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THE TOWER OF HANOI 309

2. IRREGULAR STATES

Although introduced already in the leaflet [8] to the original TH puzzle,
Lucas’s second problem (cp. also [9]) has not yet received an adequate
mathematical treatment. The reason is that the violation of the regularity
assumption on the initial state takes away a great deal of symmetry from
the considerations. In particular, the mathematical model has to be changed.

2.0. MATHEMATICAL MODEL

With pegs 0, 1,2 set up from left to right and counting positions of
discs and bottoms of pegs from top left to bottom right in a given state,
one can attach to each disc d € {1, ..., n} its position p(d) in this enumeration,
and to the bottom of peg i € {0, 1, 2} its position p(n+ 1+1i). This leads to the
following definition.

Definition 11.

1—-1

T,o={p:{l,..,n4+3} = {1, ,n+3}; pln+ D) <pn+2)<pn+3)=n+3}.

onto

As any p e T, corresponds to a state of the TH, it follows immediately:

THEOREM 5. The number of states of the TH with n discs is
(n+2)!
;-

Remark 7. Surprisingly, Lucas writes that for n = 64, this number has
“more than fifty figures” (see [8]); although this is true, it falls short by
some fourty powers of ten!

While the description of a state is simple, the rules of a move are
clumsy in this model and far from intuition. So it is convenient to construct
the following imbedding. |

Definition 12.

1_

1
J:Z, = A, h);r {1, ,n+3} - {0, 1, 2}, b {1, ..., n+3} - {0, .., n}}

>

p(r, h),
where

Vde{l,.,n+3}:
h(d) = min {p(n+1+i) — p(d); p(n+1+i) = p(d), ie {0, 1, 21},
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and r(d) is the i for which this minimum is attained.

It 1s easily checked that J is an injection, and so ¥, and JZI, will
be identified, i.e. p and (r, h) will be used interchangeably. Furthermore, as
r(d) and h(d) do not depend on p for d =n+ 1 + i, ie{0,1,2}, r wil
be identified with r | {1, ..,n} € T, and h with h| {1, .., n}. p e T, will also be
written [(r(1), A(1)), ..., (r(n), h(n))]. Again, r(d) is the peg onto which disc d
is stacked and h(d) is its level above the bottom of that peg. In addition,
by re(r,h) with Vde{l,.,n}:h(d) = |{ce{d,..,n};r(c) = r(d)}]| an
injection is given from T, into T, and again r and (r, h) will be identified.

Definition 13. A pair (py, py) € T is a (legal ) move (of disc d from peg i
to peg j), iff
6, j) e {0, 1,2}%,i # j:d : = top(po; i) < min {n+1, top (po; )}
A (ri(d)=j, hi(d)=hg (top (po )+ 1, Veell, .., n\{d} : r1(c)=r(c) ,
hi(c)=ho(c)) ,
where
VpeI,Vie{0,1,2}:top(p;i)e{l,.,n+3}
with
r(top (p; i) = i, h(top (p; i))=max h(r~({i})) .

For (o,71)eT?, a path nell(c,t) from o to 1 and its length are
defined as in Chapter 1.

Remark 8. If p, is regular in a move (py, p;) € T7, then so is py,
and (py, p;) is a legal move in the sense of Definition 1. As the same
applies to paths, it is clear that no new paths between regular states turn up.

The analogue to Definition 2i is

Definition 14. For any pe I, and d € {1, .., n+3} let
Uld: = {ce{l,.,.n};rc) = r(d) » hic) < h(d)}
and define p?e I, _,, by
Vee{l,..,n—hd)}:7c) = r(uc)),

(@) — W), i r(0) = (),
ne) = {h(t(c)), else
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where 1:{1,..,n—h(d)} - CU{ is strictly increasing; if d =mn, p? will be
written p simply.
Similarly, p, € T4 is defined by

Ve e {1, ..., h(d)}: rc) = r(d), hyc) = h(u(c)) ,

where now t: {1, ..., A(d)} = U%is strictly increasing.

