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CAUCHY RESIDUES 9

and similarly with X replaced by U and X, replaced by U n X,. Using
this and the exact sequence 4.2 we get that

lim DX,, UnX,;C) = DIX, U; ()

from which the result follows by passing to homology. Q.E.D.

Let us also notice that in case X is the disjoint union of a family
(X,) of open subsets we have that

(4.9) & HY(X,, UnX,;C) > HY(X, U; C).

5. STOKES FORMULA

Let us consider the open subset U of the n-dimensional smooth manifold X
and the resulting exact sequences

~ Hy(X, ) » H5(X, U;©) 5 H,_ (U, €) 3 H_y(X, ©) -
(5.1) , j*
— H?(X,C) « H?(X,U;C) < H? " Y(U,C) «~ H? (X, C) «

where the first is discussed in the previous section and the second is the
sheaf cohomology sequence. The relative term in the second sequence is often
written

(5.2) HYX,C) = H*(X,U;C), Z=X—-U.
We can now extend the biduality theorem (2.1).
(5.3) THEOREM. The cohomology sequence above is dual to the homology
sequence. In particular we have a Stoke’s formula
<ba,®> = <o, 00>
for ae HY(X,U;C) and ®e H?"Y(U,C).

Proof. The first sequence arises from the following short exact sequence
of complexes, compare (4.2) and (4.7),

0T (U, Q)3 (X, Q) L(Z 0 ¥)—0.

In order to calculate the second sequence we depart from the flabby
resolution Q" of R established in the proof of the biduality theorem (2.1).
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The basic philosofy being that flabby sheaves are acyclic for local coho-
mology, [5] II. 9.3. Thus we can calculate the cohomology sequence (5.1)
from the short exact sequence

ok
0T(U,Q ) T(X,Q V)« T,X,0 V)« 0.

According to formula (2.4) we may identify the arrow marked j* with the
linear dual of the arrow marked j,. Simple evaluation according to (2.4)
will be written

<T,I>, Tel,(X,)'"), leT(X,Q""").

This notation is compatible with the symbol introduced in section 1 taking
the biduality morphism (2.6) into account. We leave the remaining details
with the reader. Q.E.D.

6. POINCARE DUALITY

Let X be a n-dimensional oriented smooth manifold. A compactly
supported (n—p)-form o« on X defines a compact p-chain Pa given by

6.1) <Po, B> =J arB, Bel(X,Qr).
X

(6.2) THEOREM. For a smooth oriented n-dimensional manifold X, the
transformation P induces an isomorphism

P:H! %(X,C) - Hy(X,C), peN,
from de Rham cohomology with compact support to de Rham homology.
Proof. The following diagram is commutative
I(X, "7 5> DYX,C)
(6.3) L (=1)d L(=1""
(X, Q"7 5 De_ (X, C)
as it follows from the relation

donB) = (do) » B+ (—1)""Pa » dB, el (X,Q"7), Bel(X,Qr),
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