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COMPOSITION PRODUCTS AND MODELS
FOR THE HOMFLY POLYNOMIAL

by Frangois JAEGER

ABSTRACT: We define a composition product for homfly polynomials
of oriented links and we show how this operation can be used to construct
in a natural way a sequence of state models due to Jones. We also
present a refinement of this result in the case of closed braids. This leads
us first to a new state model for the Alexander-Conway polynomial which
can be interpreted as an ice-type model. Then we express the homfly
polynomialzof a braid diagram in terms of the Alexander-Conway poly-
nomials of its subdiagrams. As a consequence, we obtain simple direct
proofs of inequalities due to Morton, Franks and Williams. Finally we
give a state model for the homfly polynomial of a closed braid.

RESUME: Nous définissons un produit de composition pour les poly-
nomes homfly des entrelacs orientés et nous montrons comment on peut
utiliser cette opération pour construire de fagon naturelle une suite de
«modeéles d’¢tats » due a Jones. Nous présentons également un raffinement
de ce résultat dans le cas des tresses fermées. Ceci nous conduit d’abord
a un nouveau modele d’états pour le polyndme d’Alexander-Conway qui
peut s'interpréter comme un modele « de type glace ». Puis nous exprimons
le polynome homfly d’'un diagramme de tresse en termes des polyndmes
d’Alexander-Conway de ses sous-diagrammes. Comme conséquence, nous
obtenons des preuves simples et directes d’inégalités dues a Morton, Franks
et Williams. Enfin nous donnons un modéle d’états pour le polyndme
homfly d’'une tresse fermée.

1. INTRODUCTION
Since its discovery [1], the Alexander polynomial has played an important

role in the development of knot theory. Its topological and algebraic
aspects (relations with the fundamental group and the infinite cyclic cover
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of the complement) have been extensively studied. Its combinatorial aspects,
already present in the original paper by Alexander, have recently received new
attention. The starting point was Conway’s work [3] which showed how
a suitable normalization of the Alexander polynomial of an oriented link
(which we shall call the Alexander-Conway polynomial) can be computed
recursively on an arbitrary regular projection — or “diagram” — of the
link by using a linear equation satisfied by the values of the polynomial
on three links which are “skein related” (that is, they are represented by
diagrams D*, D~, D° which differ only inside a small disk where they
behave as depicted on Figure 3). In fact the Alexander-Conway polynomial
can be described in purely combinatorial terms, as shown by Kauffman
in [16]: to each diagram is associated in a simple way a polynomial in
one variable which is shown to satisfy Conway’s “skein equation” and to
be invariant under Reidemeister moves. The polynomial is defined as a
summation over a set of possible “states” of the diagram and can be viewed
as the partition function of a certain model (we shall call it a “state
model”) in the sense of Statistical Mechanics [2].

More recently Jones, in relation with his work on Von Neumann
algebras, discovered another one-variable polynomial link invariant [11, 12]
which like the Alexander-Conway polynomial satisfies a skein equation.
Both invariants were soon generalized by different authors [5, 26] into a
two-variable polynomial which became known as the Jones-Conway or
“homfly” (from the initials of the authors of [5]) polynomial. The homfly
polynomial (as we have arbitrarily chosen to call it) can be defined com-
binatorially on diagrams, in relation with the Conway-type algorithm which
allows its computation. It can also be defined via representations of Artin’s
braid groups in Hecke algebras, using theorems of Alexander (which asserts
that every oriented link can be represented as a closed braid) and Markov
(which characterizes the isotopy of closed braids). In both cases the proof
of the existence of the homfly polynomial is quite sophisticated.

Kauffman [17] obtained an elegant and simple state model for the Jones
polynomial which has lead to the solution of old conjectures on alternating
links [17, 24, 27]. Jones ([14], see also [20] and [28]) also obtained state
models for an infinite sequence of one-variable specializations of the homfly
polynomial. For a rather special kind of diagram the homfly polynomial
is equivalent to the Tutte polynomial of an associated plane graph [10],
which has simple and well-known state models [2, 9, 29, 30]. However
no state model is known for the full homfly polynomial of an arbitrary
diagram. Moreover no natural topological 3-dimensional interpretation of
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the homfly polynomial has been found, apart from the case of the
Alexander-Conway polynomial. The purpose of this paper is to present
some progress towards the solution of these problems.

In Section 2 we introduce a composition product for homfly polynomials.
This product allows the combinatorial definition of the homfly polynomial
of a diagram for a given pair of values of the variables in terms of the
homfly polynomials of its subdiagrams for other related pairs of values of
the variables (Proposition 1). We show in Proposition 2 how the sequence
of state models due to Jones can be derived simply from the product
operation, starting from an elementary special case of the homfly polynomial.
Then, motivated by some difficulties in the application of the concept of
composition product to the Alexander-Conway polynomial, in Section 3 we
restrict our attention to closed braids and we introduce a specified com-
position product for this class of diagrams (Proposition 3). This leads us
first to another version of the Jones sequence of state models (Proposition 4).
Then we obtain a state model for the Alexander-Conway polynomial
(Proposition 6) which can be interpreted as an ice-type model (Proposition 7).
As another consequence we give an expansion of the homfly polynomial
of a braid diagram in terms of the Alexander-Conway polynomials of its
subdiagrams (Proposition 9). This yields simple direct proofs of some
inequalities due to Morton [22] and independently Franks and Williams [4]
which have been helpful in the study of the braid index. Finally we combine
the previous results to obtain a state model for the homfly polynomial of
a closed braid (Proposition 12). We present some perspectives for further
research in Section 4.

2. THE COMPOSITION PRODUCT OF HOMFLY POLYNOMIALS

2.1. DEFINITIONS

By diagram we mean a regular plane projection of a tame oriented link
in 3-space. We shall consider diagrams as 4-regular directed plane graphs.

N /

N
sign(v) = +1 sign(v) = -1

FIGURE 1
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In particular a simple Jordan curve (corresponding to the trivial knot) is
a graph with no vertices and one edge which we call the free loop.
The vertices of a diagram will be signed according to the convention
described in Figure 1.