Remark 9. Given UY, it is possible to reconstruct p from p, and
p? Thus, as long as disc d does not move, any move (pg, P eI o
is equivalent to a move (py, p;) € T;, provided that d > max CU’;. This
will frequently be used in the sequel.

2.1. EXISTENCE OF A SHORTEST PATH FROM A STATE TO A REGULAR STATE
AND AN UPPER BOUND FOR ITS LENGTH

In contrast to the situation for regular states, (p;,po)€ T, is not
necessarily a legal move if (py, p;) is. So one can not expect II,(c, 1)
to be non-empty for every pair (o, t) € T7. The goal of this section will be:

THEOREM 6. Let neN\{l}. For any pair (c,t)eZI, x T, there is

a (shortest) path from o to t with length less than or equal to
2" — 1 42" 2

Remark 10. 1) The restriction on n is not serious, since there are no
irregular states for n € {0, 1}.

ii) The bound on the length of a shortest path in Theorem 6 is sharp:

Example 2. o = [(0,n),(0,n—1), .., (0, 3), (0, 1), (0, 2)], t = 0". Before the
first move of disc n (it has to be moved to arrive at a regular state!),
to peg 1 for instance, discs 1 to n — 2, which are regularly distributed on top
of it, have to be moved to peg 2. So, by Theorem 2, at least 2" 2
moves have been carried out after the first move of disc n, when a regular
state is reached from which it takes another 2" — 1 moves to arrive at t,
as can be calculated using Theorem 3.

To prove Theorem 6, some preparations have to be done.

LEMMA 3. For every peZ, and je{0,1,2} there is a peg,
with ¥ = j" and a path from p to p with length less than or equal to
2" —1; if n=0 or r(n) #j, then p is regular.
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Proof by induction on n. a) The case n = 0 is trivial.

b) If r(n+1) = j, then the induction hypothesis can be applied to p,
resulting in a p and a path from p to p in the spirit of Remark 9.

If r(n+1) # j, then transfer p to jor(n+1), which takes at most 2" — 1
moves by hypothesis, move disc n + 1 to j and then the first n discs to j,
together at most 2"*! — 1 moves. As in the last action (if n # 0) disc n
started from a peg different from j, the resulting state is regular by
hypothesis. [

This lemma leads to the following interesting result:

PROPOSITION 8. Let neN\{l}. For any ceZ, there is a teT,
and a path from o to t with length less than or equal to 2" 2

Remark 11. Here again Example 2 shows that the bound on the length
is sharp: Suppose for the o of Example 2 there is a te T, and a path
from o to t of length less than 2"~ 2; then by Theorem 1, there is a path
from ¢ to t = 0 of length less than 2" — 1 4+ 2"~2, which contradicts the
discussion of Example 2.

Proof of Proposition 8 by induction on n. a) For n = 2, the only
irregular states are [(j, 1), (j, 2)] for j € {0, 1, 2}. Here it suffices to move disc 2
to a different peg to get a regular state.

b) If W(n+1) = 1, then the induction hypothesis can be applied to o.
Otherwise, the transfer of o to a peg j different from s(n+1) and
s(n+1—h(n+1)) is achieved in at most 2""*7"**H — 1 moves by Lemma 3.
Then move disc n + 1 to jos(n+1). If hin+1) = 2, the resulting state is
regular and the number of moves at most 2"~ 1. Otherwise, discs 1 to n can
be transferred to a regular state in at most 2""? moves by hypothesis,
and the total number of moves is less than or equal to 2""!17R+1)
+ 2n—2 < 2n—l. D

Now the proof of Theorem 6 is a trivial combination of Proposition 8
and Theorem 1.

Although Example 2 shows that shortest paths may be as long as
2" — 1 + 2"~ 2, this worst case will not occur very frequently, as the following
proposition tells, which will also be important in the subsequent sections.
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PrOPOSITION 9. Let neN\{1},(c,t)e X, x T,. Then
o, £) = 2" = (s(n)=t(n) A h(n)>1).

