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ON CHERN CLASSES
OF FINITE GROUP REPRESENTATIONS

by Ove KROLL

In his paper “Characters and cohomology of finite groups”, Atiyah
observed that for a finite group G and a complex representation

0: G - GIL(C)

of dimension n, it is possible to attach to p the natural cohomology
classes with integral coefficients

Ci(p) € HZi(G: Z) ] l . 09 1: R (I

namely the Chern classes of a vector bundle constructed from p over the
classifying space BG of G.

As the objects involved, group cohomology and complex representations
of finite groups, are both algebraic objects (the latter by Brauer’s famous
theorem stating that complex representations can be realized over finite
cyclotomic extensions of the rational numbers), a purely algebraic construction
ought to exist.

My aim in this paper is to provide such an algebraic definition of the
Chern classes. Another algebraic though quite different construction has been
given by Grothendieck in [5], while Evens in [2] has given an algebraic
“in principle” way of calculating the classes. In this connection it is also
worth mentioning that a formula for the Chern classes of an induced
representation from H to G, where H is normal in G of index a prime p,
can be found in [3]. However, as already shown in [7], such a formula
is not needed to characterize Chern classes of finite group representations.

My consAtruction will be based on the purely algebraic construction of
H *(Gl,,(k_p), Z,): the cohomology of the general linear group over the algebraic
closure k_p of the field with p elements with coeflicients in the Il-adic
integers Z, (I a prime different from p), which I gave in [6].

Let me state this theorem:
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THEOREM 1. H*(Gln(lgp), Z,) = P(oy, .., 0,), where P denotes a poly-
nomial algebra defined over Z,. Furthermore o; has degree 2i.

Let me also recall that for the subgroup T,,(EP) of diagonal matrices
H¥(T,(k,), Z;) = P(x1, ., X,) »
where x; has degree 2. Finally, under the restriction map res
1€s (0;) = X( X5 o X; + oo + Xp— it 1Xn— it 2 o X

(the i’th elementary symmetric polynomial).
This theorem clearly allows a definition of p-modular l-adic Chern classes:

Given any group G and any p-modular representation defined over 12,,
p: G — Gl k,),

define c¢/p) € H*(G, Z,) by c{p) = p*(c,). These classes have the following
properties:

THEOREM 2.

CHI. If f:H — G is a group homomorphism, then

clpef) = f*(ci(P)) .
CH2. Let

0O—-p—>p—->p,—0

be an exact sequence of representations (or more precisely of the corresponding

modules ). If

c.(p) =14 ci(p) + ... + c,(p)

is the total Chern class, then

c.(p) = c.(pc.(p2)

CH3. Let G be a locally finite group. Then the product of the
c,’s taken over all primes | different from p defines an isomorphism

between one-dimensional representations over k, and

[] H¥G, Z,) = HG, [] Z,).
1#p I#p
Let R,(G) be the Grothendieck group of representations of G over k—p
(so R,(G) is the free abelian group with basis the isomorphism classes of
simple k,G-modules) and let
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H*G, Z)) = [| H*(G, Z,).

n=0

As the total Chern class c¢.(p) of a representation p is invertible in
H**(G, Z,) (use the formula (1+x)~' =1 — x + x? — x> + ... where x has
strictly positive degree), CH2 allows a unique extension of c. to

¢.:R(G) - H**G, Z,).

As shown in CH3, Chern classes are closely connected to the cohomology
of k* (k*=Gly(k,)).