The writhe of the diagram D, denoted by w(D), is the sum of the signs
of the vertices of D. We define the rotation number of D, denoted by
r(D), as the sum of the signs of the Seifert circles of D, where the sign
of such a circle is 1 if it is oriented counterclockwise and — 1 otherwise
(this combinatorial form of the Whitney degree appears in [16] p. 95-100,
where it is called curliness). '

Two diagrams will be said to be isotopic if they represent the same
oriented link up to ambient isotopy. We shall need the following economical
form of Reidemeister’s Theorem given in [28]: two diagrams are isotopic
if and only if one can be obtained from the other by a finite sequence
of moves of types A4;, A;, B;, Bi(i=1, 2, 3,4) and C, C’ described in Figure 2.
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FIGURE 2A
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FIGURE 2B
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Two diagrams will be said to be regularly isotopic if one can be obtained
from the other by a finite sequence of moves of types B;, B;(i=1, 2, 3, 4)
and C, C' (this concept is due to Kauffman [19]). The writhe and the
rotation number are invariants of regular isotopy: if D and D’ are regularly
isotopic diagrams, then w(D) = w(D’) (this is immediate) and r(D) = r(D’)
(see [16] p. 95-100).

If D™, D™ and D° are diagrams which are identical outside a small disk
and behave as depicted in Figure 3 inside that disk, we shall say that
(D*, D™, D°) form a Conway triple.
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XX

D* D~

FIGURE 3

We shall be concerned here with the following result:

THEOREM. One can associate (in an unique way) to every diagram D
a Laurent polynomial with integer coefficients in two variables z, a which
we denote by H(D, z,a) in such a way that the following properties hold :

(1) If D and D’ are regularly isotopic, H(D, z, a) = H(D', z, a).

() If D' is obtained from D by a move of type A} or A
(respectively: A% or A,) then H(D,z a) = aH(D, z,a) (respec-
tively: H(D',z,a) = a *H(D, z, a)).

(i) If (D*,D~,D°) form a Conway triple then:

H(D*,z,a) — HD™, z,a) = zH(D’, z, a) .

(iv) If D is the free loop, H(D, z,a) = 1.

Then, as observed in [19], if we set P(D, z,a) = a "PH(D, z, a) this
defines the following version of the homfly polynomial [5, 6, 8, 21, 25, 26]:
P is an isotopy invariant which takes the value 1 on the free loop and
satisfies, for every Conway triple (D", D™, D°):aP(D*,z,a) — a *P(D", z, a)
= zP(D°, z, a). In particular, P(D, z, 1) = H(D, z, 1) is the Alexander-Conway
polynomial of D [1, 3, 15, 16] and we denote it by A(D, z).

We shall need the following easy consequence of the above Theorem:

(v) If the diagram D’ is obtained from the diagram D by the addition
of a single free loop, then H(D', z, a) = (a—a~ ')z " *H(D, z, a).

For the sake of simplicity we define: H'(D, z, a) = (a—a~ )z *H(D, z, a).
Thus H' can replace H in properties (i), (i), (iii) of the Theorem, and
satisfies

(iv) If D is the free loop, H'(D, z,a) = (a—a™ Yz~ *.

In the sequel we shall have to consider the empty diagram ®, which has
no vertices and no edges. It will be convenient to set H'(®w, z,a) = 1, so
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that property (v) is valid with H' instead of H even when D is the empty
diagram. This convention together with property (v) can replace property (iv')
in the definition of H'.

2.2. LABELLINGS AND THE COMPOSITION PRODUCT

We define a labelling of a diagram D as a mapping f from the edge-set
of D to the set of positive integers which satisfies the following

conservation law: for every positive integer i, at every vertex v of D,
the number of edges labelled i (that is, edges in f~'(i)) incident towards v
equals the number of such edges incident from v (a loop at v contributing 1
to both numbers).

Then if we first erase all edges not labelled i and the isolated vertices
thus created, “smoothing out” all vertices of degree 2 (see Figure 4) and
retaining the signs (or equivalently the crossing structure) at every vertex
of degree 4, we obtain a (possibly empty) diagram which we denote by
D, ; and call a subdiagram of D. We may associate to every edge e of D
with f(e) = ia unique simple (possibly closed) directed path in D containing e
which is converted by the above process into an edge of D, ;. This edge
of D;; will be denoted by P/le). Thus we have defined a mapping P,
from the edge-set of D to the union of the edge-sets of all D, ;. We call
this mapping P, the projection associated to f.

FIGURE 4

For any labelling f of the diagram D, we may write /(D) = Zi "D; ;)
(with the obvious convention that an empty diagram contributes zero to
this sum). This additivity property of the rotation number is immediate
from the definition of this number as a Whitney degree (see [16] p. 95-100)
and we shall use it implicitly in the sequel.

We define the interaction <v|D| f> of the vertex v in the diagram D
with the labelling f as follows. If the edges incident to v are assigned only
one label, or two distinct labels i and j in such a way that D, and
D, ; cross at v, then <v|D| f> = 1. Otherwise <v|D| f> 1is defined
on Figure 5. If W is some set of vertices of D we write <W|D| f>
=]],_,<vID|f>. We shall take <W|D|f> as equal to 1 if W

is empty. We write more briefly <D|f> for <V |D|f> if D has
vertex-set V.



330 F. JAEGER

:\V/\/\i jj

sign(v) = +1 sign(v) = -1
si i<j, «vIDI|f> =2 si 1<j, «vIDIf> =0
si i>j, <viDlf> =0 si i>j, <vIDIf> = -2
FIGURE 5

We denote by L(D, k) the set of labellings of D which take their values
in {1, ..., k}.
ProrosiTioN 1. For any diagram D,

<D ' f>a2—r(Df’1)a§.(Df’2)Hl(Df, 152, al)H,(Df,Z: z, al)

= H'(D, z, a,a,) .

ZfeL(D, 2)

Proof. Let us write H'(D, z, a;, a,) = Y. C(D, f) with

feL(D, 2)

C(Da f) = <D | f>a;r(Df’1)a'i(Df’2)H,(Df,1) z, al)H,(Df,?.a z, a2) .

We shall show that the expression H”(D, z, a,, a,) satisfies properties (i),
(11), (1), (v) of Section 2.1 with a = a;a,. We now introduce the general
method which will be used in the different cases.

Consider a pair of diagrams (D, D’) which are identical outside some disk
and take specified forms inside this disk. This 1s the case when D and D’
are related by a Reidemeister move (Figure 2 specifies the forms inside
the disk). Similarly if D' is obtained from D by the addition of a free loop
with empty interior, we may consider a disk which is empty in D and
contains this free loop in D', so that D and D’ are identical outside that
disk. We shall call such a disk a separator and D and D’ will be said
to be compatible with respect to this separator. Similarly a disk involved
in the definition of a Conway triple will also be called a separator with
respect to which the elements of the triple are compatible.