Proof. The proof is by constructing paths from o to ¢ shorter than 2"
for all cases different from the r.h.s. For convenience suppose that n > 3
(for n = 2, cp. the proof of Proposition 8).

i) s(n) = t(n) A h(n) = 1. Then bring o to ¢ which takes at most
2"~1 — 1 4+ 2" 3 moves by Theorem 6.

i) s(n) # t(n) A (h(n)>1vs(n—1)=s(n)et(n)). Then bring c to peg s(n) ° (n)
in at most 2""2 — 1 moves (by Lemma 3), move disc n to t(n) and then
the other discs to ¢ in at most another 2""' — 1 + 2"73 moves by
Theorem 6.

_ el
i) s(n) # tn) A (h(n):l/\s(n—l)aés(n)ot(n)). Then move o to s(n) o t(n)" in
at most 2"~! — 1 moves (by Lemma 3), move disc n to t(n) and finally

M” to ¢ in at most 2"~ ! — 1 moves by Theorem 1.  []

Remark 12. As in Theorem 1, the proof of Theorem 6 (Proposition 9)
is constructive, allowing (if s(n)#t(n) v h(n)=1) to find a path from o to ¢
with at most 2" — 1 + 2"~ 2 (2"—1) moves. But again, it does not necessarily
lead to a shortest path, even if the steps are carried out efficiently;
see Example 3 below. So the construction of shortest paths has to be
discussed further.

2.2. CONSTRUCTION OF SHORTEST PATHS FROM A STATE TO A REGULAR
STATE

Although it is now possible, in principle, to find all shortest paths from
a state ¢ to a regular state ¢ by sheer listing the paths between them not
longer than the upper bound in Theorem 6, this crude proceeding is neither
efficient nor does it provide any a priori information about the number of
shortest paths. The following three lemmas will help to overcome these
weaknesses.

LEMMA 4. Let mell,,(o,t) be shortest. Then disc n + 1 does not
move twice to the same peg; consequently, it moves at most three times.

Proof. Suppose j € {0, 1, 2} appears as goal of disc n + 1 at least twice
in m, in moves p' and p”(W' <p”) say. Then, as h+1) = 1 after the first
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move of n + 1, one can leave out all the moves p with d,(n) = n + 1
and B’ < p < p” and gets a shorter path from o to . [

LEmMA 5. Let je{0,1,2},(c,1)e X2 with t =" Then
(0,7 # O < 3de{l,..,n+3}, h(d)

vd>max0U4: U =Ul A1, =0, 1% =

n

~

in—hg(d)

Proof. “=":1If tis regular, then take d > n. Otherwise
{de{l,.,n};3ce{l,.,d—1}:hfc) = h(d)—1} # D .

Choose the d with h(d) a maximum. Then h(d) = n or d > max CU?,
and ¢ = [* %@ Furthermore, as there is a path from o to t, U = U*
and o, = 14, and so also h (d) = h/(d).

“— " follows from Theorem 6. If T is not regular, a path from o to
is given by a path from c? to ¢ fixing disc d and the discs under it. [

Lemma 6. Let je {0, 1,2}

i) Let ©ce€Z,,1,,7, as in Lemma 5 for d,,d, with h(d,) = h(d,).
Then o, 1) < Wo, 1,).

ii) Let i,ke{0,1,2},i # k,(c,,0,) eI} with

Vd e {1, .., n}: (sy(d)=s,(d)= :5(d) A s(d) #k A (s(d) =i=>hy(d) = h,(d))
A (8(d)=ick=h,(d)=|{ce{d, ..., n}; s(c)=i°k}|)) ;

let 7t.(xe{l1,2}) be as in Lemma 5 applied to o, and d, with
h(d,) a maximum.
Then oy, Ty) < po,, T5).

Proof. 1) Take a shortest path from o to t, and skip the moves of
discs in U4,
ii) By induction on n. a) The case n = 0 is trivial.

b) By part i, it suffices to construct a path m; from o, to peg j not
longer than w,, a given shortest path from o, to 1,.

