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the homfly polynomial has been found, apart from the case of the
Alexander-Conway polynomial. The purpose of this paper is to present
some progress towards the solution of these problems.

In Section 2 we introduce a composition product for homfly polynomials.
This product allows the combinatorial definition of the homfly polynomial
of a diagram for a given pair of values of the variables in terms of the
homfly polynomials of its subdiagrams for other related pairs of values of
the variables (Proposition 1). We show in Proposition 2 how the sequence
of state models due to Jones can be derived simply from the product
operation, starting from an elementary special case of the homfly polynomial.
Then, motivated by some difficulties in the application of the concept of
composition product to the Alexander-Conway polynomial, in Section 3 we
restrict our attention to closed braids and we introduce a specified com-
position product for this class of diagrams (Proposition 3). This leads us
first to another version of the Jones sequence of state models (Proposition 4).
Then we obtain a state model for the Alexander-Conway polynomial
(Proposition 6) which can be interpreted as an ice-type model (Proposition 7).
As another consequence we give an expansion of the homfly polynomial
of a braid diagram in terms of the Alexander-Conway polynomials of its
subdiagrams (Proposition 9). This yields simple direct proofs of some
inequalities due to Morton [22] and independently Franks and Williams [4]
which have been helpful in the study of the braid index. Finally we combine
the previous results to obtain a state model for the homfly polynomial of
a closed braid (Proposition 12). We present some perspectives for further
research in Section 4.

2. THE COMPOSITION PRODUCT OF HOMFLY POLYNOMIALS

2.1. DEFINITIONS

By diagram we mean a regular plane projection of a tame oriented link
in 3-space. We shall consider diagrams as 4-regular directed plane graphs.
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sign(v) = +1 sign(v) = -1

FIGURE 1
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In particular a simple Jordan curve (corresponding to the trivial knot) is
a graph with no vertices and one edge which we call the free loop.
The vertices of a diagram will be signed according to the convention
described in Figure 1.

The writhe of the diagram D, denoted by w(D), is the sum of the signs
of the vertices of D. We define the rotation number of D, denoted by
r(D), as the sum of the signs of the Seifert circles of D, where the sign
of such a circle is 1 if it is oriented counterclockwise and — 1 otherwise
(this combinatorial form of the Whitney degree appears in [16] p. 95-100,
where it is called curliness). '

Two diagrams will be said to be isotopic if they represent the same
oriented link up to ambient isotopy. We shall need the following economical
form of Reidemeister’s Theorem given in [28]: two diagrams are isotopic
if and only if one can be obtained from the other by a finite sequence
of moves of types A4;, A;, B;, Bi(i=1, 2, 3,4) and C, C’ described in Figure 2.
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FIGURE 2B

N N

TN
R )

Ficure 2C

Two diagrams will be said to be regularly isotopic if one can be obtained
from the other by a finite sequence of moves of types B;, B;(i=1, 2, 3, 4)
and C, C' (this concept is due to Kauffman [19]). The writhe and the
rotation number are invariants of regular isotopy: if D and D’ are regularly
isotopic diagrams, then w(D) = w(D’) (this is immediate) and r(D) = r(D’)
(see [16] p. 95-100).

If D™, D™ and D° are diagrams which are identical outside a small disk
and behave as depicted in Figure 3 inside that disk, we shall say that
(D*, D™, D°) form a Conway triple.
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FIGURE 3

We shall be concerned here with the following result:

THEOREM. One can associate (in an unique way) to every diagram D
a Laurent polynomial with integer coefficients in two variables z, a which
we denote by H(D, z,a) in such a way that the following properties hold :

(1) If D and D’ are regularly isotopic, H(D, z, a) = H(D', z, a).

() If D' is obtained from D by a move of type A} or A
(respectively: A% or A,) then H(D,z a) = aH(D, z,a) (respec-
tively: H(D',z,a) = a *H(D, z, a)).

(i) If (D*,D~,D°) form a Conway triple then:

H(D*,z,a) — HD™, z,a) = zH(D’, z, a) .

(iv) If D is the free loop, H(D, z,a) = 1.

