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CHERN CLASSES 367

c(pef) = f*c.(p)-
CH2. c.(p1®py) = c.(py)" c.(pz) -

CH3. c¢,:Hom (G, C¥)» HXG,Z) is an isomorphism and can be
described as follows: For @ e Hom (G, C*), let ¢ also denote its unique
factorization '

Now ¢(@) = @*(u).

Remark. As shown in [7], CH1, CH2 and CH3 uniquely determine the
Chern classes defined by u. As different choices of u clearly defines different
Chern classes (just observe that

Hz(uoo > Z) = lim HZ(Gi: Z) >

the limit taken over all finite cyclic subgroups), there is a one-to-one
correspondence between Chern classes on finite groups and 7 generators
of H*(u,, , Z).

This paper has been organized as follows.

Theorem 2 is proved in Section 1, Theorem 4 in Section 2, and
Theorem 5 in Section 3. Proposition 3 1) was proved in [7], and the remaining
part of this proposition can be obtained similarly.

Finally, in Section 4 it is shown that there exists a very simple extension
of the theory of Chern classes on finite groups to locally finite groups.

I would like to thank J¢rgen Tornehave for a helpful conversation.

SECTION 1. PROOF OF THEOREM 2

CH1 i1s quite trivial, so let me first prove CH2. Let dimp; = n;,

dimp = n, so that n, + n, = n. By assumption, p factors through the
parabolic subgroup P = P(k,)
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which is isomorphic to a semi-direct product of Gl,,l(lgp) X Gl,,z(l_c_p) acting
on a unipotent subgroup U.
As U 1s a direct limit of p-groups,

HYU,Z,) =0 for k > 0.

Thus
H*(Pa Zl) = H*(Glnl(Ep)a Zl) ® H*(Glnz(lgp)a Zl)
= P(oty, e 04) @ P(By, oy Buy) -
Let
H*(Gl,(k,), Z,) = P(cy, .., G,)
and

H¥(To(k,), Z;) = P(xy, oo %) -
As T,(k,) = T, (k,) x T,,(k,), I shall consider
H¥(T,,(k,), Z;) = P(Xy, .y X))
and
H¥(T,,(k)), Zy) = P(X, 415 oor %)

as contained in H*(T,(k,), Zz) Furthermore, as all restriction maps are
injective, I shall view H*(Gl(k,), Z,) and H*(Gl, (k,), Z;),i = 1, 2, as subspaces
of H¥(T(k,), Z;). Thus

o; = the i’th elementary symmetric polynomial in x, ..., X,

B; = the I’th elementary symmetric polynomial in x,,, 1, .., X

n

o; = the i’th elementary symmetric polynomial in x,, ..., X

i n-

Furthermore, the formula
¢.(P1®p2) = c.(p1Dp,)
is equivalent to
1+ ot + o+ o,t" = (L+ogt+.+o, ") (1+Bt+..+B,,t"),

and this follows from the identity

Yoot =[] Q+ex) = [] Q4ex) - ] (1+1x)
=0 =1 i=1

i=n1+1

=< ociti>(n2 Bi-ti)
i=0 i=0

S
fiy

~
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To prove CH3, observe that for G locally finite the homology groups
H{G, Z) are all torsion groups for i > 0 as

Hi(Ga Z) = lim Hi(Gk ’ Z) )

the limit taken over a family of finite subgroups G, of G such that
lim G, = G. Now, by the universal coefficient theorem,

0 — Ext} (H,(G, Z), Q,) » H¥G, Q,) » Homy(H,(G, Z), Q,) = 0

i1s exact (Ql is the quotient field of Z,) so it follows that H*(G, Q,) =0
as Q, 1s both torsion-free and divisible. From the long exact sequence in
cohomology it now follows that

HYG, Q/Z,) = HXG, Z,).

Finally, as Ql/Z, = Cy», where C;» is the injective hull of a cyclic [-group,
it follows that

[T HXG, Z,) = [] HYG, C;=) = HY(G, [| Ci») = HYG, @ Cy).
1#p I#p l#p 1#p

The last equality holds, as G is locally finite and @ C,» is the torsion
l¥p
subgroup of [] Cj«.
I#p

SECTION 2. PROOF OF THEOREM 4

Let G be a given finite group of order | G | and
p: G — GL(C)

a complex representation.

Choose g to be a power of a prime number p different from ! such that
q = 1 (modulo | G )
Define

$:Gl(qg - C
by

46) = Y. e0)
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