The first, and possibly only, part of m, is equivalent to a path from
5, to some peg je€ {0, 1,2}. Define &, € Xt 1-nym+1) DY deleting discs in
Uzl from o, analogously to Definition 14. Then, by induction, there is a
path from &, to peg j~ not longer than the former and by deleting all the
moves of discs in U"'' one gets a path %, from o; to peg j. If
s(n+1) = j, then disc n + 1 does not move in m,, whence j = j and
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n, = 7, does the job. Otherwise, add to m; the move, also present in m,,
of disc n + 1 from s(n+1) to jo s(n+1). Now, if s(n+1) = iok, a perfect
n-state (perfect substate if j = i) moves from j to some other peg in 7,
while in m, the latter peg can be reached in at most as many moves by
Theorem 2 or Proposition 9. After that, or if s(n+1) = i, the induction
hypothesis provides the rest of path ©;. [

By Lemma 4, the possible patterns of movements of the largest
disc n + 1 in a shortest path are determined, while Lemma 5 limits the
number of cases to be considered before each move of disc n + 1. After
the last move of disc n + 1, the other discs have to be brought to t.
This leads to a recursive construction of all shortest paths from o to t.
Lemma 6, finally, makes this construction more efficient by pointing out the
advantages of leaving the intermediate states as irregular as possible.

While Example 1 revealed that even in the case of a regular initial state
uniqueness of the shortest path does not hold and that there are shortest
paths with two moves of the largest disc, the following example indicates
that things are even more complicated now.

Example 3. o = [(2,1),(2,2),(0,1),(2,3),(0,2)], t = [1,1,1,1,2]. Then
a careful analysis shows that a path from o to ¢ needs at least 11 moves
if disc 5 moves only once and 22 if it moves exactly twice, but there is a
shortest path of length 9 where disc 5 moves three times! As in the
construction of Theorem 6 (Proposition 9) disc 5 would not move but once,
this example also verifies the assertions in Remark 12.

This shows that in general the number of candidates for a shortest
path may still be considerable. That is not so if ¢ is perfect. So the rest
of this chapter is devoted to the final analysis of Lucas’s second problem.

2.3.  UNIQUENESS OF THE SOLUTION TO LUCAS’S SECOND PROBLEM

The goal of this section is the following satisfying result.

THEOREM 7. Let peX, and je{0,1, 2} Then the shortest path from p
to ] IS unique, except for the case r = ] AP F# ], when there are exactly

two shortest paths, generated from each other by interchanging the roles of the
elements of {0, 1, 2}\{j}.

As in the case of regular states, it will be important to know how
often the largest disc will be moved in a shortest path.
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Lemma 7. Let neN,je{0, 1,2}, nell,, (p, /) be shortest. Then
disc n+ 1 moves

o) not at allif r(n+1) =j and h(n+1) = 1,
1) exactly once if r(n+1) #j,
1) exactly twice if r(n+1) =j and hin+1) > 1.

Proof. o) If there are moves of disc n + 1 in m, delete them all to

arrive at a strictly shorter m e IT,. ,(p, j)-

1) The possibilities of two or three moves of the largest disc n + 1 in a
shortest path m will be excluded by constructing a strictly shorter path «
with only one move of disc n + 1.

Suppose disc n + 1 moves three times. Then, by Lemma 4, its sequence
of moves is necessarily from r(n+ 1) through j o r(n+ 1) and again r(n+1) to j.
Also, if p is the number of the last move of disc n + 1, m, is regular

i _ T
with p(n+1) =, and p, = jor(n+1)" and thus, by Theorem 2,
L, = U + 2" — 1. Now carrying out the first p — 1 moves of =, skip every
move of discs in U, "', then move disc n 4 1 to j. This gives a path from p
to my with py(n+1) = j, h}l(nJr 1) = 1 and py(n) # j, so that, by Proposition 9,
j"*1 is reached in at most another 2" — 1 moves, resulting, as fi < p

by at least two moves of disc n + 1, in a path from p to f shorter than m.

