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376 J. L. HAFNER AND A. IVIC

Here 4 > 0 depends on F in an explicit way. The first of these is a very
deep result of Deligne [5] (and was called the Ramanujan-Petersson con-
jecture); the second is a fundamental result of Rankin [14]. Also, the Dirichlet
series
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uy - 3 %

n=1

is absolutely convergent if Re s > (k+ 1)/2 and satisfies the functional equation
&(s) = 2m) T (s)L(s) = (—1)"*g(k—s).

The most famous example of the Fourier coefficients of a cusp form is
the Ramanujan-tau function defined by the identity

A(Z) — Hl (1 _eZninz)24 — Zl T(n)eZninz . (Im Z>O)

The function A(z) 1s a cusp form for I' of weight k = 12. See Apostol [1]
for this example and some of the basic results mentioned above.

In this paper we study the summatory function

Alx) = ), aln)

and the error term in the formula
J A*(tydt = Cx**Y? 4 B(x),
0
where C > 0 is given explicitly by
1 ©  a?*(n)

C= G ,,; A

It is known that

[ 0(x* log? x),

B(x) = A
() of - 174 (log log log x)*
\ log x '

The upper bound was obtained by Walfisz [21] (in the special case of the
Ramanujan t-function, but the general case follows the same lines), and was
reproved by Chandrasekharan and Narasimhan [3] in greater generality.
The omega result may be found in Ivi¢ [6, Theorem 4].
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Our first result is a slight improvement over what has probably been in
the folklore for years, but does not seem to have appeared in print before.

THEOREM 1. We have ‘
A(X) — O(x(k—l)/2+1/3) i

Proof. First, by partial summation and a result found in Perelli [13],
we observe that

> |a(p3|2 = loglog x + O(1).

pSx 4

This implies by the Cauchy-Schwarz inequality and the well-known estimate
Y <. 1/p = loglog x + O(1) that

2) 1/2 1 1/2
Y la(p) | p 2" <{z Ll } {z _} .

P<Xx pP<x D p<x P

= loglog x + O(1).

Hence by Deligne’s estimate and a result of Shiu [20], we have
uniformly for x* « y < x,

Yoo lam) |« x®V2 N | a(n) | nt TR

x<n<x+y x<n<x+y

x(k—l)/Zy
« ——— exp { Y la(p)lp“""/zp"l}

1ng psx+y
(2) < x®= D2y

Now all we need to do to complete the proof of the theorem is to apply
Chandrasekharan and Narasimhan’s general Theorem 4.1 and Remark (5.5)
of [2] with 6 = k,A =1,9q = — oo, u = 1/4 and n = 1/6 to deduce the
theorem. We have taken y = x'27" In the folklore, the result is given
with an additional factor of a power of log x which arises by using a weaker
form of Shiu’s result. (The first appearance in print of a result of this kind,
without proof and with x® instead of log x, can be found in [15].)

In correspondence, Rankin has claimed a similar result with a negative
power of the logarithm:

)

A(x) = O(x® = V2H13(]og x)—6+e)

where & = (8— 3\/8)/ 10. This uses much deeper and more precise information
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about the distribution of values of | a(n) |, including the analytic behavior of
the Dirichlet series Z:O:l a(n)*n™* due to Moreno and Shahidi [10].

Our next result is a significant improvement over the results of Joris [§]
and Redmond [18]. It also gives the natural analogue of the Q_ results of
Corradi and Katai [4] for Dirichlet’s divisor problem.

THEOREM 2. There exists a positive constant D such that

l 1 1/4
Alx) = Q[ xM2 Y% exp <D (log log ) adE
- (log log log x)*

Proof. This result is an immediate consequence of the general theorem of
Redmond [18] (actually, the Corollary to Theorem 2) and the following result
of Murty [11]: for any € > 0, the inequality

lap) | > (/2 —e)p* 1
holds for a positive proportion of primes p. To apply Redmond’s result, we
let P be this set of primes (with € = .1, say). Then the hypotheses of the
cited Corollary are satisfied and the result follows.
The key to this method is a lower bound for the sum
2. lalg) | g~27 1%,

qeQx

where Q, is the set of all square-free numbers composed entirely of primes
less than or equal to x and in P. Joris obtains only the lower bound c log x.
In our first success with this problem, we used the simple inequality

S lalg) | g M s Y a(n) [nT KA YA

qeQx n<x

and the deeper result of Rankin [17] that the latter sum is bounded below
by cx'*(log x)?""*~1. The sum in question however can be written as a
finite Euler product, in which case Murty’s result gives the much improved
lower bound

¢ exp {cx'*/log x} .