Consider now a diagram D with a given separator S. Vertices of D
situated in the interior (respectively: exterior) of S will be called inner
(respectively : outer), and we assume that there are no other vertices. An
edge of D which meets the exterior of S will also be called outer. If we
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shrink S into a new vertex s we obtain a plane graph which we call the
outerdiagram associated to (D, S). An edge of the outerdiagram which is
incident to s will be called a boundary edge. Such an edge e can be
identified with a portion of some outer edge of D which crosses the
boundary of S and we shall denote this unique outer edge by o(e). Similarly
an edge e of the outerdiagram which is not a boundary edge can be
identified with a unique outer edge of D also denoted by o(e).

We call outer labelling of D (with respect to S) a mapping from the set
of edges of the associated outerdiagram to the set of positive integers
which satisfies the conservation law at every outer vertex. Then clearly
the conservation law also holds at the special vertex s. We denote the set
of outer labellings of D with values in {1,2} by L°D,2). For f in
L°(D,2) and g in L(D,2) we write f < g to indicate that f can be
obtained from g by “labelled shrinking”, in other words that for every
edge e of the outerdiagram, f(e) = g(o(e)).

Now we may write: H'(D, z, a,, a,) = ), C(D, f), with

SfeL°(D, 2)

C(DJ f) = ZQEL(D, 2)’ngC(D) g) *

The properties (i), (ii), (iii), (v) to be proved take the following form:
ZixiH”(Dia Z,41,0a;) = 0

for some family of diagrams (a pair or a triple) (D;) compatible with
respect to a separator S. Thus all diagrams of this family have the same set
of outer labellings with values in {1, 2}.

We shall show that for every such outer labelling f: Zixi CD;, f) = 0.

For this purpose we introduce a reference consisting of a diagram R
compatible with the D; (with respect to S) together with a labelling h in
L(R,2) with f < h. Then evaluating C = (3. x;C(D;, f))/C(R, h) instead of
Zi x; C(D;, f) will yield substantial simplification.

To be more precise, recall that for every diagram D in the family
((D;), R) and every g € L(D, 2) with f < g:

CD,g) = <D|g>a;"Peva'Pe?H (D, |,z a,)H (D, ,, z, a,)

Then, denoting by V°(D) the set of outer vertices and by VYD) the set
of inner vertices of D, we have <D |g> = <V°D)|D|g> <Vi(D)|D|g>.
Clearly <V°(D)| D |g> does not depend on the choice of D in (D)), R)
and g in I(D, 2) with f <= g, and we may denote it by < f>.

If <f> = 0 clearly Zixi C(D;, f) = 0 and we are done. In the sequel
we consider only outer labellings f such that < f> # 0. Then in evaluating C
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we shall divide all contributions by < f >, which amounts to the replacement
of the interaction <D |g> by the inner interaction <VD)|D|g>. We
shall always choose R and h in such a way that <VYR)|R|h> # 0.

Then for every diagram D in the family (D;) and every g e L(D,2)
with f < g we shall write C'(D, g) = C(D, g)/C(R, h) as an ordered product
T,.T,.T,. T,. Ty with

T, = <V(D)|D|g>/<V(R)|R|h>; T, = a, Ps. 0 Ry1),
T3 = ari(Dg’Z)_r(Rh’Z); T4 = H,(Dg, 152 al)/Hl(Rh, 15 % al);
TS = H,(Dg, 25 2, a?.)/Hl(Rh, 25 2 a?.) .

If T, = 0 the other terms will not be evaluated. We shall denote by
C'(D, f) the sum

deL(D, 2),f§gCl(D> g) = C(D, f)/C(R, h) .

Proof of property (v). Let the diagram D’ be obtained from the diagram D
by the addition of a single free loop O. In order to use the geometric
concept of separator as defined above, we assume that the interior of O
is empty (otherwise the proof would be essentially the same. Let r(O)
= ge{+1, —1}. The outerdiagram is D (together with a new isolated
vertex s) and we consider the given outer labelling f as a labelling of D.
We take as a reference R = Dand h = f.

We must show that C'(D', f) = (aya,—(aga,) ™)z

This is done on Figure 6 which displays the contributions

C'(D', g) (9eL(D’, 2), f<g),

written as ordered products T; . T, . T5 . T, . Ts as specified above and evaluated
using property (v) for H'

- - - € - -
1.2, €.1.(a,-a; Nz 1.1.2,%.1. (@,-2, 1)z

FIGURE 6

Note that the above proof also works when D is empty, so that
property (iv') indeed holds for H” with a = aya,.




HOMFLY POLYNOMIAL 333

Proof of property (iii). Let (D*,D~, D° be a Conway triple and f
be a given outer labelling.

AKX

D* D~ D°
Reference

1 1
111X 111X 1
1 1
2 2
| Lyt 1.1.1.1y" 1
2 2

| 1 2

z.1.1.1.1. 0 1
; 1 2
2 1
2 1

0 -2.1.1.1.1 1

1.1.1.1.1 111,11 0

FIGURE 7
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We must show that C'(D", f) — C'(D~, f) = zC'(D°, f). The proof is
given on Figure 7 which lists the various contributions. There are six
cases to consider according to the labels of the boundary edges. These
labels are shown on the picture representing the part of the reference
diagram situated inside the separator. The labellings of all diagrams are
determined uniquely by the outer labellings and are not described. In
the first case, the reference is D° and X * denotes H' (D, ;, z, a,)/H'(D3, ;, z, a;)
for the unique element g of L(D™,2) such that f = g. X~ is defined
similarly and the equality X* — X~ = z follows from property (iii) for H'.
The second case is settled in exactly the same way. The third and the
fourth case are immediate. For the remaining two cases we note that
C'(D°, f) = 0 because there is no element g of L(D° 2) such that f < g.

Proof of property (ii). We first observe that it is enough to consider
moves of type A; and A;. The move of type 4, can be reduced to the
move of type A;, as proved diagrammatically on Figure §, using
properties (iii), (v) which have already been established. Here as usual we
depict only the portions of diagrams where modifications occur, and each
diagram D stands for H'(D, z, a,, a,) (we write a=a,a,). The proof of the
reduction of the move of type A, to the move of type A; will be
obtained by reversing all arrows on Figure 8.

Y - (a-z(a-aMhz1)

il
i
N

FIGURE 8

Now let D' be obtained from D by a move of type A} or A% (see
Figure 2A), and consider an outer labelling f. We take as a reference
R = D and the unique element h of I(D,2) such that f < h. We must
show that C'(D/, f) = a,a,.

