some k.

Combining this with Theorem 1.1, we obtain

COROLLARY 4.3. Suppose <m> =1 for (M"** L") and n+ 1
= 0(4) (n#3). Then (S""2, K)elyM, L) if and only if o(S""2 K) = 0.

The rest of this section is devoted to the proof of Proposition 4.2.
Let K be an #n-knot in S"*? such that o(S"*2, K) = 0. We shall construct
an s-cobordism relative boundary between E(L K) and E(L). The argument
is rather more complicated than that of Proposition 3.6. We need some
knowledge of surgery theory.

Step 1. Let V"*! be a Seifert surface of K. Push the interior of V
into the interior of D""? to make it transverse to the boundary S"*? of
D"*3. We may assume that V is (n—1)/2-connected, if necessary, by doing
framed surgery of V within D"*3. In fact, this is the method used to prove
that any n-knot is concordant to a simple knot (see [KW, Chap. IV]).

In the attempt to make V' (n+ 1)/2-connected (and hence V is contractible
by the Poincaré duality) by framed surgery of ¥V within D"*3, one encounters
an obstruction. Namely a bunch of embedded (n+ 1)/2-spheres in V' does
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not necessarily extend to embedded (n+ 3)/2-disks whose interior lies in
Dt — V.

But if we do framed surgery of V at the outside of D"*3 without
touching boundary, i.e. if we do surgery on framed embeddings

(S(n+1)/2 X D(n+1)/2 X DZ’ S(n+1)/2 X D(n+l)/2 % {O}) — (Dn+3, V),

then we can make V (n+ 1)/2-connected because the obstruction is exactly
o(S"*2, K) and it vanishes by the assumption. The ambient space is,
however, not D"*® any more. We denote by (W, D) the resulting framed
oriented pair, where D is diffeomorphic to D" * 1.

Step 2. We construct a boundary preserving map h:
(W N(D), E(D)) — (D"*; N(D"*1), E(D"*1))
such that
(44)  h|sp:0W = S*""? 5 9D"*3 = §"*?2  is a homotopy equivalence,
4.5  hlywp: N(D) - N1 is a diffeomorphism,

where N denotes a closed tubular neighborhood and D"*! <= D"*3 is
standardly embedded.

Since D is diffefomorphic to D"*?, there is a diffefomorphism
g: (D""tx D?, D"" 1 x {0}) - (N(D), D).
Here D"*! x D? can be naturally identified with N(D"*'); so we define
(4.6)

h|N(D) = g_l

First we extend hownonp) = hloew) to a map from E(K) to E@D"*Y)
= E(S"). The obstruction lies in groups

H*"YE(K), 0E(K); m, (E(S" ) -
Since E(S") is homotopy equivalent to S, it suffices to prove
(4.7) Hi"YE(K), 0E(K);Z) = 0 for g =0,1.
On the other hand we have
H*"Y(E(K), 0E(K); Z) ~ H* {(S"*2, N(K); Z) (by excision)

~ HYN(K); Z) if g+1<n+2)
~ HYS"; Z)

=0 if  g+#n)
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Hence (4.7) 1s satisfied as n > 5.
Consequently we can extend h| yp, to a map

h noyoow : (N(D)UIW, OW) — (N(D"+)uoD"+3, oD"*3) .

The local degree of h|zp: W — 0D""2 is one because h|,pwanwy = Hlna:
N(K) — N(S") is a diffeomorphism by (4.6) and h(E(K)) < E(S") by the
construction. Since dW and 0D"*3. are both S"*2 h|,, is a homotopy
equivalence. Hence (4.4) is satisfied. Moreover (4.5) is also satisfied by (4.6).
In the sequel it suffices to extend h|,pp, to a map from E(D) to E(D""1).
This time the obstruction lies in groups

H?"YE(D), 0E(D); n,(E(D" 1)) .
Since E(D""!) is homotopy equivalent to S?, it suffices to prove
(4.8) H"YE(D),0E(D);Z) =0 for ¢q =0,1.
By excision we have
H**YE(D), 0E(D); Z) ~ H*" (W, N(D)uoW ;Z).

Remember that W is obtained from D"*3 by (n+ 1)/2-surgery. It implies that

~

HW;Z)y=0 if i#m+1)2+1.
In particular
HW:Z) =0 for i<3
as n > 5. Therefore it follows from the eiéct sequence of the pair
(W, N(D)yudW) that
HY YW, N(D)UOW ; Z) ~ HY(N(D)udW ;Z) for q<2.
Here the Mayer-Vietoris exact sequence of the triad (N(D)uoW ; N(D), 0W)
shows that
H? (ND)UOW;Z) =0 for ¢ =0,1,

because N(D) is contractible, oW = S"*2 and N(D) n 0W = S" x S
Hence (4.8) is satisfied, and we have obtained the desired map h.