Then, as observed in [19], if we set P(D, z,a) = a "PH(D, z, a) this
defines the following version of the homfly polynomial [5, 6, 8, 21, 25, 26]:
P is an isotopy invariant which takes the value 1 on the free loop and
satisfies, for every Conway triple (D", D™, D°):aP(D*,z,a) — a *P(D", z, a)
= zP(D°, z, a). In particular, P(D, z, 1) = H(D, z, 1) is the Alexander-Conway
polynomial of D [1, 3, 15, 16] and we denote it by A(D, z).

We shall need the following easy consequence of the above Theorem:

(v) If the diagram D’ is obtained from the diagram D by the addition
of a single free loop, then H(D', z, a) = (a—a~ ')z " *H(D, z, a).

For the sake of simplicity we define: H'(D, z, a) = (a—a~ )z *H(D, z, a).
Thus H' can replace H in properties (i), (i), (iii) of the Theorem, and
satisfies

(iv) If D is the free loop, H'(D, z,a) = (a—a™ Yz~ *.

In the sequel we shall have to consider the empty diagram ®, which has
no vertices and no edges. It will be convenient to set H'(®w, z,a) = 1, so
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that property (v) is valid with H' instead of H even when D is the empty
diagram. This convention together with property (v) can replace property (iv')
in the definition of H'.

2.2. LABELLINGS AND THE COMPOSITION PRODUCT

We define a labelling of a diagram D as a mapping f from the edge-set
of D to the set of positive integers which satisfies the following

conservation law: for every positive integer i, at every vertex v of D,
the number of edges labelled i (that is, edges in f~'(i)) incident towards v
equals the number of such edges incident from v (a loop at v contributing 1
to both numbers).

Then if we first erase all edges not labelled i and the isolated vertices
thus created, “smoothing out” all vertices of degree 2 (see Figure 4) and
retaining the signs (or equivalently the crossing structure) at every vertex
of degree 4, we obtain a (possibly empty) diagram which we denote by
D, ; and call a subdiagram of D. We may associate to every edge e of D
with f(e) = ia unique simple (possibly closed) directed path in D containing e
which is converted by the above process into an edge of D, ;. This edge
of D;; will be denoted by P/le). Thus we have defined a mapping P,
from the edge-set of D to the union of the edge-sets of all D, ;. We call
this mapping P, the projection associated to f.

FIGURE 4

For any labelling f of the diagram D, we may write /(D) = Zi "D; ;)
(with the obvious convention that an empty diagram contributes zero to
this sum). This additivity property of the rotation number is immediate
from the definition of this number as a Whitney degree (see [16] p. 95-100)
and we shall use it implicitly in the sequel.

We define the interaction <v|D| f> of the vertex v in the diagram D
with the labelling f as follows. If the edges incident to v are assigned only
one label, or two distinct labels i and j in such a way that D, and
D, ; cross at v, then <v|D| f> = 1. Otherwise <v|D| f> 1is defined
on Figure 5. If W is some set of vertices of D we write <W|D| f>
=]],_,<vID|f>. We shall take <W|D|f> as equal to 1 if W

is empty. We write more briefly <D|f> for <V |D|f> if D has
vertex-set V.
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:\V/\/\i jj

sign(v) = +1 sign(v) = -1
si i<j, «vIDI|f> =2 si 1<j, «vIDIf> =0
si i>j, <viDlf> =0 si i>j, <vIDIf> = -2
FIGURE 5

We denote by L(D, k) the set of labellings of D which take their values
in {1, ..., k}.
ProrosiTioN 1. For any diagram D,

<D ' f>a2—r(Df’1)a§.(Df’2)Hl(Df, 152, al)H,(Df,Z: z, al)

= H'(D, z, a,a,) .

ZfeL(D, 2)

Proof. Let us write H'(D, z, a;, a,) = Y. C(D, f) with

feL(D, 2)

C(Da f) = <D | f>a;r(Df’1)a'i(Df’2)H,(Df,1) z, al)H,(Df,?.a z, a2) .

We shall show that the expression H”(D, z, a,, a,) satisfies properties (i),
(11), (1), (v) of Section 2.1 with a = a;a,. We now introduce the general
method which will be used in the different cases.