&=
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Reference
1 2
' 4
1 l |
lay, " la, .0 z.1.8,.1.(,-2, )z
2 2\ QX
1 2
A 4
1 2
2 2 2
0 1.1.8,.1.8,
FIGURE 9
Reference

ya
£
/‘Q
SN
e

NN

za,. 1. (a,-a )z 1 I.1.a,7".1.a,

FiGure 10
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The proof is described on Figures 9 (move of type A)) and 10
(move of type A%) with the same conventions as above. In each case
properties (ii) and (v) of H" are used.

Proof of property (i). First we show on Figure 11 that the move of
type B, can be reduced, by using the already established property (i),
to the move of type B,. As before, in this figure each diagram D stands
for H'(D, z, a,, a,).

TLLH

FiGure 11

Let D' be obtained from D by a move of type B}, B5 or B}
(see Figure 2B), whose effect is studied in Figures 12, 13, 14 respectively.
Let f be a given outer labelling. For each move there are six cases to
consider according to the labels of the boundary edges. We take as a
reference R = D and the unique element h of L(D,2) such that f < h
whenever such an h exists (this corresponds to the first four cases). Then,
using property (i) for H' in the two first cases, it is easy to check
directly on Figures 12, 13, 14 that C'(D’, f) = 1.

In the remaining two cases there is no labelling g in L(D, 2) such that
f € g. We choose a suitable reference and, using property (i1) for H' in
Figures 13 and 14, we check that C'(D’, f) = 0.

Finally let D’ be obtained from D by a move of type C (see Figure 2C),
and consider an outer labelling f. We first classify the different cases for f
according to the labellings of the boundary edges which are oriented from
the exterior of the separator towards its interior. For each case we describe
for both diagrams D and D’ all labellings of the edges incident to the
inner vertices which will yield a non-zero inner interaction. This is done in
Figures 15 to 21. In each figure one part corresponds to D and the other
to D', and each labelling appears with its inner interaction.

We must show that, after the choice of a suitable reference, for every outer
labelling f, C'(D, f) = C'(D’, f).
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Reference

i

FIGURE 12
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Reference
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FIGURE 13
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Reference
1
1
2 2 2 X2 2 2
1{ 1 2{ 2
2 2 2 2 2 2
N N
0
i j i RNHF
iz2] j i
FIGURE 14
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1 i=1,2 1

FiGure 21

Clearly we may restrict our attention to the elements of L(D,2) and
L(D’, 2) whose behavior inside the separator is depicted in one of the
Figures 15 to 21. Thus it remains to perform the following analysis for
each one of these figures: divide it into “subfigures” according to the
labellings of the boundary edges which are oriented from the interior of the
separator towards its exterior. Each subfigure will correspond to a certain
class of outer labellings characterized by their value on the boundary edges.
Then for each subfigure choose an appropriate reference and check that
C'(D, f) = C'(D', f). This is immediate in Figures 16, 17, 19, 20 (subdiagrams
of D and D’ are in bijective correspondence) and in Figure 21 (by property (i)
for H'). In Figures 15 and 18 we must use the property of H' described
in Figure 22, which is an immediate consequence of properties (1) and (iii).

This completes the proof.

DO

FIGURE 22
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Remark. Figure 10 can be obtained from Figure 9 by a symmetry with
respect to the vertical axis (without changing the crossing signs) together with
the exchange of the numbers 1 and 2 in the labellings and the associated
contributions. A similar relationship exists between Figures 13 and 14,
15 and 18, 16 and 19, 17 and 20 respectively. We could have used this
to reduce the amount of case-checking in the proof of Proposition 1.
However we found it simpler and more convincing to give the full set
of figures.

2.3. A SEQUENCE OF STATE MODELS

We now derive from Proposition 1 state models for an infinite sequence
of specializations of the homfly polynomial. This result appears in [20]
and [28] where the original idea is attributed to [14].

We begin with a useful lemma.

Consider a labelling f of the diagram D together with a labelling g;
of D, for each i such that f~'(i) is not empty. We shall say that the
labelling h of D is compatible with f and the g; if for any two edges
e,e of D:if f(e) < f(e¢') then h(e) < h(e');if f(e) = f(¢') = ithen h(e) < h(e')
if and only if g,(P/e)) < g;(P{¢)), where P, is the projection associated
to f (see Section 2.2).

UNIFICATION LEMMA. For any labelling h of D compatible with f
and the g¢;,

<D|h> = <D | f>]]. <D;;lg;>.

This equality is easily proved by studying the possible contributions of a
given vertex v to both sides. If v is incident only to edges labelled i
by f, <v|D|f> =1 and v is a vertex of D, ; if and only if j = i.
Then the contribution of v to the right-hand side is <o | D ;|g;>, which
is clearly equal to <v|D|h>. If v is incident to edges labelled in two
distinct ways by f, then v does not contribute to Hi <D, ;|g;> and it is
easy to check that <v|D|h> = <v|D| f>.

In the sequel we write z = ¢ — ¢ 1,

PROPOSITION 2. For any diagram D and positive integer g,

H'(D, z, t% = t~@+rD) Y <D | f> t¥P.NH+250D, 1)

SeL(D, q)

where w(D, f) = Zi=1"_'qW(Df,i) and (D, f) = Zi=1 ___qi"(Df,i)'
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Proof. We proceed by induction on g.

For g = 1, L(D, g) contains only one element f for which <D | f> = 1,
w(D, f) = w(D) and s(D, f) = #(D). The result reduces to: H'(D, z, t) = ",
This 1s easy to check and well known.

Assume now that the result holds for the positive integer q. By Pro-
position 1

’ +1y __
HD, z, ") = ), 5 CD, f),
with
CD, f) = <D | f>t7"Pr0 P H(D, |, 2, t) H(D, 5, 7 1) .

- Let us fix f and write D1 for D, ,, D2 for D, ,.
By the induction hypothesis

H'(D1, z, t%) = ¢~@"Hr®Dy <D1]|g> *PL.9+25DL.9)

geL(D1, q)

and we have seen that H'(D2, z, t) = t*P?
It follows that C(D, f) is equal to

<D I f> t—r(D1)+qr(D2) t—(q—%—l)r(Dl)Z

Since r(D1) + r(D2) = r(D), C(D, f) can be rewritten as

t~@+2)rD) Z

w(D1,g)+ 2s(D1, g) +w(D2)
geL(Dl’q)<D1|g>t t

w(D1, g) +w(D2)+2s(D1, g) +(2¢+ 2) r(D2)
geL(Dl,q)<D|f> <Dl|g>t .

