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CAUCHY RESIDUES 15

In order to calculate Ind(y;s) we replace U by a small pointed neigh-
bourhood D* of s. With the notation of (7.2) let us write p = p(s)ps
and deduce that

<dy, o> = p(s)Tr(w;s), oel(D* Q" 1), do =0.
We can now conclude from (7.6) that
Ind(y;s) = p(s), seX —U.

This reveals that s+~ Ind(y;s) is a compactly supported, locally constant
function on X — U. |

For a given fixed point s ¢ Supp (by) choose U to be an open neigh-
bourhood of Supp(by) with U compact and s¢ U. We can apply the
considerations above and conclude that the winding number is constant
in a neighbourhood of s and zero outside some compact neighbourhood of

Supp (by). Q.E.D.

(7.11) CoroLLARY. Let <y be a compact n-chain on the oriented smooth
manifold X and U an open subset of X containing Supp (by). The
relative de Rham homology class

[vYle HYX, U;C)
is zero if and only if Ind(y;s) = 0 forall se X — U.

Proof. This is a corollary to the proof of (7.10) rather than the
statement (7.10). Anyway, the basic point is Poincaré duality (6.6). Q.E.D.

8. CAUCHY’S RESIDUE THEOREM

We shall consider a smooth map y:S""! - E from the oriented n — 1
sphere into an oriented n-dimensional real vector space E. For a point s
outside y(S"™ ') pick a closed (n—1)-form o, on E — {s} with Tr(,;s) = 1
and define the winding number of y with respect to s to be

(8.1) Ind(y;s) = J Y*O .
Sn—1

(82) CaucHY’S RESIDUE THEOREM. Let y:S""! - X denote a smooth map
into an open subset X of E with Ind (v;z) =0 for all zeE — X.
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For a closed and discrete subset S of X disjoint from (S"~') only
finitely many of the numbers Ind(y;s),seS, are distinct from zero and

j y*@ = Y Ind(y;$)Tr(o;s)
Sn—l

seS
for any closed form ® on X — S.

Proof. The long exact de Rham homology sequence for the pair
X — S, E degenerates into an isomorphism

b: H{E,X—S;C) > H_,(X-S,C).
Let us view y as a homology class on X — S and introduce the class
b 'vye HYE,X-S;C).

Let us notice that the winding number (8.1) and (7.8) agree. Thus we
conclude from (7.11) that b~y maps to zero in HYE, X;C) and con-
sequently that y is homologous to zero on X. The exact sequence

0~ H(X, X—§;C) > H_(X—S,C) - Hy (X, C)
allows us to interpret v as a relative class
veH{(X,X—S;C).
The class y can be specified by the formula
<by,0o> = J v*@, 0el(X—S,Q" 1), do = 0.
Sn-1

From the decomposition (4.9) and excision (4.6) we deduce a canonical
isomorphism

H,(X, X—5;C) 5> @ H,(X, X —{s};C)

seS

which allow us to decompose the class y into a finite sum, compare (7.6),

y = Ind(y;9)6;.

seS

Using the general Stokes formula (5.3) we get that
<by,0> = <y,00> = ) Ind(y;s) <6, o>

and the result follows from formula (7.6). Q.E.D.
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