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CHERN CLASSES 369

To prove CH3, observe that for G locally finite the homology groups
H{G, Z) are all torsion groups for i > 0 as

Hi(Ga Z) = lim Hi(Gk ’ Z) )

the limit taken over a family of finite subgroups G, of G such that
lim G, = G. Now, by the universal coefficient theorem,

0 — Ext} (H,(G, Z), Q,) » H¥G, Q,) » Homy(H,(G, Z), Q,) = 0

i1s exact (Ql is the quotient field of Z,) so it follows that H*(G, Q,) =0
as Q, 1s both torsion-free and divisible. From the long exact sequence in
cohomology it now follows that

HYG, Q/Z,) = HXG, Z,).

Finally, as Ql/Z, = Cy», where C;» is the injective hull of a cyclic [-group,
it follows that

[T HXG, Z,) = [] HYG, C;=) = HY(G, [| Ci») = HYG, @ Cy).
1#p I#p l#p 1#p

The last equality holds, as G is locally finite and @ C,» is the torsion
l¥p
subgroup of [] Cj«.
I#p
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Let G be a given finite group of order | G | and
p: G — GL(C)

a complex representation.

Choose g to be a power of a prime number p different from ! such that
q = 1 (modulo | G )
Define

$:Gl(qg - C
by

46) = Y. e0)
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where Ay, A,, .., A, are the eigenvalues of g. As shown by J. A. Green in
[4], ¢ is a virtual complex character of GI (g).
Furthermore let

f:G - Gl(q)

be the mod-p reduction of p to Gl (g). (It factors through Gl (g), as all
| G |-roots of unity are contained in the Galois field GF(q) with g elements).
Let f*:R(Gl(g)) > Rc(G) be a map induced on complex character
rings by f. By inspection
J59) =p.
Let a = v,(g—1), where v, is the [-adic valuation and let

p**: H**(G, Z,) —» H*¥G, Z.)

be the map induced by the projection p: Zl — Z,.. Clearly p** is injective
in positive dimensions, as multiplication by [* is zero on H**(G, Z,).
Now the following diagram is commutative

p¥*

H**G, Z,) = H**(G, Zy.)

SE* T T fE*®
H**(Gl(q), Z,) —  H**Gl(q), Z.)
l res l res

~ p¥*

H**(Tn(Q)a Zl) —* H**(Tn(q)9 Zl“)

where the restriction map on the right is injective as shown in [6].
Thus fori = 1,2

c?(d,(p) = (P**) ™" f**(res) ™ 'p*¥(d,, (1))

where 1 is the restriction of the virtual character ¢ to T,(q). [Note that
(p**)™! and (res)”! both make sense as the above diagram is commutative].

Thus to show equality, it suffices using CH1 in Theorem 2, to show
that

¢V (dy, (1) = ¢ (d,,(v)

But T,(g) is abelian so 1 is a direct sum of n one-dimensional represen-
tations. By CH2 of Theorem 2 it suffices to show that for a one dimen-
sional representation
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¢:TW(q) = Ho
¢tV (dm ((P)) = c? (dpz((P))’
But

and
cD(dy,(0) = 0% o (e )* (e} () = 0*(w).
Remark. Tt is necessary to reduce to Z,. coefficients as the restriction map
H*(Gl,(9), Z,) » HX(T.{(), Z,)

1s not injective in general.

SECTION 3. PROOF OF THEOREM 5
CHI1 and CH2 clearly follow from resp. CH1 and CH2 in Theorem 2
together with the functoriality of the decomposition map d, i.e. the diagram

R(G) 5 Ry

Lo L%
*
R(G) = Ry, H)
is commutative for a group homomorphism f: H — G. To obtain CH3 note
that d,(¢) = e, ' o @ so by definition

cy(@) = ¢1(d,(9)) = (e, o) (efu) = @*o(e, N*oe*(u) = o*(u).

Furthermore let & be the connecting homomorphism obtained from the
exact sequence

Z—-Q—»Q/Z
As the diagram

H'(h,,Q/Z) = H(n,,Z)

o oo
H'YG,QZ) 3  HYG,Z)
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