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12 B. IVERSEN

7. WINDING NUMBERS

Let X be an n-dimensional oriented smooth manifold and s a point of X.
Consider a compact n-dimensional submanifold with boundary B with s as an
interior point and put

(7.1) Tr(w;s) = J o, oel(X—{s},Q" 1), do = 0.

éB

This symbol is independent of B as it follows by considering a small
“ball” C around s contained in the interior of B

Stokes formula for B — C°

J OJ—J (D:j do .
0B oC B—CO

Alternatively, choose a compactly supported smooth real function p, on X
which is constant 1 in a neighbourhood of s. Then

(72) Tr(w;s) = (—1)”J‘ o rdp,, 0el(X—{s},Q"" 1), do =0.

X

Proof. Choose “balls” B and D with center s such that p, is constant 1
on B while Supp(p) is contained in the interior of D. From Stokes
formula we get that

oD

J‘psm_J\ps(D:J psAm—J Ps®

oD 0B D—B D—-B

—J 03=—(—1)"J03Adps+f pAdm .
0B X D—-B

AN
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Notice that the last terms vanishes in case o 1s exact. Q.E.D.

(7.3) Example. Let E denote an oriented n-dimensional Euclidian space.
The distance r to the origin defines a 1-form dr*™" on E — {0}. The dual
form *dr?~" in the sense of Hodge is closed with

Tr (*dr*~";0) = 2—n)o,_,

where o,_,; denotes the area of the unit sphere in E, compare [3] VIL 1.

Let us interprete (7.1) in terms of de Rham homology. Integration of
n-forms on X over the manifold B determines a compact n-chain on X
whose boundary, as written in (7.1), has support in X — {s}. The corres-
ponding relative homology class

(7.4) 0, e HY(X, X—{s};C), seX,

is independent of B: with the notation above, the compact n-chain
J —J has support in X — {s}. The relative homology class we have
ju:t consctructed 1s often called the local orientation class.

(7.5) PROPOSITION. Let s be a point of an oriented n-dimensional smooth
manifold X. The local orientation class 0, generates H(X, X —{s};C).

Proof. With the terminology from section 5 we may express formula (7.1)
by means of the local orientation class

(7.6)  Tr(w;s) = <06, 00> = <bb,, 0>, weH" YX—{s},C).

In case n > 2 we conclude from (7.3), that O, # 0. The case n = 2 is left
with the reader. Q.E.D.

Let us remark that formula (7.2) shows how to identify 0, under relative
Poincaré duality (6.6).
(7.7) PROPOSITION. Let S be a finite subset of the oriented n-dimensional

compact manifold X. For any closed form oeI(X—S, Q") we have that

Y Tr(w;s) = 0.

seS

Proof.  Let the fundamental class 0 € H,(X, C) be given by

<0, o> =Jc0, o e I'(X, Q).
X
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Let us consider a point se€S and use the notation from (7.1). The
difference f — j has support in X — {s}, which shows that the image
of 6 in H,,(X),(X—{I;} ; C) is B,. We have that

Y. Tr(w;s) = ) <8, 00> = <05, 00> = <bby, 0>

seS seS

where Og denotes the restriction of 6 to H,(X, X —S; C). Conclusion by the
fact that b5 = 0. Q.E.D.

(7.8) Definition. Let y be a compact n-chain on the oriented n-dimensional
smooth manifold X. For a point se X outside Supp (by) the class of vy
in H{(X, X —{s}; C) can be written

[v] = Ind(y;s)06,, Ind(y;s)eC.

The number Ind(y;s) is called the winding number of y with respect to s.

(7.9) Example. Let K denote an n-dimensional compact submanifold with
boundary. Integration over K defines a compact n-chain « with Supp (k)
= 0K. The winding number for x is 1 in the interior of K and 0
outside K.

(7.10) THEOREM. Let 7y be a compact n-chain on the oriented n-dimensional
smooth manifold X. The winding number s+ Ind(y;s) is a locally
constant function on the complement of Supp(by) in X. This function is
zero outside some compact subset of X containing Supp (by).

Proof. Let us consider an arbitrary open subset U of X containing
Supp (by). We shall now use relative Poincaré duality to describe. the class

of vy in H{X, U; C). According to (6.6) and (6.7) we can represent vy by a
relative n-chain of the form

<y, V> = [ pv, vel(X,Q"
X

where p is a compactly supported smooth function on X, constant in a
neighbourhood of any point s of Z = X — U. Let us notice that

<oy, o> = (—1) Jco ~dp, 0oell(U, Q" Y, do =0.
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In order to calculate Ind(y;s) we replace U by a small pointed neigh-
bourhood D* of s. With the notation of (7.2) let us write p = p(s)ps
and deduce that

<dy, o> = p(s)Tr(w;s), oel(D* Q" 1), do =0.
We can now conclude from (7.6) that
Ind(y;s) = p(s), seX —U.

This reveals that s+~ Ind(y;s) is a compactly supported, locally constant
function on X — U. |

For a given fixed point s ¢ Supp (by) choose U to be an open neigh-
bourhood of Supp(by) with U compact and s¢ U. We can apply the
considerations above and conclude that the winding number is constant
in a neighbourhood of s and zero outside some compact neighbourhood of

Supp (by). Q.E.D.

(7.11) CoroLLARY. Let <y be a compact n-chain on the oriented smooth
manifold X and U an open subset of X containing Supp (by). The
relative de Rham homology class

[vYle HYX, U;C)
is zero if and only if Ind(y;s) = 0 forall se X — U.

Proof. This is a corollary to the proof of (7.10) rather than the
statement (7.10). Anyway, the basic point is Poincaré duality (6.6). Q.E.D.

8. CAUCHY’S RESIDUE THEOREM

We shall consider a smooth map y:S""! - E from the oriented n — 1
sphere into an oriented n-dimensional real vector space E. For a point s
outside y(S"™ ') pick a closed (n—1)-form o, on E — {s} with Tr(,;s) = 1
and define the winding number of y with respect to s to be

(8.1) Ind(y;s) = J Y*O .
Sn—1

(82) CaucHY’S RESIDUE THEOREM. Let y:S""! - X denote a smooth map
into an open subset X of E with Ind (v;z) =0 for all zeE — X.
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