Consider a pair of diagrams (D, D’) which are identical outside some disk
and take specified forms inside this disk. This 1s the case when D and D’
are related by a Reidemeister move (Figure 2 specifies the forms inside
the disk). Similarly if D' is obtained from D by the addition of a free loop
with empty interior, we may consider a disk which is empty in D and
contains this free loop in D', so that D and D’ are identical outside that
disk. We shall call such a disk a separator and D and D’ will be said
to be compatible with respect to this separator. Similarly a disk involved
in the definition of a Conway triple will also be called a separator with
respect to which the elements of the triple are compatible.

Consider now a diagram D with a given separator S. Vertices of D
situated in the interior (respectively: exterior) of S will be called inner
(respectively : outer), and we assume that there are no other vertices. An
edge of D which meets the exterior of S will also be called outer. If we
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shrink S into a new vertex s we obtain a plane graph which we call the
outerdiagram associated to (D, S). An edge of the outerdiagram which is
incident to s will be called a boundary edge. Such an edge e can be
identified with a portion of some outer edge of D which crosses the
boundary of S and we shall denote this unique outer edge by o(e). Similarly
an edge e of the outerdiagram which is not a boundary edge can be
identified with a unique outer edge of D also denoted by o(e).

We call outer labelling of D (with respect to S) a mapping from the set
of edges of the associated outerdiagram to the set of positive integers
which satisfies the conservation law at every outer vertex. Then clearly
the conservation law also holds at the special vertex s. We denote the set
of outer labellings of D with values in {1,2} by L°D,2). For f in
L°(D,2) and g in L(D,2) we write f < g to indicate that f can be
obtained from g by “labelled shrinking”, in other words that for every
edge e of the outerdiagram, f(e) = g(o(e)).

Now we may write: H'(D, z, a,, a,) = ), C(D, f), with

SfeL°(D, 2)

C(DJ f) = ZQEL(D, 2)’ngC(D) g) *

The properties (i), (ii), (iii), (v) to be proved take the following form:
ZixiH”(Dia Z,41,0a;) = 0

for some family of diagrams (a pair or a triple) (D;) compatible with
respect to a separator S. Thus all diagrams of this family have the same set
of outer labellings with values in {1, 2}.

We shall show that for every such outer labelling f: Zixi CD;, f) = 0.

For this purpose we introduce a reference consisting of a diagram R
compatible with the D; (with respect to S) together with a labelling h in
L(R,2) with f < h. Then evaluating C = (3. x;C(D;, f))/C(R, h) instead of
Zi x; C(D;, f) will yield substantial simplification.

To be more precise, recall that for every diagram D in the family
((D;), R) and every g € L(D, 2) with f < g:

CD,g) = <D|g>a;"Peva'Pe?H (D, |,z a,)H (D, ,, z, a,)

Then, denoting by V°(D) the set of outer vertices and by VYD) the set
of inner vertices of D, we have <D |g> = <V°D)|D|g> <Vi(D)|D|g>.
Clearly <V°(D)| D |g> does not depend on the choice of D in (D)), R)
and g in I(D, 2) with f <= g, and we may denote it by < f>.

If <f> = 0 clearly Zixi C(D;, f) = 0 and we are done. In the sequel
we consider only outer labellings f such that < f> # 0. Then in evaluating C
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we shall divide all contributions by < f >, which amounts to the replacement
of the interaction <D |g> by the inner interaction <VD)|D|g>. We
shall always choose R and h in such a way that <VYR)|R|h> # 0.

Then for every diagram D in the family (D;) and every g e L(D,2)
with f < g we shall write C'(D, g) = C(D, g)/C(R, h) as an ordered product
T,.T,.T,. T,. Ty with

T, = <V(D)|D|g>/<V(R)|R|h>; T, = a, Ps. 0 Ry1),
T3 = ari(Dg’Z)_r(Rh’Z); T4 = H,(Dg, 152 al)/Hl(Rh, 15 % al);
TS = H,(Dg, 25 2, a?.)/Hl(Rh, 25 2 a?.) .

If T, = 0 the other terms will not be evaluated. We shall denote by
C'(D, f) the sum

deL(D, 2),f§gCl(D> g) = C(D, f)/C(R, h) .

