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CHERN CLASSES 369

To prove CH3, observe that for G locally finite the homology groups
Hi(G, Z) are all torsion groups for i > 0 as

Ht(G, Z) limi^Z),
the limit taken over a family of finite subgroups Gk of G such that
lim Gh G. Now, by the universal coefficient theorem,

0 -, ExtÏ{H,(G, Z), Qz) -, H\G, Qz) -, Homz(H2(G, Z), Qz) -, 0

is exact (Qz is the quotient field of Zz) so it follows that H2(G, Qz) 0

as Qi is both torsion-free and divisible. From the long exact sequence in
cohomology it now follows that

H\G, &/Zz) H\G, Zz).

Finally, as Qz/Zz C^, where Cx is the injective hull of a cyclic /-group,
it follows that

n H2(G,Zj)n «'(G, c,-) n C«) WHG, © C,.).
z^p

The last equality holds, as G is locally finite and © C/00 is the torsion
i+p

subgroup of Yl Cxoo.

itp

Section 2. Proof of Theorem 4

Let G be a given finite group of order | G | and

p: G -> Gl„(C)

a complex representation.

Choose qtobe a power of a prime number p different from I such that

qs 1 (modulo | G |)

Define

$:GUq)~*C
by

<K<?) Ê ep(X;)
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where X1,X2,Xn are the eigenvalues of g. As shown by J. A. Green in
[4], (j> is a virtual complex character of Gln(q).

Furthermore let

be the mod-p reduction of p to Gln(q). (It factors through Gln(q), as all
I G |-roots of unity are contained in the Galois field GF(q) with q elements).

Let /* : Rc(Gln(q)) -> RC(G) be a map induced on complex character

rings by /. By inspection

/*M>) P •

Let a vt(q — 1), where vz is the I-adic valuation and let

p** : Zz) Zla)

be the map induced by the projection p: Zt -> Zla. Clearly p** is injective
in positive dimensions, as multiplication by la is zero on H**(G, Zz).

Now the following diagram is commutative

H**(G,Z,)Pïï

/** I I /**

H**(Gln(q),%)-Z,„)

I res I res

Z,) "L* Z,.)

where the restriction map on the right is injective as shown in [6].
Thus for i 1,2

cii}{dPi(9)) (p**)"1/**(res)-1p**KiW)

where x is the restriction of the virtual character 4> to Tn(q). [Note that
(p**)-1 and (res)-1 both make sense as the above diagram is commutative].

Thus to show equality, it suffices using CHI in Theorem 2, to show

that

c-1)(dPiM)
But Tn(q) is abelian so x is a direct sum of n one-dimensional representations.

By CH2 of Theorem 2 it suffices to show that for a one dimensional

representation
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9 : Tn(q) -> nœ

c[2)(dP2{(p)).

But

" dpt(<p) e'1

and

9* "(«p,1)* (e %9*(") •

Remark. It is necessary to reduce to Zla coefficients as the restriction map

H*(Gln(q), Zj) - %)

is not injective in general.

Section 3. Proof of Theorem 5

CHI and CH2 clearly follow from resp. CHI and CH2 in Theorem 2

together with the functoriality of the decomposition map dp i.e. the diagram

Rc(G)T-X

I dpIdp

Rp(G)2 Rp(U)

is commutative for a group homomorphism / : H - G. To obtain CH3 note
that dp(cp) o (p so by definition

Ci((p) c1(dp((p)) (eplo(p)(e*u)(p* o(ep1)* a e*(u) cp*(u).

Furthermore let 5 be the connecting homomorphism obtained from the
exact sequence

Q/Z

As the diagram

HV..Q/Z ^
I <P* I <p*

tf'(G, Q/Z) =* 7/2(G, Z)
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