Finally, we give an improved omega result for B(x).

THEOREM 3. With D given by Theorem 2,

~ (log log x)'/#
= Q| x4 3D .
B(x) <x e { (log log log x)*/*
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Proof. The method of proof is exactly that used in Ivic-Ouellet [7]
where it is applied to the analogous problem for the divisor function. It
is also the same method used by Ivic [6] to obtain the Q-result mentioned
in (3) above. In that paper however, he did not have the stronger omega
result of Theorem 2. We reconstruct the proof here for completeness.

First note that, uniformly for x* « H < x,

x+H
Ax) = H! f A(t)dt + O(x*~V2H) .
This can easily be shown using Deligne’s and Shiu’s bounds already applied
above in (2).

For simplicity of notation, put

(log log x)'/# }

T(x) = D
() exp{ (log log log x)3/4

Note that T(x) is increasing for x sufficiently large and that T(2x)/T(x) — 1
as x tends to infinity.

Suppose the theorem does not hold so that for any & > 0 and for
X > Xo(e),

B(x) < e*xF 14T (x)3 .
We may assume that x,(e) is large enough so that T(x) is increasing for
X > xo(€).
Now let x be a generic point where the Q, -result of Theorem 2 holds.

Then by the Cauchy-Schwarz inequality, we have, for x* « H < x and some
positive constants ¢, ¢,, and c;,

x+H
clxk/2_1/4T(x) < H—1/2 (J
< C3xk/2ﬁ1/4 4 H~1/2 l B(X+H) _ B(x)ll/z + Csz(k—l)/Z
<

C3xk/2—1/4 + 28H—1/2xk/2—1/8T(2x)3/2 o} Csz(k—l)/2.

1/2
Az(t)dt> + c,Hx%~ /2

X

We put H = ex'*T(2x), divide this last relation by x*2~Y4T(x) and let x
tend to infinity (through the sequence of special values where the Q, -result
of Theorem 2 holds). In so doing we deduce

c; < 2% + e

Since, by assumption, ¢ could be arbitrarily small, this contradiction proves
the theorem.
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It seems reasonable to conjecture that
B(x) « xk~l4te

If true, this conjecture is very strong since it implies (by the method of
proof given above) the classical conjecture

A(X) & xk/2~1/4+s )

In conclusion we make a few remarks on extending these results to Maass
wave forms. For more background on Maass wave forms and their role in
analytic number theory, see the article by Iwaniec in [16]. A Maass wave
form f(z) is an automorphic function for I', ie, a function of weight
zero which is an eigenfunction for the hyperbolic Laplacian. It has a Fourier
series expansion (in x =Re z) of the form

cos(2mnx) if f is even

flz) = nzl Cln\/;Kir(zTU’W) {sin (2nnx) if fis odd,

where K, the K-Bessel function and r is related to f’s Laplacian eigen-
value. Note that these forms are not holomorphic, only real-analytic.

One usually assumes that f is also an eigenfunction for the Hecke
operators (as we did above for holomorphic forms) so that, properly
normalized, the coefficients a, are multiplicative and real. The associated
Dirichlet series satisfies a (slightly more complicated) functional equation
(see Maass [9]) so the theorems of Chandrasekharan-Narasimhan [2] and
Redmond [18] still apply. Rankin’s result (1) carries over to this case easily.
(One takes k = 1 in that result and elsewhere because of a slightly odd
normalization.) However, the Ramanujan-Petersson conjecture | a, | < d(n)
has not been settled for these coefficients. The most that has been shown is

(3) Ianl &« n1/5+a

and
la,| > 1.189

for a positive proportion of primes p. The first was observed independently
by a number of people and follows from the work of Shahidi [19]. The
second is due to Murty. See Murty’s paper [12] for a proof of both.

Consequently, Theorem 2 above holds for these coefficients mutatis
mutandis but Theorems 1 and 3 do not as they depend on the inequality (2)
which requires the Ramanujan-Petersson conjecture. Using Rankin’s result (1)
or inequality (3), one can of course give a weaker estimate for the sum
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