Now for every labelling g in L(D1, q) define a labelling & of D as
follows. For an edge e of D, if f(e) = 1 then h(e) = g(P(e)); if f(e) = 2
then h(e) = g + 1. The labelling & clearly belongs to L(D, g+ 1) and we shall
denote it by u(f, g).

We first note that
w(D1, g) + w(D2) = w(D, u(f, g))
and

s(D1, g) + (g+1) n(D2) = s(D, u(f, g)) .

Moreover u(f,g) is compatible with f, the labelling g of D1 and the
constant labelling of D2 with value g + 1. Hence, by the Unification Lemma,
<D| f> <Dl|g> = <D|u(f,g)>.

Using the above remarks, C(D, f) can be rewritten as

Ty <D u(f, g)> P 20T
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Since u is easily seen to define a bijection from

{(f: g)/f € L(Da 2)9 ) € L(Df,1> q)}

to I(D, g+ 1) we obtain

H'(D, z, t1%1) = t~@t2rdy <D | h> W+ 201
2 2

heL(D.q+ 1)

as required.

Remarks. (1) The case g = 2 in Proposition 2 yields a state model
for the Jones polynomial which, as noted in [28], can be directly related
to Kauffman’s “bracket polynomial” model [17, 18] via the theory of
“ice-type models” developed in [2], Section 12.3.

(2) The state models of Proposition 2 can be used as shown in [28] to
obtain a proof of the existence of the homfly polynomial.

(3) The applicability of Proposition 1 is limited by the fact that it
cannot deal efficiently with the Alexander-Conway polynomial. This is
because for every non-empty diagram D, H'(D, z, 1) = 0. Another aspect of
this phenomenon is that property (v) cannot be defined in a coherent way
for H(D, z, 1) = A(D, z): the effect of adding a free loop to a non-empty
diagram is qualitatively different from the corresponding effect on the empty
diagram. However, a coherent version of property (v) is essential to the proof
of Proposition 1. This has lead us to look for another form of the com-
position product which will be capable of handling the Alexander-Conway
polynomial. So far we have been able to define such a composition product
only in the case of closed braids. This is presented in the next section.

3. THE SPECIFIED COMPOSITION PRODUCT FOR CLOSED BRAIDS

3.1. Bram WORDS, BRAID DIAGRAMS AND THE SPECIFIED PRODUCT

Let us consider an infinite sequence of symbols (s;) indexed by the set

of positive integers. Artin’s braid group on n strings B,(n>1) can be defined
by the presentation:

<Sl,...Sn_1|SiSi+1Si - Si+1SiSi+1ai = 1,...” - 2;SiS' = S:5;, i—j 2 2> .
J Jo

Thus B, is the trivial group and B, is the subgroup of B,,, generated
by sy, ..5,-1. We call braid word on n strings any word on the alphabet
{s;,s;7'/i=1,..n— 1}. Thus a braid word on n strings is also a braid
word on n’ strings for all n > n. To every braid word m on n strings we
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associate a braid diagram on n strings as follows. To each letter of m
corresponds a portion of diagram, or block, according to the rule described
on Figure 23. Each block has n top incoming half-edges, numbered from 1
to n in the left-to-right order, and n bottom outgoing half-edges which are
numbered similarly. First the blocks are concatenated from top to bottom
in the order of occurrence of the corresponding letters in m. Here the
concatenation of two blocks corresponds to the merging of the bottom half-
edges of the first block to the top half-edges with corresponding numbers
of the second block. Finally the bottom half-edges are merged as shown on
Figure 24 to the corresponding top half-edges, thus forming n return edges.
The return edges will be numbered from 1 to n as the corresponding
half-edges. The return edge which is numbered 1 will be called the special
edge. We note that a braid diagram is non empty, and that the unique
braid diagram on one string is a free loop. We also observe that any braid
diagram on n strings has rotation number n.

A specified labelling of the braid diagram D is a labelling such that
the special edge receives the label 1. We denote by SL(D, k) the set of
specified labellings of D which take their values in {1, ... k}.

PROPOSITION 3. For any braid diagram D,

<D| f> azhr(Df’l)H ai(Df’z) H(Df,la Z, a1)Hl(Df,2, Z, 4,)
= H(D, z,a,a,) .

ZfeSL(D, 2)

Proof. Let H'(D, z, a,, a,) denote the expression
—r(D +1
Yresp.ny <D f>az"Pr0  aPrd HD, 2, a,) H(D,, 5, 2, ay)

which is an element of the ring K of Laurent polynomials with integer
coefficients in the variables z, a,, a, .

Let us introduce the following modifications in each step of the proof
of Proposition 1: we replace H'(D,, ,,z a;) by H(D r.15 2, ay), We restrict
our attention to specified labellings, and we assume that the special edge
is outer. Then it is easy to check that, since D, ; is non-empty for every
specified labelling f, our arguments (and especially those involving property (v)
for HD, , z, a,)) remain correct.

Thus in particular we have the following properties for braid diagrams
on n strings D, D', D*, D™, D°:

(1) If D" is obtained from D by a move vof type By, B, or C for
which the return edges are outer (such a move will be called inner), then
H'(D', z,a,,a,) = H'(D, z, a,, a,).
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(2) f (D", D™, D°) form a Conway triple then:
H'(D*,z,a,,a,) — H'(D", z,a,,a,) = zH'(D°, z, a,, a,) .

Clearly two braid words on n strings represent the same element of the
group B, if and only if the associated braid diagrams on n strings can be
obtained one from the other by a finite sequence of inner moves of types
B,, B}, B,, B, or C, C' (the insertion or deletion of trivial relators
s;s; 1 or s;'s, corresponds to the moves of types B,, B}, B,, B};
we associate in a similar way the relations s;s; = s;5;,|i — j| = 2 to plane
deformations and the relations s;5,.:S; = S;4+5:5;+; to the moves of
types C, C).

Hence it follows from (1) that we may define a mapping H, from
B, to K as follows. For every element b of B,, H,(b) = H'(D, z, a,, a,)
for any braid diagram on n strings D associated to a braid word which
represents b.

Consider now the quotient A4, of the group algebra K(B,) by the
(two-sided) ideal J generated by the elements s, — s; ! — z(i=1, .., n—1).
Let us extend H, to K(B,) by linearity. Then it follows from (2) that
H, takes the same value on two elements of K(B,) which are congruent
modulo J. We shall now identify H, with the induced linear functional
from A, to K. The embedding of B, into B, 1s extended to an embedding
of A4, into A,,; in the obvious way. Thus H, is well defined on
A, .. A,

Coming back to our modified version of the proof of Proposition 1,
we obtain the following properties for all n > 1.

