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10 B. IVERSEN

The basic philosofy being that flabby sheaves are acyclic for local coho-

mology, [5] II. 9.3. Thus we can calculate the cohomology sequence (5.1)

from the short exact sequence

0 <- T(U,Q-vv) CT(X,Q- v v) <- rz(X, v) <- 0

According to formula (2.4) we may identify the arrow marked j* with the

linear dual of the arrow marked jf. Simple evaluation according to (2.4)

will be written

<T, l> TeTc(X,)'V), /6T(I,Q*vv).
This notation is compatible with the symbol introduced in section 1 taking
the biduality morphism (2.6) into account. We leave the remaining details

with the reader. Q.E.D.

6. POINCARÉ DUALITY

Let A be a n-dimensional oriented smooth manifold. A compactly

supported {n — pfform a on A defines a compact p-chain Pa given by

(6.1) <Poc,ß> a Aß, ßer(*,Q*).

(6.2) Theorem. For a smooth oriented n-dimensional manifold X, the

transformation P induces an isomorphism

P:Hnc-p(X,C)~+ HCP(X, C), pe N,

from de Rham cohomology with compact support to de Rham homology.

Proof The following diagram is commutative

rc(X, Q"-p) ^ C)

(6.3) I (-1 fdI(-1

rc(x, Q"-p+1) i c)

as it follows from the relation

d(a,ß) (da) a ß + (- a rfß a e FJX, ß e T(X, Q"),
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using that d(a Aß) 0. Upon replacing X by an arbitrary open subset

we obtain a morphism of complexes of sheaves

(6.4) P : Q. * [ft] ^ * v

with the signs of the differentials modified according to the commutative

diagram (6.3). The morphism (6.4) is a quasi-isomorphism as it follows by

checking the case X R" by means of the Poincaré lemma with and without

compact support. As in the proof of (2.1) we conclude that P induces a

quasi-isomorphism

P:rc(A,Q-[n])^rc(X,n-v).
The second complex may be identified with DC(X, C) as we have seen

in (2.3) and the result follows by passing to homology. Q.E.D.

Let us extend Poincaré duality to the relative groups of an open subset U
of X with complement Z in X. With the notation of (6.1), the operator P
from (6.4) induces a commutative diagram

0->rc(i/,ß'ixi) - rc(z,ß-[n]) rc(z,LT|>])o
i 1 I p

0 -> DC(U, C) i DCXX, C) ^ D%X,U; C) -> 0.

Again the differentials in the bottom row must be modified as in (6.3).
The unmarked vertical arrows are the quasi-isomorphisms of Poincaré duality.
The vertical arrow marked P is induced by the algebra of the diagram.
Again, from algebra we deduce a quasi-isomorphism

(6.5) P:rc(Z,n-[ri])^Dcm(X,U;Q, Z X-U.
Passing to homology we obtain the Poincaré duality isomorphism

(6-6) P : Hnc~P(Z, C) ^ Hcp{X, U ; C).

The p9th sheaf cohomology group with compact support fff(Z, C) has the
following de Rham representation

(6.7) (co E rc(X, np) I Supp (dco) Ç U} j {dv | v e TC(X, CP7"1)}

/ + {co e rc(X, Qp) I Supp (co) ^ U}
as it follows from the exact sequence making up the top row of the diagram
above.
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