PROPOSITION 3. Let W, be the infinite group of complex roots of unity
and define

the product taken over all primes . Then

) H*w,, Z) = Z[ul,
where the right hand side denotes a polynomial algebra over Z in one
variable u of degree 2 (except that H°(n,,Z) = Z).

i) H*(, 1) = Zj[ul.
i) H*(kE, Z) = Zy[u,]
where | is a prime different from p and u, has degree 2.

iv) H'(k%, [ Z,) = H'(k%,Z) for n> 0.
L#p

~

Now, as Gl,,(k_p), n = 1,2, 3,.., are locally finite groups, it follows quite
easily from CHI, CH2 and CH3 that p-modular Chern classes with Zl-
coefﬁcierAlts are in one-to-one correspondence with Z, generators u, of
H*(k¥*,Z,). Using this correspondence, I shall say that a system of p-modular
l-adic Chern classes is defined by the element u, in H*(k}, Z,).

To define Chern classes of complex representations, I will use the well-
known decomposition map d, from modular representation theory
(see e.g. [9]). So let R¢(G) be the Grothendieck group (or character ring)
of complex representations of G. Making a choice of a multiplicative
embedding

ep:k;’j S Hy s

d, can be defined as follows: If x is an ordinary character of degree n,

d,(x) 1s a modular representation whose composition factors are uniquely
determined by the modular character
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d(x) (g) = e, '(Ay+o+ 1),
where g 1s a p-regular element (i.e. of order prime to p) with eigenvalues

Ay, .., A, Oon the representation determined by 7.

THEOREM 4. Let ue H?*(u,, Z,) be a generator, and let p, and p,
be primes, both different from I, and let e} (u)e H*k},Z,) define
pi-modular Chern classes ¢ . Then the diagram

% \
R(G) H**(G, Z
x /

is commutative for all finite groups G.

Now for a finite group G, the unique ring homomorphism

Z—»HZ,:Z
!

induces an isomorphism (as the quotient Z/Z 1s divisible)
H*(G, Z) = H*(G, ]—lI 7)) = H H*(G, Z,) ,
and I can now (independently of p by Theorem 4) deﬁne the [-primary
component of the Chern classes ¢. defined by u e H?*(u,, , Z) of
p: G — GIL(C)
by
(c. () = c.(dyfp)

where p is a prime different from | and the ¢. on the right hand side is
the p-modular Chern classes defined by e} (y;), where u; is the [-primary
component of u e HXu,, Z) = H H*(u, , Z ).

THEOREM 5. Let c¢. denote the integral Chern classes defined by
ue HXu,,Z). Then

CHI. Let f:H — G be a group homomorphism. Then
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c(pef) = f*c.(p)-
CH2. c.(p1®py) = c.(py)" c.(pz) -

CH3. c¢,:Hom (G, C¥)» HXG,Z) is an isomorphism and can be
described as follows: For @ e Hom (G, C*), let ¢ also denote its unique
factorization '

Now ¢(@) = @*(u).

Remark. As shown in [7], CH1, CH2 and CH3 uniquely determine the
Chern classes defined by u. As different choices of u clearly defines different
Chern classes (just observe that

Hz(uoo > Z) = lim HZ(Gi: Z) >

the limit taken over all finite cyclic subgroups), there is a one-to-one
correspondence between Chern classes on finite groups and 7 generators
of H*(u,, , Z).

This paper has been organized as follows.

Theorem 2 is proved in Section 1, Theorem 4 in Section 2, and
Theorem 5 in Section 3. Proposition 3 1) was proved in [7], and the remaining
part of this proposition can be obtained similarly.

Finally, in Section 4 it is shown that there exists a very simple extension
of the theory of Chern classes on finite groups to locally finite groups.

I would like to thank J¢rgen Tornehave for a helpful conversation.

SECTION 1. PROOF OF THEOREM 2

CH1 i1s quite trivial, so let me first prove CH2. Let dimp; = n;,

dimp = n, so that n, + n, = n. By assumption, p factors through the
parabolic subgroup P = P(k,)
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which is isomorphic to a semi-direct product of Gl,,l(lgp) X Gl,,z(l_c_p) acting
on a unipotent subgroup U.
As U 1s a direct limit of p-groups,

HYU,Z,) =0 for k > 0.