(3) Ifue A, then Hj,, ;(u) = dH(u) with d = (aya,—(a,a,)")z" "

(4) Ifu,ve A, then HY, , (us,v) = aH (uwv) and H,, (us, *v) = a 'H (uv)
with a = aqa,.

Indeed it is enough to prove (3) and (4) for u,v in B,. Then (3)

corresponds to the addition of a single free loop to a non-empty diagram,
and (4) to a move of type A’ or A%.

It is also easily checked that when D is the unique braid diagram on
one string, that is, the free loop with rotation number 1, H'(D, z, a,, a,) = 1.
Since B, is trivial, 4, can be identified with K. Hence

(5) H is the identity mapping on K.
We now show that

(6) If u, ve A, then H,(uv) = H ,(vu).
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The following proof is essentially the same as those given in [7]
and [13] for Ocneanu’s trace [25]. However since the context is slightly
different we feel necessary to give the details. We proceed by induction
on n. The result is trivial for n = 1 by (5). Assume that the result
holds for A,. It is enough to show that for all u in 4,,, and i in
1, ..n Hy,,(us;) = H,,(s;u). We need the following basic result: A4,,; is
generated as a K-algebra by G, ; = 4, U {xs,y/x,ye 4,} (see [7], [13],
[31]). Now we may assume that u belongs to G, , ;.

If ueA, and i <mn, by our induction hypothesis H(us;) = H(s;u)
and property (3) yields the result. Similarly by property (4), for u in
Ay, Hy o o(us,) = aH () = Hyy o(s,u).

Assume now that u = xs,y with x,yed,. If i<n H/, (xs,)s;)
= aH (xys;) and H,, (s;xs,y) = aH,(s;xy); the result then follows from the
induction hypothesis. It remains to prove that H . (xs,ys,) = H”, (5,XS,)).
We may assume that x, y € G,. There are four cases to consider.

— If x and y both belong to A,_; they commute with s, and the result
1s immediate.

— Ifx = x's,_x" with X', x" € 4,_:
SuXSpy = 8$,X'S,_1X"S, Yy = X'8,8,_ 15, X"y = X'Sp_15,8,_1X"y .
Then by property (4)
Hija(s,5,y) = aHj(x's3_,x"y) = aH(x(zs, +1)x"y)
= azH ,(xy) + aH ;(x'x"y) .
Nowifye 4,_,
XS,¥S, = xys; = xy(zs,+1).
Then by properties (3) and (4)
Hy i) = zaH(xy) + dH(xy)

The result follows since dH (x's, -1 x"y) = aH(xX'x"y) = adH"_,(x'x"y).

On the other hand if y = y's,_,y” with y, y'ed,_,
XSnySn = xsnylsn~ 1y”Sn = xylsnsn— lsny” = xylsn - 1SnSn— 1y”
and hence

HyiCesnys,) = aHxy's2_1y") = aH j(xy'(zs,-, +1)y")
= azH (xy) + aH ,(xy'y"} .
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The result follows since

HI(x'y) = Hi(ex'ys, 1)) = aHy (6xyy") = HiX's, x"yy")

— Hll(xyl /I)

— In the only remaining case xe€ 4,_, and y = y’s,_;y” with y', y" € 4, _,.
We have just seen that H,, {(xs,ys,) = azH,(xy) + aH!(xy'y"). We may also
write

S,XS,y = s2xy = (zs,+1)xy,

so that H,, ((s,xs,y) = zaH,(xy) + dH(xy).
The result follows since dH ,(xy's,_ V") = aH,(xy'y") = adH_ (xy'y").

Now we can use the construction of the homfly polynomial described
in [7], [13]. Let us consider two braid diagrams D; on n; strings and
D, on n, strings. For i = 1,2 let b, be the element of the braid group
on n; strings associated to D;. Markov’s theorem asserts that D; and D,
are 1sotopic if and only if b; can be obtained from b, by a finite sequence
of moves of one of the following types:

Markov move of type 1: replace be B, by a conjugate chc™ *(ceB,).

Markov move of type 2: replace be B, by bs,eB,,, or bs, *eB,,,,
or perform the converse operation.

It then follows from properties (4) and (6) that if D, and D, are
isotopic:

(alaz)_w(m) H'(Dy,z,ay,a,) = (4142)_W(D2) H'(D,, z a,,a,).

Since by the classical result of Alexander every diagram is isotopic to
some braid diagram, there exists an isotopy invariant P”(D, z, a,, a,) defined
for all diagrams D which is equal to (a;a,) "™ H"(D, z, a,, a,) for every
braid diagram D. Using property (2) and a refinement of Alexander’s
Theorem one easily shows as in [7] p. 294 or [13] p. 348 that this
invariant satisfies the equation

a;a, P'(D7, z,a,, a,) — (a1a,)"* P(D™, 2,4y, a;) = zP"(D°, 2, a, a)

for every Conway triple (D*, D™, D°). Then property (5) allows us to identify
P"(D, z, a, , a,) with the homfly polynomial P(D, z, a,a,), and thus to complete
the proof.

Remark. In Proposition 3 we may replace (D, ;) by the number of
return edges labelled i by f.
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3.2. A SIMPLIFIED STATE MODEL

We give here a “specified” version of Proposition 2. As before we write

z=1t—1t L

PRrROPOSITION 4. For any braid diagram D and positive integer (g,

H(D, z, t9) = t4—1-(@+1)r(D) ZfESL(D N <D| f> WD, f)+2s(D, f) ,

where w(D, ) = Zi_:l’”.qW(Df,i) and s(D, f) = Zi=1’._.qi”(Df,i)-

The proof is almost identical to that of Proposition 2 and will be
omitted. Note that H(D, z, t9) is now expressed as a Laurent polynomial in ¢
(this was not the case in Proposition 2 which only gave such an expression
for H'(D, z, t%)).

3.3. MODELS FOR THE ALEXANDER-CONWAY POLYNOMIAL

We begin with the following identity which is immediately obtained by
setting @, = a and a, = a~ ! in Proposition 3:

PROPOSITION 5. For any braid diagram D,

AD, z) = a1y <D|f>HD; ,z,a0) H(D; 5,z,a" ") .

