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¢:TW(q) = Ho
¢tV (dm ((P)) = c? (dpz((P))’
But

and
cD(dy,(0) = 0% o (e )* (e} () = 0*(w).
Remark. Tt is necessary to reduce to Z,. coefficients as the restriction map
H*(Gl,(9), Z,) » HX(T.{(), Z,)

1s not injective in general.

SECTION 3. PROOF OF THEOREM 5
CHI1 and CH2 clearly follow from resp. CH1 and CH2 in Theorem 2
together with the functoriality of the decomposition map d, i.e. the diagram

R(G) 5 Ry

Lo L%
*
R(G) = Ry, H)
is commutative for a group homomorphism f: H — G. To obtain CH3 note
that d,(¢) = e, ' o @ so by definition

cy(@) = ¢1(d,(9)) = (e, o) (efu) = @*o(e, N*oe*(u) = o*(u).

Furthermore let & be the connecting homomorphism obtained from the
exact sequence

Z—-Q—»Q/Z
As the diagram

H'(h,,Q/Z) = H(n,,Z)

o oo
H'YG,QZ) 3  HYG,Z)
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is commutative and as both &’s are isomorphisms it suffices to show that
8~ 1o c¢;: Hom (G, C¥) - HY(G, Q/Z) ~ Hom (G, Q/Z)

1S an isomorphism.
But by inspection 8 ! oc (@) = 8 *(u)o @, and as u is a Z = End,(u.)
generator for H*(u,,, Z) ~ Z, 8 '(u) is an isomorphism

0 w):pn, > Q/Z.

SECTION 4. CHERN CLASSES FOR LOCALLY FINITE GROUPS

The definition will be based on the following two observations. In the
following, let G = lim G, be a locally finite group where {G,} is a family

of finite subgroups.

LEMMA. Let
¢: G- GI(O)
be a representation of G. Then ¢ is uniquely determined by its restrictions
0, G, — GL(O).

Conversely given a family of compatible representations ¢,: G, — Gl (C),
there exists a unique ¢@:G — GL(C) which restricts to ¢, for all k.

Proof. From the universal property of the direct limit, we have

Hom (G, GI,(C)) = lim Hom (G, GI,(C)).

PROPOSITION. For all i > 0, the natural map

HY(G, Z) = lim H(G,, Z).

is an isomorphism.
Proof. Obvious fori = 0, 1. For i > 1, the homology groups
Hi(Ga Z) = lim Hi(Gk> Z)

are all abelian torsion groups.
Now by the universal coefficient theorem (i>1)
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