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CHERN CLASSES 367

C(P0/) /*(c • (P)) •

CH2. c.(p1©p2) c.(Pi)' c.(P2)•

CH3. cx : Horn (G, C*) -a H2(G, Z) an isomorphism and can be

described as follows : For 9 6 Horn (G, C*), let cp also denote its unique

factorization

Now c^cp) (p*(w).

Remark As shown in [7], CHI, CH2 and CH3 uniquely determine the

Chern classes defined by u. As different choices of u clearly defines different

Chern classes (just observe that

Z) lim H2(Gt, Z),

the limit taken over all finite cyclic subgroups), there is a one-to-one

correspondence between Chern classes on finite groups and Z generators
of H2{[iœ, Z).

This paper has been organized as follows.
Theorem 2 is proved in Section 1, Theorem 4 in Section 2, and

Theorem 5 in Section 3. Proposition 3 i) was proved in [7], and the remaining

part of this proposition can be obtained similarly.
Finally, in Section 4 it is shown that there exists a very simple extension

of the theory of Chern classes on finite groups to locally finite groups.
I would like to thank Jorgen Tornehave for a helpful conversation.

Section 1. Proof of Theorem 2

CHI is quite trivial, so let me first prove CH2. Let dim p^

dim p n, so that + n2 n. By assumption, p factors through the

parabolic subgroup P P(kp)

Hi n2
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which is isomorphic to a semi-direct product of Glni(kp) x Gln2(kp) acting
on a unipotent subgroup U.

As U is a direct limit of p-groups,

Thus

Let

and

Hk(U, Zz) 0 for k > 0

H*CP, Z,) H*(Glni(kp),%)0 Z,)

P(aj,ocj 0 P(ßi,ß„2).

H*(Gln(kp), Z,)Pct„)

As T„(fcp) TnJkp) x TnJkp),I shall consider

H*(Tni(fcp), Z xni)

and

H*(Tniikp),Z,)P(xBl + 1,xj
as contained in H*(Tn(kp\ Zz). Furthermore, as all restriction maps are

injective, I shall view H*(Gln(kp), Zz) and H*(Gln.(kp), Zz), i 1, 2, as subspaces

of H*(Tn(kp), Zz). Thus

az the fth elementary symmetric polynomial in xx,xni
ß; the fth elementary symmetric polynomial in x„1 + 1,x„

the fth elementary symmetric polynomial in xx,..., x„.

Furthermore, the formula

c.(Pi®p2) MPi©P2)

is equivalent to

1 + af + + ct„tn (1 + cx11 +... + anifni) • (1 + ß11 +... + ß7J2t"2),

and this follows from the identity

n n «1 ri2

z °^1 n n n (1+^)
i 0 i= 1 i 1 i fii + l
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To prove CH3, observe that for G locally finite the homology groups
Hi(G, Z) are all torsion groups for i > 0 as

Ht(G, Z) limi^Z),
the limit taken over a family of finite subgroups Gk of G such that
lim Gh G. Now, by the universal coefficient theorem,

0 -, ExtÏ{H,(G, Z), Qz) -, H\G, Qz) -, Homz(H2(G, Z), Qz) -, 0

is exact (Qz is the quotient field of Zz) so it follows that H2(G, Qz) 0

as Qi is both torsion-free and divisible. From the long exact sequence in
cohomology it now follows that

H\G, &/Zz) H\G, Zz).

Finally, as Qz/Zz C^, where Cx is the injective hull of a cyclic /-group,
it follows that

n H2(G,Zj)n «'(G, c,-) n C«) WHG, © C,.).
z^p

The last equality holds, as G is locally finite and © C/00 is the torsion
i+p

subgroup of Yl Cxoo.

itp

Section 2. Proof of Theorem 4

Let G be a given finite group of order | G | and

p: G -> Gl„(C)

a complex representation.

Choose qtobe a power of a prime number p different from I such that

qs 1 (modulo | G |)

Define

$:GUq)~*C
by

<K<?) Ê ep(X;)
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