Step 3. Since W is framed, the framing of the stable normal bundle v(W)
of W induces a stable bundle map b: v(W) — v(D"*?3) which covers h. The
triple # = (W, h, b) is called a normal map.

The identity map Id:(M,L) x I - (M, L) x I gives a normal map
where the stable bundle map is also the identity. We shall denote the normal




KNOTTING SUBMANIFOLDS 33

map by %, = (M, L)x I, 1d, Id). The maps h and Id are both diffeo-
morphisms on N(D) and N(L x I) respectively; so one can do the boundary
connected sum of # and %,, at points of K and L x {1}. This yields
a new normal map %t B = (MxI14iW,IdYh,Id 1b). Here we naturally
identify the target space (M, L) x I4(D"*3,D"*1) with (M, L) x I. Since
Id# h is a difftomorphism on N(L x It D), it gives a product structure on
N(L x I § D). Thus we get a cobordism E(L x I § D) relative boundary between
E(L #K) and E(L).

Step 4. Id & h|gy,: E(L) - E(L) x {0} (the O-level) is the identity; so it
‘is a simple homotopy equivalence. We shall observe that hy = Id 1 h| g u,):
E(L#K) - E(L) x {1} (the 1-level) is also a simple homotopy equivalence.
We have a decomposition

E(L #K) = E(L) u E(K)
in the same sense as (3.7). Hence, similarly to (3.8) one can see
4.9) 0y (E(L £ K)) ~ m,(E(L))

where the inclusion map induces the isomorphism.
We can view E(L) x {1} as E(L# S") and we also have

E(L#S") = E(L) U E(S").

Then the map h; can be viewed as the identity on E(L) and % on E(K).
This together with (4.9) shows that hy,: m;(E(L #K)) > m,(E(L #S")) is an
isomorphism. ‘

As before we consider the map ﬁlzﬁ(LﬁK) — E(LﬁS") lifted to the
universal covers. Since <m> = 1, we have a diagram

~

E(L#K) = E(L) U E(K) x II
(4.10) R | | HlEao x1d

E(L#s") = E(L) U E(S") x I,
where IT = n;(M—L) as beforg. Since ~h | ey 18 a homology equivalence,
the above diagram tells us that h,,: H,(E(L 4 K); Z) — H,(E(L#S");Z)is an
isomorphism as Z[IT]-modules. Therefore hy is a homotopy equivalence by
the same reason as before.

The assumption <m> = 1 together with the above diagram tells us that

©h;) e Wh(IT) comes from an element of Wh(1). Hence t(hy) = 0 as
Wh(1) = 0.
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Step 5. By step 4 h = Id4h|gyxyp): E(Lx14D)— E(LxI§D")
= E(Lx ) is a simple homotopy equivalence on the boundary. We convert
h into a simple homotopy equivalence by surgery without touching the
boundary. The obstruction o(#) lies in an L-group L, 5(IT, 1) where 1 denotes
the trivial homomorphism from Il to Z, (note, since M is oriented and
hence so is E(L x I), the orientation homomorphism: IT = 7,(E(Lx I)) > Z,
1s trivial).

We have a diagram similar to (4.10):

E(Lx I D) = E(Lx1I) v E(D)

h l l Id l h
E(LxItD"*Y) = E(LxI) U E(D"*Y).

The surgery obstruction o(h) to converting h to a simple homotopy
equivalence by surgery without touching the boundary lies in L, 5(Z, 1)
because m;(E(D"*1) is isomorphic to Z. The above diagram together with
the assumption <m> = 1 tells us that

G(E) = By, 0(h)

where o, :L,.3(Z,1) = L,+3(1,1) and B,: L,+3(1,1) = L, 5(I1, 1) are the
homomorphisms induced from the trivial homomorphisms «:Z — 1 and
B: 1 — IT respectively. It is well-known that

Z if n+3=0(4),

L 1,1) ~
SRS {zz if n+3=204).

As easily observed o, c(h) is given by

SignW if n+3=0(4)
(W) if n+3=204)

through the above isomorphism. Remember that W is framed cobordant to
- D"*3 relative boundary by the construction. Therefore those invariants
vanish and hence o(h) = 0.