SfeSL(D, 2)

Remark: For a diagram D, let D~ denote the mirror image of D,
that is, the diagram obtained from D by changing the signs of all vertices.
It is easy to deduce from the Theorem of section 2.1 that H(D,z, a)
= HD, —z,a” ") = (= 1)~ H(D, z, a '), where ¢(D) denotes the number
of components of D (in the sense of knot theory, not graph theory).
These identities can be used to reformulate Proposition 5.

We now recall that for z =1t —t Y, HD,z1t) = t*?P. Similarly,
H(D, z, —t™ ) = (—t)7"®_It easily follows that

H@D,z,t ') = (—1y® (—g~ @)

Taking a = t in Proposition 5 we obtain:

PROPOSITION 6.  For any braid diagram D,

A(D, Z) = rD-1 Z <D | f> tw(Df,1)(_t)—w(Df,2) (_ l)r(Df’Z) )

SeSL(D, 2)
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Remark. In the above expression for A(D,z) we may replace ¢ by
—t 1

Proposition 6 yields an “ice-type” model (see [2]) for the Alexander-
Conway polynomial. Let us call Eulerian orientation of a diagram D every
rearrangement of the edge orientations such that at every vertex v the number
of edges incident towards v equals the number of such edges incident from v
(a loop at v contributing 1 to both numbers). We shall denote by O(D) the set
of Eulerian orientations of D. It is easy to see that for every labelling f
in I(D, 2) if we reverse the orientations of all edges labelled 2 we obtain
an Eulerian orientation of D, and that this defines a bijective correspondence
from L(D,2) to O(D). Moreover when D is a braid diagram, if we denote
by SO(D) the set of Eulerian orientations of D such that the orientation
of the special edge is not changed, we obtain a bijection from SL(D, 2)
to SO(D). For a vertex v of D and an Eulerian orientation o of D let
us define their interaction <v|o> as on Figure 25. If D has vertex-set V
let us write <D]o> = HveV <v|o>. Finally let (o) denote the number
of return edges of D which are reversed in the orientation o. Then we
may reformulate Proposition 6 as follows.

PROPOSITION 7. For any braid diagram D on n strings,

AD,2) = VY o (—1y@ <D | o>

34, THE ALEXANDER EXPANSION FOR THE HOMFLY POLYNOMIAL

We begin with the following immediate consequence of Proposition 3.

ProrosITION 8. For any braid diagram D,

HD,z,a) = ) <D|f>a "Pr 9" AD, |, 2)H' (D, ,, 2, d).

feSL(D, 2)

Let D be a braid diagram on n strings and denote its return edges
by ey, ... e, in left to right order, e, being the special edge. For a labelling f
of D, let us call pattern of f the partition of {ey, .. e,} defined by all the
non-empty f~'(i). We shall call a labelling f of D compressed if the word
fley) ... fle,) is lexicographically minimal (for the usual ordering of the
integers) in the class of all words of the form f’(e,) ... f ‘(e,) where [’ is a
labelling with the same pattern as f. We denote by CL(D) the set of

compressed labellings of D and by k(f) the cardinality of the image of
the labelling f.
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PRrOPOSITION 9.  For any braid diagram D,

H(D, z, a) = ZfeCL(D) <D| f> a r@+k ((a_a—l)z—l)k(f)—l

Hizl,...k(f) A(Df’i’ z).

Proof. We proceed by induction on the rotation number of D. The result
1s trivial if this number is 1. Now by Proposition 8, H(D, z a)

= ZIGSL(D, 3 C(D, f), with

CD, f) = <D| f>a "1V A, 1, 2) H(Dy, 5, 2, 0) .

Let us fix f and write D2 for D, ,. If D2 is empty, H(D2,z,a) = 1.
Otherwise D2 is a braid diagram whose special edge is the image under
the projection P, associated to f of the leftmost return edge of D which
is labelled 2 by f. Since D, ; is not empty, r(D2) < r(D). Then by our
induction hypothesis, H'(D2,z,a) = (a—a Yz 'H(D2,z,a) is equal to
ZQGCL(DZ) <D2|g> a "PPFKD ((g—q~ 1)z~ 19 Hi=1,...k(g) A(D2, ;, z). Thus if
D2 is not empty, since r(D, ;) + r(D2) = r(D), C(D, f) is equal to

<D|f> <D2|g>a "®TO*(g—a Nz YD AD, |, 2)
Hi=1,...k(g) A(ng’i’ z).

For every g in CL(D2), define a labelling h = u(f,g) of D as follows.
For an edge e of D, if f(e) =1 then h(e) = 1; if f(e) = 2 then
he) = g(P/(e)) + 1, where P, is the projection associated to f. Since f
is specified and g is compressed, h is easily seen to be compressed. Clearly
k(h) = k(g) + 1, D;y =D,,; and for i=1,.kg),D2,;= Dy ;v1.
Moreover h is compatible with f, the constant labelling of D1 with value 1
and the labelling g of D2. Hence, by the Unification Lemma, <D | f >
<D2|g> = <D |h>.

It follows that, if D2 is not empty, C(D, f) is equal to

deCL(DZ)

—r(D)+k(h) a4~ 1\ 1 )
ZQGCL(DZ),h=u(f,g) <D|h>a (@—a™hz77) Hiﬂ,_nk(m A(Dy,;, 2).

For any compressed labelling & of D define
C(D,h) = <D |h> a "D 0 ((g—q~Hz W1 Hi=1,...k(h) Ay, ;, z) .

Denoting by f, the labelling of D which takes the value 1 on each edge,
it remains to prove:

ZheCL(D) C'(D, h) = CD, fo) + z
It is easy to check that C'(D, f,) = C(D, f,) = a "% A(D, z). Moreover u

C'(D, h).

SeSL(D, 2), k(f) =2 deCL(DZ), h=u(f,9)
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defines a bijection from {(f,g)/f € SL(D,2),k(f) = 2,9¢€ CL(D, ,)} to
CL(D) — {fo}. This completes the proof.

3.5. SOME CONSEQUENCES

Let D be a braid diagram on n strings and consider its homfly poly-
nomial P(D,z,a) = a *® H(D, z,a). Let E(D) (respectively: e(D)) be the
maximum (respectively: minimum) degree in the variable a of the Laurent
polynomial P(D, z, a). The following result is due to Franks and Williams [4]
and Morton [22]. In fact in [22] it is generalized to arbitrary diagrams
(the number of Seifert circles replacing the number of strings).