Proof of property (v). Let the diagram D’ be obtained from the diagram D
by the addition of a single free loop O. In order to use the geometric
concept of separator as defined above, we assume that the interior of O
is empty (otherwise the proof would be essentially the same. Let r(O)
= ge{+1, —1}. The outerdiagram is D (together with a new isolated
vertex s) and we consider the given outer labelling f as a labelling of D.
We take as a reference R = Dand h = f.

We must show that C'(D', f) = (aya,—(aga,) ™)z

This is done on Figure 6 which displays the contributions

C'(D', g) (9eL(D’, 2), f<g),

written as ordered products T; . T, . T5 . T, . Ts as specified above and evaluated
using property (v) for H'

- - - € - -
1.2, €.1.(a,-a; Nz 1.1.2,%.1. (@,-2, 1)z

FIGURE 6

Note that the above proof also works when D is empty, so that
property (iv') indeed holds for H” with a = aya,.
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Proof of property (iii). Let (D*,D~, D° be a Conway triple and f
be a given outer labelling.

AKX

D* D~ D°
Reference

1 1
111X 111X 1
1 1
2 2
| Lyt 1.1.1.1y" 1
2 2

| 1 2

z.1.1.1.1. 0 1
; 1 2
2 1
2 1

0 -2.1.1.1.1 1

1.1.1.1.1 111,11 0

FIGURE 7
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We must show that C'(D", f) — C'(D~, f) = zC'(D°, f). The proof is
given on Figure 7 which lists the various contributions. There are six
cases to consider according to the labels of the boundary edges. These
labels are shown on the picture representing the part of the reference
diagram situated inside the separator. The labellings of all diagrams are
determined uniquely by the outer labellings and are not described. In
the first case, the reference is D° and X * denotes H' (D, ;, z, a,)/H'(D3, ;, z, a;)
for the unique element g of L(D™,2) such that f = g. X~ is defined
similarly and the equality X* — X~ = z follows from property (iii) for H'.
The second case is settled in exactly the same way. The third and the
fourth case are immediate. For the remaining two cases we note that
C'(D°, f) = 0 because there is no element g of L(D° 2) such that f < g.

Proof of property (ii). We first observe that it is enough to consider
moves of type A; and A;. The move of type 4, can be reduced to the
move of type A;, as proved diagrammatically on Figure §, using
properties (iii), (v) which have already been established. Here as usual we
depict only the portions of diagrams where modifications occur, and each
diagram D stands for H'(D, z, a,, a,) (we write a=a,a,). The proof of the
reduction of the move of type A, to the move of type A; will be
obtained by reversing all arrows on Figure 8.

Y - (a-z(a-aMhz1)

il
i
N

FIGURE 8

Now let D' be obtained from D by a move of type A} or A% (see
Figure 2A), and consider an outer labelling f. We take as a reference
R = D and the unique element h of I(D,2) such that f < h. We must
show that C'(D/, f) = a,a,.

&=
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Reference
1 2
' 4
1 l |
lay, " la, .0 z.1.8,.1.(,-2, )z
2 2\ QX
1 2
A 4
1 2
2 2 2
0 1.1.8,.1.8,
FIGURE 9
Reference

ya
£
/‘Q
SN
e

NN

za,. 1. (a,-a )z 1 I.1.a,7".1.a,

FiGure 10
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The proof is described on Figures 9 (move of type A)) and 10
(move of type A%) with the same conventions as above. In each case
properties (ii) and (v) of H" are used.

Proof of property (i). First we show on Figure 11 that the move of
type B, can be reduced, by using the already established property (i),
to the move of type B,. As before, in this figure each diagram D stands
for H'(D, z, a,, a,).

TLLH

FiGure 11

Let D' be obtained from D by a move of type B}, B5 or B}
(see Figure 2B), whose effect is studied in Figures 12, 13, 14 respectively.
Let f be a given outer labelling. For each move there are six cases to
consider according to the labels of the boundary edges. We take as a
reference R = D and the unique element h of L(D,2) such that f < h
whenever such an h exists (this corresponds to the first four cases). Then,
using property (i) for H' in the two first cases, it is easy to check
directly on Figures 12, 13, 14 that C'(D’, f) = 1.