Thus
H*(Pa Zl) = H*(Glnl(Ep)a Zl) ® H*(Glnz(lgp)a Zl)
= P(oty, e 04) @ P(By, oy Buy) -
Let
H*(Gl,(k,), Z,) = P(cy, .., G,)
and

H¥(To(k,), Z;) = P(xy, oo %) -
As T,(k,) = T, (k,) x T,,(k,), I shall consider
H¥(T,,(k,), Z;) = P(Xy, .y X))
and
H¥(T,,(k)), Zy) = P(X, 415 oor %)

as contained in H*(T,(k,), Zz) Furthermore, as all restriction maps are
injective, I shall view H*(Gl(k,), Z,) and H*(Gl, (k,), Z;),i = 1, 2, as subspaces
of H¥(T(k,), Z;). Thus

o; = the i’th elementary symmetric polynomial in x, ..., X,

B; = the I’th elementary symmetric polynomial in x,,, 1, .., X

n

o; = the i’th elementary symmetric polynomial in x,, ..., X

i n-

Furthermore, the formula
¢.(P1®p2) = c.(p1Dp,)
is equivalent to
1+ ot + o+ o,t" = (L+ogt+.+o, ") (1+Bt+..+B,,t"),

and this follows from the identity

Yoot =[] Q+ex) = [] Q4ex) - ] (1+1x)
=0 =1 i=1

i=n1+1

=< ociti>(n2 Bi-ti)
i=0 i=0

S
fiy

~
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To prove CH3, observe that for G locally finite the homology groups
H{G, Z) are all torsion groups for i > 0 as

Hi(Ga Z) = lim Hi(Gk ’ Z) )

the limit taken over a family of finite subgroups G, of G such that
lim G, = G. Now, by the universal coefficient theorem,

0 — Ext} (H,(G, Z), Q,) » H¥G, Q,) » Homy(H,(G, Z), Q,) = 0

i1s exact (Ql is the quotient field of Z,) so it follows that H*(G, Q,) =0
as Q, 1s both torsion-free and divisible. From the long exact sequence in
cohomology it now follows that

HYG, Q/Z,) = HXG, Z,).

Finally, as Ql/Z, = Cy», where C;» is the injective hull of a cyclic [-group,
it follows that

[T HXG, Z,) = [] HYG, C;=) = HY(G, [| Ci») = HYG, @ Cy).
1#p I#p l#p 1#p

The last equality holds, as G is locally finite and @ C,» is the torsion
l¥p
subgroup of [] Cj«.
I#p

SECTION 2. PROOF OF THEOREM 4

Let G be a given finite group of order | G | and
p: G — GL(C)

a complex representation.

Choose g to be a power of a prime number p different from ! such that
q = 1 (modulo | G )
Define

$:Gl(qg - C
by

46) = Y. e0)
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where Ay, A,, .., A, are the eigenvalues of g. As shown by J. A. Green in
[4], ¢ is a virtual complex character of GI (g).
Furthermore let

f:G - Gl(q)

be the mod-p reduction of p to Gl (g). (It factors through Gl (g), as all
| G |-roots of unity are contained in the Galois field GF(q) with g elements).
Let f*:R(Gl(g)) > Rc(G) be a map induced on complex character
rings by f. By inspection
J59) =p.
Let a = v,(g—1), where v, is the [-adic valuation and let

p**: H**(G, Z,) —» H*¥G, Z.)

be the map induced by the projection p: Zl — Z,.. Clearly p** is injective
in positive dimensions, as multiplication by [* is zero on H**(G, Z,).
Now the following diagram is commutative

p¥*

H**G, Z,) = H**(G, Zy.)

SE* T T fE*®
H**(Gl(q), Z,) —  H**Gl(q), Z.)
l res l res

~ p¥*

H**(Tn(Q)a Zl) —* H**(Tn(q)9 Zl“)

where the restriction map on the right is injective as shown in [6].
Thus fori = 1,2

c?(d,(p) = (P**) ™" f**(res) ™ 'p*¥(d,, (1))

where 1 is the restriction of the virtual character ¢ to T,(q). [Note that
(p**)™! and (res)”! both make sense as the above diagram is commutative].