Consequently we have obtained a cobordism U’ relative boundary
between E(L #K) and E(L) together with a simple homotopy equivalence
F:U — E(LxI) which is the identity on the O-level. Let iy: E(L) - U’
and jo: E(L) » E(LxI) be the inclusion maps from the O-level to the
cobordisms. Since F o iy, = j, o Id where Id: E(L) — E(L) denotes the identity

map, we have
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T(F) + F*T(io) = T(jo) + jO*T(Id)

(see [Ml, Lemma 7.8]). Here F, jo, and Id are all simple homotopy
equivalences; so these Whitehead torsions vanish. Hence it follows that
1ig) = 0, because F,: Wh(rn,(U") - Whn,(E(LxI)) is an isomorphism.
This means that U’ is an s-cobordism. Therefore (S"*?, K) € Io(M, L) by
Lemma 1.6. Q.E.D.

§ 5. TyYPE 3 CASE

In this section we treat the case where <m> or [m] is of order p
(p is not necessarily a prime number). We begin with

LeMMA S5.1. Suppose [m] is of order p. Then if (S*"? K)eI(M, L),
then (S"*2,K), is a homotopy (n+2)-sphere.

Proof. Let r be the order of Tor H,(M —L;Z), and let v be the canonical
epimorphism nn,(M —L) » H(M—L;Z) ® Z,. Since the order of v(<m>)
is p, we obtain the desired result by an argument similar to the proof of
Lemma 2.1. Q.E.D.

If p > 2, there are infinitely many knots (S**2, K) such that (§""?, K),

is not a homotopy (n+2)-sphere; so Lemma 5.1 shows that I(M, L) = A,
for such (M, L). 4

The rest of this section is devoted to looking for a non-trivial knot in
I(M, L) or I4(M, L). We will extend Proposition 3.6 and 4.2 to the case
where <m> is of order p. Lemma 5.1 reminds us of counterexamples to
the generalized Smith conjecture.

Let (S""2, K) be an n-knot which bounds a disk pair (D"*?, D) such
that (D"*3, D), is a homotopy (n-+3)-disk. Since (§**?, K), is the boundary
of (D"*3, D),, ("% K), is a homotopy (n+2)-sphere. If n + 3 > 5, then
(D"*3, D), is diffeomorphic to D"*? and hence (§**?, K), is diffeomorphic to
A

The p-fold branched cyclic covering (D"">, D), supports a Z,-action with
the branch set D as the fixed point set. Let E(D), be the exterior of D
in (D"3 D), and let p:S' — E(D), be an equivariant embedding of a
meridian of D in E(D),, where the standard free Z,-action is considered
on S'. Since p is a homology equivalence and equivariant, the Whitehead
torsion of p is defined in Wh(Z,). Clearly it is independent of the choice
of p; so we shall denote it by t,(D"*3, D).

The following theorem is an extension of Proposition 3.6.
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THEOREM 5.2. Suppose <m> is of order p (p may be equal to 1)
for (M"*2 L") and n>=4. Then (S""% K)ely(M,L) if it bounds a
disk pair (D"*3, D) such that

(1) (D""3, D), is diffeomorphic to D"*3,

(2) pyt,(D"73, D) = 0,
where p,: Wh(Z,) —» Wh(ny (M —L)) is the homomorphism induced from
a homomorphism p:Z,— n(M—L) sending a generator of Z, to
<m> en,(M—L).

Remark 5.3. (1) For each p, there are infinitely many n-knots satisfying
the conditions (1) and (2) in Theorem 5.2. For example the Z -orbit spaces
of Sumners’ knots [R, p. 347] (which are counterexamples to the generalized
Smith conjecture) are the desired knots. In fact, 7,(D"*? D) = 0 for them.

(2) If p=1,2,3,4, or 6, then Wh(Z,) = 0. Hence the condition (2)
of Theorem 5.2 is trivially satisfied in these cases.

Proof of Theorem 5.2. We shall observe that the proof of Proposition 3.6
works with a little modification. As before E(L x I D) can be viewed as a
cobordism relative boundary between E(L) and E(L # K). We shall check
that this is an s-cobordism.

The condition (1) implies that

(5.4) n,(ED))/ <mP> ~ Z,

where a meridian of D in D"*3 is also denoted by m. Hence it follows
from the decomposition (3.7) that

(5.5) m(E(Lx I § D)) ~ m,(E(L x I)) . ,(E(D))

2

my(E(L x D) * my(E(D))/ <m?>
(as <m> is of order p in m,(E(L x I)))
~ ,(E(L x I)) (by (5.4))

This implies that the inclusion map i: E(L) = E(L) x {0} - E(Lx I 4 D)
induces an isomorphism ,(E(L)) — m,(E(L x I § D)).