In the remaining two cases there is no labelling g in L(D, 2) such that
f € g. We choose a suitable reference and, using property (i1) for H' in
Figures 13 and 14, we check that C'(D’, f) = 0.

Finally let D’ be obtained from D by a move of type C (see Figure 2C),
and consider an outer labelling f. We first classify the different cases for f
according to the labellings of the boundary edges which are oriented from
the exterior of the separator towards its interior. For each case we describe
for both diagrams D and D’ all labellings of the edges incident to the
inner vertices which will yield a non-zero inner interaction. This is done in
Figures 15 to 21. In each figure one part corresponds to D and the other
to D', and each labelling appears with its inner interaction.

We must show that, after the choice of a suitable reference, for every outer
labelling f, C'(D, f) = C'(D’, f).
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Reference

i

FIGURE 12
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FIGURE 13
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Reference
1
1
2 2 2 X2 2 2
1{ 1 2{ 2
2 2 2 2 2 2
N N
0
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FIGURE 14
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1 i=1,2 1

FiGure 21

Clearly we may restrict our attention to the elements of L(D,2) and
L(D’, 2) whose behavior inside the separator is depicted in one of the
Figures 15 to 21. Thus it remains to perform the following analysis for
each one of these figures: divide it into “subfigures” according to the
labellings of the boundary edges which are oriented from the interior of the
separator towards its exterior. Each subfigure will correspond to a certain
class of outer labellings characterized by their value on the boundary edges.
Then for each subfigure choose an appropriate reference and check that
C'(D, f) = C'(D', f). This is immediate in Figures 16, 17, 19, 20 (subdiagrams
of D and D’ are in bijective correspondence) and in Figure 21 (by property (i)
for H'). In Figures 15 and 18 we must use the property of H' described
in Figure 22, which is an immediate consequence of properties (1) and (iii).

This completes the proof.

DO

FIGURE 22
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Remark. Figure 10 can be obtained from Figure 9 by a symmetry with
respect to the vertical axis (without changing the crossing signs) together with
the exchange of the numbers 1 and 2 in the labellings and the associated
contributions. A similar relationship exists between Figures 13 and 14,
15 and 18, 16 and 19, 17 and 20 respectively. We could have used this
to reduce the amount of case-checking in the proof of Proposition 1.
However we found it simpler and more convincing to give the full set
of figures.

2.3. A SEQUENCE OF STATE MODELS

We now derive from Proposition 1 state models for an infinite sequence
of specializations of the homfly polynomial. This result appears in [20]
and [28] where the original idea is attributed to [14].

We begin with a useful lemma.

Consider a labelling f of the diagram D together with a labelling g;
of D, for each i such that f~'(i) is not empty. We shall say that the
labelling h of D is compatible with f and the g; if for any two edges
e,e of D:if f(e) < f(e¢') then h(e) < h(e');if f(e) = f(¢') = ithen h(e) < h(e')
if and only if g,(P/e)) < g;(P{¢)), where P, is the projection associated
to f (see Section 2.2).

UNIFICATION LEMMA. For any labelling h of D compatible with f
and the g¢;,

<D|h> = <D | f>]]. <D;;lg;>.

This equality is easily proved by studying the possible contributions of a
given vertex v to both sides. If v is incident only to edges labelled i
by f, <v|D|f> =1 and v is a vertex of D, ; if and only if j = i.
Then the contribution of v to the right-hand side is <o | D ;|g;>, which
is clearly equal to <v|D|h>. If v is incident to edges labelled in two
distinct ways by f, then v does not contribute to Hi <D, ;|g;> and it is
easy to check that <v|D|h> = <v|D| f>.

In the sequel we write z = ¢ — ¢ 1,

PROPOSITION 2. For any diagram D and positive integer g,

H'(D, z, t% = t~@+rD) Y <D | f> t¥P.NH+250D, 1)

SeL(D, q)

where w(D, f) = Zi=1"_'qW(Df,i) and (D, f) = Zi=1 ___qi"(Df,i)'
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Proof. We proceed by induction on g.

