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CAUCHY RESIDUES 15

In order to calculate Ind(y;s) we replace U by a small pointed
neighbourhood D* of s. With the notation of (7.2) let us write p p(s)ps

and deduce that

< fry, co > p(s)Tr (co ; s), co g F(D*, CT1"1), dco 0.

We can now conclude from (7.6) that

Ind (y ; s) p(s), s e X — U

This reveals that s i-> Ind (y ; s) is a compactly supported, locally constant

function on X — U.

For a given fixed point s ^ Supp (fry) choose U to be an open
neighbourhood of Supp (fry) with V compact and s $ U. We can apply the

considerations above and conclude that the winding number is constant
in a neighbourhood of s and zero outside some compact neighbourhood of
Supp (by). Q.E.D.

(7.11) Corollary. Let y be a compact n-chain on the oriented smooth

manifold X and U an open subset of X containing Supp (fry). The
relative de Rham homology class

[yleHcn(X,U;C)

is zero if and only if Ind (y ; s) 0 for all se X — U.

Proof This is a corollary to the proof of (7.10) rather than the
statement (7.10). Anyway, the basic point is Poincaré duality (6.6). Q.E.D.

8. Cauchy's residue theorem

We shall consider a smooth map y :Sn~1 - E from the oriented n — 1

sphere into an oriented n-dimensional real vector space E. For a point s

outside y(S"'1) pick a closed (n-l)-form œs on E - {s} with Tr(cos;s) 1

and define the winding number of y with respect to s to be

(8.1) Ind (y ; s) y*œs
Sn- 1

(8.2) Cauchy's residue theorem. Let X denote a smooth map
into an open subset X of E with Ind (y ; z) 0 for all e -
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For a closed and discrete subset S of X disjoint from y(Sn x) only

finitely many of the numbers Ind (y ; s\ s g S, are distinct from zero and

y*co Y Ind(y ;s)Tr(co;s)
Sn~ 1 seS

for any closed form co on X — S.

Proof The long exact de Rhäm homology sequence for the pair
X — S, E degenerates into an isomorphism

b : Hcn{E, X _ s ; C) ^ i/cn_ fiX - S, C).

Let us view y as a homology class on I - S and introduce the class

b~1y e Hcn(E, X — S;C).

Let us notice that the winding number (8.1) and (7.8) agree. Thus we

conclude from (7.11) that b~xy maps to zero in Hcn(E,X ; C) and

consequently that y is homologous to zero on X. The exact sequence

0 H%X, X-S;qi Hc„-! C) -> HC„^(X, C)

allows us to interpret y as a relative class

yeHcn(X,X-S;C).

The class y can be specified by the formula

< by, cd > y*co co g T(X — S,Eln x), c/co 0
sn—1

From the decomposition (4.9) and excision (4.6) we deduce a canonical

isomorphism

Hn {X, X - S ; C) © JHn(X, X - {5} ; C)
seS

which allow us to decompose the class y into a finite sum, compare (7.6),

y £ Ind (y ; s)0s.
seS

Using the general Stokes formula (5.3) we get that

< by, co > < y, dco > Y In<^ (7 is) < >
^co >

and the result follows from formula (7.6). Q.E.D.
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