PROPOSITION 10. For any braid diagram D on n strings,
1 —n—wD)<eD) <ED)<n—1-—wD).
Proof. Using Proposition 9 we may write

P(D, z,a) = Zf€CL(D) oD, f,z)a *®r+l(g2 1)1

where (D, f,z) = <D| f>z M7 ]] _ wp ADy s, 2)is a Laurent poly-
nomial in z. The result follows immediately since 1 < k(f) < n.

Remark. For fixed z and n the fact that H(D, z, a) is up to a constant
factor a polynomial of degree at most n — 1 in the variable a*> — 1 can
be used to express it as a linear combination of the form ziz - AN H(D, z, a;)
for n mutually independent variables a;. The coefficients A; are given
explicitly by Murakami in [23].

The following result is the specialization to braid diagrams of another
result of Morton [22]. Let us denote by M(D) the maximum degree in the
variable z of the Laurent polynomial P(D, z, a) (or equivalently H(D, z, a)).

ProrosiTioN 11. For any braid diagram D on n strings with
vertex-set V,

MD)<|V|—n+1.
Proof. Coming back to Proposition 6, we see that every term in the
expansion of A(D, z) in powers of ¢ is, up to sign, of the form
tn~ l(t— t— l)h(D,f) tw(Df’ 1)“W(Df’2)

for some f in SL(D,2), where (D, f) is the number of vertices where
D, and D, , are mutually tangent. The minimum degree of such a term
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1s not less than n — 1 — | V' |. Hence the maximum degree in z of A(D, z)
is not greater than | V| — n + 1 (this result is generalized to arbitrary
diagrams in [16] p. 120).

Now applying this to all the D, ; in the expression

O, f,z) = <D| f> Z_k(f)+lni=1 k()

and noting that the vertices of the D, ; contribute 1 to the product
<D | f> we easily obtain the desired inequality.

A(Df,i> Z)

3.6. A STATE MODEL FOR THE HOMFLY POLYNOMIAL

We may combine Propositions 6 and 9 to obtain a state model for the
homfly polynomial.

Consider a compressed labelling f of the braid diagram D together with
a specified labelling g; in SL(D, ;, 2) for each i = 1, .. k(f), and define the
labelling h = u(f, g;, . gup)) as follows. For every edge e of D, if f(e) =
then h(e) = 2(i—1) + g(P,(e)), where P, is the projection associated to f.
Any labelling which can be obtained in this way will be called half-
compressed and we shall denote by C'L(D) the set of half-compressed labellings
of D. For a labelling f of D we denote by w,(D, f) (respectively: w (D, f))
the sum Z RUf) w(D ;) restricted to the odd (respectively: even) values of i.
Similarly we define r D, f) as the sum Z B r(D, ;) restricted to the
even values of i. We denote by k'(f) the number of distinct odd values
taken by f.

ProOPOSITION 12.  For any braid diagram D, H(D, z, a) equals

<D l f> (t—la)—-'r(D)+k'(f) ((a_a—l)z—l)k’(f)—l tWO(D’f)

(_t)—we(D,f) (__ 1)re(D,f) )

ZfeC’L(D)

Proof. Let f be a fixed compressed labelling of D. For each i = 1, ... k(f)
let us write Di for D, ;. By Proposition 6,

A(Di, Z) — tr(Di)— 1 ZgiESL(Di, » < Di l gi> tw(Digi,l) (__ t)_W(Digi, 2) (_ 1)"(Digi,2) )

Let T(D, f) be the set of k(f)-tuples g = (gi, i=1, ... k(f)) with gi e SL(Di, 2)

for all i. Then <D | f > Hi=1 o A(Di, z) =

(— )~ W Pigi,2) (— 1y Pigi, 2)
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Clearly for h = u(f, gi(i=1, .. k(f))) = u(f, 9):
S Wi ) = WD Y, wDig,z) = wdD, h)
and
Yy iy Digi2) = 7D, ).

Moreover, since h is easily seen to be compatible with f and the gi,
it follows from the Unification Lemma that <D | f>[]._, ,, <Dilgi>
= <D | h>. Hence

<D|f>Tl_, pADiz) =

tr(D)—k(f) z <D I h> two(D’ h) (_ t) —we(D, h) (_ 1)re(D, h)

geT(D, f), h=u(f,9)

It now follows from Proposition 9 that

H(D, Z, Cl) = ZfeCL(D) zgeT(D, £, h=u(f,q)
<D | h> (t71a) PR (q—a™ )z T LD RoB ()P (g elDen

In this expression k(f) can be replaced by k'(h). Moreover u clearly defines
a bijection from the set {(f,g)/f € CL(D), ge T(D, f)} to C'L(D). This
completes the proof.

4. (CONCLUDING REMARKS

1. It would be interesting to generalize the results of Section 3 to
arbitrary diagrams. This is done for Proposition 6 in a joint paper with
Louis Kauffman (in preparation).

(2) Since the topological and algebraic aspects of the Alexander polynomial
are well understood, one may try to use Proposition 9 to gain some insight
of the same kind on the homfly polynomial. Clearly one can combine
Proposition 9 with classical results which relate the polynomial A(D, z)
to Burau matrices, Seifert surfaces and matrices, presentations of the fun-
damental group of the complement... This leads to corresponding complex
labelled structures which seem to be worth studying. As for the combinatorial
aspects Proposition 12 1s only a first step and some further progress closely
connected with Proposition 9 is reported in the following forthcoming papers :
[A] Circuit partitions and the homfly polynomial of closed braids, Trans.

AMS, to appear, [B] A combinatorial model for the homfly polynomial,
preprint.
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(3) We believe that our approach to the Morton-Franks-Williams
inequalities could be developed to yield more precise results on the cases of
equality (which appear to be extremely frequent). For instance it is shown
in [A], Proposition 7 that the first (respectively: third) inequality of Pro-
position 10 holds with equality if all vertices of D have negative (respectively :
positive) sign.

(4) Proposition 12 can be interpreted in terms of explicit matrix
representations of Hecke algebras. The homfly polynomial of a braid diagram
appears as the trace of a matrix indexed by its labellings. This matrix can
be computed as a product consisting of one matrix for each crossing (which
- incorporates the interaction and writhe contributions) and a final diagonal
matrix which assigns suitable weights to the various labellings.

(5) The known relationship of the Jones sequence of state models with
solutions of the Yang-Baxter equation suggests that theoretical physics might
provide an interpretation of the properties of the product operation for
homfly polynomials. An algebraic generalization of this operation is given by
V. G. Turaev in: Algebras of loops on surfaces, algebras of knots, and
quantization, LOMI preprint E-10-88.
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