For g = 1, L(D, g) contains only one element f for which <D | f> = 1,
w(D, f) = w(D) and s(D, f) = #(D). The result reduces to: H'(D, z, t) = ",
This 1s easy to check and well known.

Assume now that the result holds for the positive integer q. By Pro-
position 1

’ +1y __
HD, z, ") = ), 5 CD, f),
with
CD, f) = <D | f>t7"Pr0 P H(D, |, 2, t) H(D, 5, 7 1) .

- Let us fix f and write D1 for D, ,, D2 for D, ,.
By the induction hypothesis

H'(D1, z, t%) = ¢~@"Hr®Dy <D1]|g> *PL.9+25DL.9)

geL(D1, q)

and we have seen that H'(D2, z, t) = t*P?
It follows that C(D, f) is equal to

<D I f> t—r(D1)+qr(D2) t—(q—%—l)r(Dl)Z

Since r(D1) + r(D2) = r(D), C(D, f) can be rewritten as

t~@+2)rD) Z

w(D1,g)+ 2s(D1, g) +w(D2)
geL(Dl’q)<D1|g>t t

w(D1, g) +w(D2)+2s(D1, g) +(2¢+ 2) r(D2)
geL(Dl,q)<D|f> <Dl|g>t .

Now for every labelling g in L(D1, q) define a labelling & of D as
follows. For an edge e of D, if f(e) = 1 then h(e) = g(P(e)); if f(e) = 2
then h(e) = g + 1. The labelling & clearly belongs to L(D, g+ 1) and we shall
denote it by u(f, g).

We first note that
w(D1, g) + w(D2) = w(D, u(f, g))
and

s(D1, g) + (g+1) n(D2) = s(D, u(f, g)) .

Moreover u(f,g) is compatible with f, the labelling g of D1 and the
constant labelling of D2 with value g + 1. Hence, by the Unification Lemma,
<D| f> <Dl|g> = <D|u(f,g)>.

Using the above remarks, C(D, f) can be rewritten as

Ty <D u(f, g)> P 20T
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Since u is easily seen to define a bijection from

{(f: g)/f € L(Da 2)9 ) € L(Df,1> q)}

to I(D, g+ 1) we obtain

H'(D, z, t1%1) = t~@t2rdy <D | h> W+ 201
2 2

heL(D.q+ 1)

as required.

Remarks. (1) The case g = 2 in Proposition 2 yields a state model
for the Jones polynomial which, as noted in [28], can be directly related
to Kauffman’s “bracket polynomial” model [17, 18] via the theory of
“ice-type models” developed in [2], Section 12.3.

(2) The state models of Proposition 2 can be used as shown in [28] to
obtain a proof of the existence of the homfly polynomial.

(3) The applicability of Proposition 1 is limited by the fact that it
cannot deal efficiently with the Alexander-Conway polynomial. This is
because for every non-empty diagram D, H'(D, z, 1) = 0. Another aspect of
this phenomenon is that property (v) cannot be defined in a coherent way
for H(D, z, 1) = A(D, z): the effect of adding a free loop to a non-empty
diagram is qualitatively different from the corresponding effect on the empty
diagram. However, a coherent version of property (v) is essential to the proof
of Proposition 1. This has lead us to look for another form of the com-
position product which will be capable of handling the Alexander-Conway
polynomial. So far we have been able to define such a composition product
only in the case of closed braids. This is presented in the next section.

3. THE SPECIFIED COMPOSITION PRODUCT FOR CLOSED BRAIDS

3.1. Bram WORDS, BRAID DIAGRAMS AND THE SPECIFIED PRODUCT

Let us consider an infinite sequence of symbols (s;) indexed by the set

of positive integers. Artin’s braid group on n strings B,(n>1) can be defined
by the presentation:

<Sl,...Sn_1|SiSi+1Si - Si+1SiSi+1ai = 1,...” - 2;SiS' = S:5;, i—j 2 2> .
J Jo

Thus B, is the trivial group and B, is the subgroup of B,,, generated
by sy, ..5,-1. We call braid word on n strings any word on the alphabet
{s;,s;7'/i=1,..n— 1}. Thus a braid word on n strings is also a braid
word on n’ strings for all n > n. To every braid word m on n strings we
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