We consider the map 1: E(L) — E~(L x I § D) lifted to the universal cover.
Let q: E(Lx14D) —» E(LxI4D) be the covering projection map. By (5.5)
g Y(E(Lx1I)) is exactly the universal cover E(LxI). As for q~(E(D)) we
need a little consideration. The above observation (5.5) shows that the image
of j,.: m,(E(D)) — my(E(L x I §D)) is isomorphic to Z,, where j is the inclusion

~
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map. We shall identify j*nl(E(D)) with Z,. Remember that Z, acts freely
on E(D), as covering transformations.

Claim 5.6. q *(E(D)) = E(D), x I1, where the right hand side denotes

the orbit space of E(D), x IT by the diagonal Z,-action defined by
s-(x,9) = (xs™ 1, sg) for se Z,, x € E(D),, and g € IL.

Proof. The Il-covering q Y(E(D)) — E(D) is classified by the map: E(D)
_, BII induced from the homomorphism j,: 7;(E(D)) » IT = my(E(Lx I 1 D)).
Here j, factors through the inclusion £:Z, — II:
n(ED) 3 T

6"\ f£
z,

The pullback of the universal IT-bundle EIT — BII by # is of the form
EZ, x I1 - BZ,.In fact, since EZ, = EII, the map (u, g) — ug (ueEZ,, gell)

pr

is defined from EZ, X I1 to EII. The map induces a I1-bundle map from
EZ, X I1 — BII to EII — BIL. On the other hand the covering induced from

the homomorphism 7 : n,(E(D)) — Z, is exactly the Z,-covering E(D), — E(D).
These prove the claim.
Consequently we have a decomposition

(5.7) E(LxI4D) = E(LxI)u E(D), x 10,

where E(Lxl) and E(D), X Il are pasted together along D" x S! x IT

equivariantly embedded in their boundaries. The condition (1) means that
E(D), is a homology circle. This together with (5.7) tells us that i: E(LXI)

— E(Lx I §D) induces an isomorphism on homology as Z[II]-modules.
Hence i is a homotopy equivalence.

The decomposition (5.7) also tells us that
(i) = p,t,(D"3, D)  up to sign.

Hence t(i) = 0 by the condition (2). Therefore E(L x I § D) is an s-cobordism
relative boundary. The theorem then follows from Lemma 1.6. Q.E.D.

A torsion 1,(S""% K) is defined similarly to t,(D"*3 D) if (S"*2 K),
is a homotopy (n+2)-sphere. The following theorem is an extension of
Proposition 4.2.
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THEOREM 5.8. Suppose <m> is of order p (p may be equal to 1)
for (M"*2 L") and n > 4. Let a, , =2 if n=0(4) and p is even,
and let a, , = 1 otherwise. Then a, ,(S"*? K)eIy(M, L) if

(1) o(S""2, K) = 0 incase n is odd.
(2) (S""% K), is a homotopy (n+2)-sphere,
(3)  an s T,(S"T% K) = 0

where ., is the same as in Theorem 5.2.

Proof. The argument developed in Steps 1, 2, and 3 of the proof of
Proposition 4.2 still works. Step 4 needs a little modification. Instead of
(4.10) we have

~

E(L #K) = E(L) U E(K), x I

(59) hy l l Id l hp x Id

Zp

E(L #S") = E(L) u E(S"), x 11 :

(see (5.7)) where h,: E(K), — E(S"), denotes the lifting of h to the Z -covers.
Since h, is a homology equivalence, the above diagram tells us that ﬁl
is a homotopy equivalence.

It also tells us that

w(hy) = — peT, (8% K),

which vanishes by the condition (3). Hence h,: E(L#K) —» E(L#S") is a
simple homotopy equivalence.

Step 5 also needs some modification. We need to replace o and P
by the canonical epimorphism v: Z — Z, and p: Z, — II respectively. Then
we have

o(h) = H*’Y*G(h) .

Here we distinguish three cases to observe the value o(h).

Case 1. The case where n is odd. In this case the trivial homomorphism
a:Z — 1 induces an isomorphism L,,s(Z,1) - L,,5(1,1) (W11, 13A.8]).
As observed in Step 5 of the proof of Proposition 4.2, a,(c(h)) vanishes.
Hence o(h) = 0, so o(h) = 0.

Case 2. ‘The case where n = 2 (4) or p is odd. According to Wall [W12]
or Bak [Ba], L,,5(Z,, 1) = 0 in this case. Since y,o(h) lies in L, 3(Z,, 1),
v,0(h) = 0 and hence o(h) = 0.
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Case 3. The case where n=0(4) and p is even. In this case
L,+3Z,,1) ~ Z,. Since the value v,0(h) € L,+3(Z,, 1) is additive with
respect to connected sum, it necessarily vanishes for (S"*2 K) # (S""2, K).

The rest of the argument is the same as that in Step 5. This proves
the theorem. Q.E.D.
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