Thus to show equality, it suffices using CH1 in Theorem 2, to show
that

¢V (dy, (1) = ¢ (d,,(v)

But T,(g) is abelian so 1 is a direct sum of n one-dimensional represen-
tations. By CH2 of Theorem 2 it suffices to show that for a one dimen-
sional representation
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¢:TW(q) = Ho
¢tV (dm ((P)) = c? (dpz((P))’
But

and
cD(dy,(0) = 0% o (e )* (e} () = 0*(w).
Remark. Tt is necessary to reduce to Z,. coefficients as the restriction map
H*(Gl,(9), Z,) » HX(T.{(), Z,)

1s not injective in general.

SECTION 3. PROOF OF THEOREM 5
CHI1 and CH2 clearly follow from resp. CH1 and CH2 in Theorem 2
together with the functoriality of the decomposition map d, i.e. the diagram

R(G) 5 Ry

Lo L%
*
R(G) = Ry, H)
is commutative for a group homomorphism f: H — G. To obtain CH3 note
that d,(¢) = e, ' o @ so by definition

cy(@) = ¢1(d,(9)) = (e, o) (efu) = @*o(e, N*oe*(u) = o*(u).

Furthermore let & be the connecting homomorphism obtained from the
exact sequence

Z—-Q—»Q/Z
As the diagram

H'(h,,Q/Z) = H(n,,Z)

o oo
H'YG,QZ) 3  HYG,Z)
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is commutative and as both &’s are isomorphisms it suffices to show that
8~ 1o c¢;: Hom (G, C¥) - HY(G, Q/Z) ~ Hom (G, Q/Z)

1S an isomorphism.
But by inspection 8 ! oc (@) = 8 *(u)o @, and as u is a Z = End,(u.)
generator for H*(u,,, Z) ~ Z, 8 '(u) is an isomorphism

0 w):pn, > Q/Z.

SECTION 4. CHERN CLASSES FOR LOCALLY FINITE GROUPS

The definition will be based on the following two observations. In the
following, let G = lim G, be a locally finite group where {G,} is a family

of finite subgroups.

LEMMA. Let
¢: G- GI(O)
be a representation of G. Then ¢ is uniquely determined by its restrictions
0, G, — GL(O).

Conversely given a family of compatible representations ¢,: G, — Gl (C),
there exists a unique ¢@:G — GL(C) which restricts to ¢, for all k.

Proof. From the universal property of the direct limit, we have

Hom (G, GI,(C)) = lim Hom (G, GI,(C)).

PROPOSITION. For all i > 0, the natural map

HY(G, Z) = lim H(G,, Z).

is an isomorphism.
Proof. Obvious fori = 0, 1. For i > 1, the homology groups
Hi(Ga Z) = lim Hi(Gk> Z)

are all abelian torsion groups.
Now by the universal coefficient theorem (i>1)
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Hi(Ga Z) = Ext ; (Hi— 1(Gn Z)> Z)

and as observed above, for i > 2, H;_ (G, Z) is torsion. Thus

Ext 7 (H;—4(G, Z), Z) = Homy (H;- (G, Z), Q/Z)
= Homy (h_{n H; (G, Z), Q/Z) = liin Homg (Hi— 1(Gy» Z), Q/Z)

=~ hm EXt % (Hi—"l(GkJ Z), Z) = 11}:11 Hi(Gk, Z) .

Combining these two results, there exists for a representation

¢: G — GI(C)

of a locally finite group G = lim G, a unique cohomology class

¢.(p) € H**(G, Z) such that for all k

res & (c.(9)) = c. (k)

Using this uniqueness result, it is easy to see that these classes satisfy
the properties CH1, CH2 and CH3 and that they are uniquely determined
by these properties.
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