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12 B. IVERSEN

7. Winding numbers

Let X be an rc-dimensional oriented smooth manifold and s a point of X.
Consider a compact n-dimensional submanifold with boundary B with s as an
interior point and put

(7.1) Tr(co;s) — co, d® 0.

This symbol is independent of B as it follows by considering a small
"ball" C around s contained in the interior of B

Stokes formula for B — C°

co — co d(D

dC B~C°

Alternatively, choose a compactly supported smooth real function ps on X
which is constant 1 in a neighbourhood of s. Then

(7.2) Tr (co ; s) (-1)" co a dps, co g F(X — {5}, £ln x), d(0 0

Proof. Choose "balls" B and D with center s such that ps is constant 1

on B while Supp(ps) is contained in the interior of D. From Stokes

formula we get that
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Notice that the last terms vanishes in case co is exact. Q.E.D.

(7.3) Example. Let E denote an oriented n-dimensional Euclidian space.

The distance r to the origin defines a 1-form dr2~n on E — {0}. The dual

form *dr2~n in the sense of Hodge is closed with

where denotes the area of the unit sphere in E, compare [3] VII. 1.

Let us interprète (7.1) in terms of de Rham homology. Integration of
rc-forms on X over the manifold B determines a compact n-chain on X
whose boundary, as written in (7.1), has support in X — {s}. The
corresponding relative homology class

is independent of B : with the notation above, the compact n-chain

has support in X — {s}. The relative homology class we have
J B J C

just constructed is often called the local orientation class.

(7.5) Proposition. Let s be a point of an oriented n-dimensional smooth

manifold X. The local orientation class 9S generates Hcn (V, X — {s} ; C).

Proof. With the terminology from section 5 we may express formula (7.1)
by means of the local orientation class

(7.6) Tr(co;s) - <0s,dco> - <h0s,co>, co g Hn~\X-{s}, C).

In case n > 2 we conclude from (7.3), that 0S ^ 0. The case n 2 is left
with the reader. Q.E.D.

Let us remark that formula (7.2) shows how to identify 0S under relative
Poincaré duality (6.6).

(7.7) Proposition. Let S be a finite subset of the oriented n-dimensional
compact manifold X. For any closed form co g T(X — S, Q") wp have that

X Tr (co ; s) 0.

Tr(*dr2 ";0) (2 —n)a„_1

(7.4) dseHcn(X,X-{s}; C), sel,

seS

Proof. Let the fundamentalclass 0 e HJX, C) be given by

<0, co> ©, co e T(X, Q").
X
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Let us consider a point s e S and use the notation from (7.1). The

difference — has support in X — {s}, which shows that the image
J x J B

of 0 in Hn(X, X- {s} ; C) is 05. We have that

£ Tr (co;s) £ <0s,dco> <0s,dco> - <bds,(D>
seS seS

where 0S denotes the restriction of 0 to Hn (X, X — S ; C). Conclusion by the
fact that bds 0. Q.E.D.

(7.8) Definition. Let y be a compact n-chain on the oriented n-dimensional
smooth manifold X. For a point sgX outside Supp (fry) the class of y
in Hcn(X, X — {s} ; C) can be written

[y] Ind (y ; sßs, Ind (y ; s) e C

The number Ind (y ; 5) is called the winding number of y with respect to s.

(7.9) Example. Let K denote an n-dimensional compact submanifold with
boundary. Integration over K defines a compact n-chain k with Supp(dic)

dK. The winding number for k is 1 in the interior of K and 0

outside K.

(7.10) Theorem. Let y be a compact n-chain on the oriented n-dimensional
smooth manifold X. The winding number s 1—> Ind (y ; s) is a locally
constant function on the complement of Supp {by) in X. This function is

zero outside some compact subset of X containing Supp {by).

Proof. Let us consider an arbitrary open subset U of X containing
Supp (by). We shall now use relative Poincaré duality to describe the class

of y in Hcn(X, U ; C). According to (6.6) and (6.7) we can represent y by a

relative n-chain of the form

<y, v> pv v e T(X, QT)

where p is a compactly supported smooth function on X, constant in a

neighbourhood of any point s of Z X — U. Let us notice that

<dy, co> (—1)" co a dp œ g T(l/, Of1 x), dec 0
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In order to calculate Ind(y;s) we replace U by a small pointed
neighbourhood D* of s. With the notation of (7.2) let us write p p(s)ps

and deduce that

< fry, co > p(s)Tr (co ; s), co g F(D*, CT1"1), dco 0.

We can now conclude from (7.6) that

Ind (y ; s) p(s), s e X — U

This reveals that s i-> Ind (y ; s) is a compactly supported, locally constant

function on X — U.

For a given fixed point s ^ Supp (fry) choose U to be an open
neighbourhood of Supp (fry) with V compact and s $ U. We can apply the

considerations above and conclude that the winding number is constant
in a neighbourhood of s and zero outside some compact neighbourhood of
Supp (by). Q.E.D.

(7.11) Corollary. Let y be a compact n-chain on the oriented smooth

manifold X and U an open subset of X containing Supp (fry). The
relative de Rham homology class

[yleHcn(X,U;C)

is zero if and only if Ind (y ; s) 0 for all se X — U.

Proof This is a corollary to the proof of (7.10) rather than the
statement (7.10). Anyway, the basic point is Poincaré duality (6.6). Q.E.D.

8. Cauchy's residue theorem

We shall consider a smooth map y :Sn~1 - E from the oriented n — 1

sphere into an oriented n-dimensional real vector space E. For a point s

outside y(S"'1) pick a closed (n-l)-form œs on E - {s} with Tr(cos;s) 1

and define the winding number of y with respect to s to be

(8.1) Ind (y ; s) y*œs
Sn- 1

(8.2) Cauchy's residue theorem. Let X denote a smooth map
into an open subset X of E with Ind (y ; z) 0 for all e -
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