Suppose disc n + 1 moves twice. Then these moves, with numbers p’
and p” say, are necessarily from r(n+1) through jeor(n+1) to j. Carrying
out only those of the first u’ moves of m with discs in C Ur*t, one arrives
at a my with py = fr+1-htn+ ) 1 eaving disc n + 1 at r(n+ 1), one proceeds
by carrying through those moves p of T with p’ < p < p”and d,(n)eCUZ*?,
but changing the roles of r(n+1) and jeor(n+1) for i(n) and j,(m). One

= T

arrives at my._, with pg._; = jor(n+1)""* """V and py._, = p, allowing
disc n + 1 to be moved to j. Now, by Lemma 5 applied to ¢ = =, and
is either regular on r(n+1), in which case, by Proposition 9,

A

T = My, Ty
“(ﬁﬁ:]) <2'—-1= I-J'(nu”>j)= Or

dde{l,.,nfh(d) =nvd>maxC UL U= Ul a1 =0,n

_ /\
T = rn+1)y" @

but then discs in U¢ have not been moved neither in the first p” moves
of m nor in the first p” moves of m. Let p” be the first move of d in m,
so that p” = p” + 2" "9; on the other hand, state m,. can be reached
from 7z in at most 2"~ " moves by Proposition 9, since for
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~

d:=max CUL . p.(d) = rin+1) v hy(d) = 1.

ii) Disc n + 1 has to be moved at least once. After its first move, situa-
tion 1 is reached. [

The last step shows that the only possible ambiguity in the sequence
of moves of the largest disc might arise in case ii of Lemma 7 by the
question to which of the pegs # j it should be moved. Lemma 8 answers
this question.

LEMMA 8. Let (i,j)e{0,1,2}%i#j,peT, with r(n) =icj Then
A A ~ T~
wp, i) = wp,j)=r =iej.
Proof. “ <" is trivial by interchanging i and j.

<

‘=" will be proved by induction on n.
a) Casesn = 0 and n = 1 are trivial.

b) Suppose {c € {1, .., n};r(c) # i-j} # @.Letn,, n; be shortest paths from p

to i"*! and j"*1, respectively, and let d : = max CU."".

If (d) = icj, then w(p,i) = w(p,j) + 2" and w(p,j) = u(p,i) + 2" by
Lemma 7, Lemma 3 and Theorem 2. But by induction hypothesis
u(p, i) # H(p.J):

If, without loss of generality, r(d) = i, then in m; leave out the first
move of disc d, go on until the move of disc n + 1 ignoring the moves
of discs in U¢ and interchanging i and j in the moves of the other discs;
then move disc n + 1 to j. To the rest of the moves, Lemma 6 can be
applied (again interchanging i and j), yielding a path from p to jA strictly
shorter (by at least one move of disc d) than ;. [

Now Lemmas 5 to 8 comprise all the information necessary to prove
Theorem 7.

Proof of Theorem 7 by induction on n. a) Case n = 0 is trivial.

b) If (n+1) = j and h(n+1) > 1, then there are still two possible sequences
of moves for disc n + 1, differing in the intermediate peg to be passed.
Let d : = maxCUZ"'. If n(d) = j, then Lemma 8 can be applied. Otherwise
the path which moves disc n + 1 to jo r(d) is strictly shorter than the one

with intermediate peg r(d) by an argument similar to that in the proof of
Lemma &8 and with the aid of Lemma 6.
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In all the other cases, the moves of disc n + 1 are determined by
Lemma 7, the moves of the other n discs are governed by Lemmas 5
and 6, and their uniqueness follows by induction hypothesis, keeping in mind
that the paths of Lemma 5 are actually paths from ¢ to j* %@ ]

Using the methods of this chapter, one finds the shortest path from o
to 0 in Figure 1 with length 102.

3. OPEN PROBLEMS

Much of the discussion of the TH in computer science literature has been
a controversy between recursion and iteration. It has turned out here that
problems involving just regular states, can be solved by iteration very
elegantly (Chapter 1). On the other hand, as soon as irregular states are
considered, only recursive solutions are available (Chapter 2). While for 33
the solution is essentially unique and the recursion will work efficiently,
the situation for 34 is less straightforward. Although the number of cases
to be considered can be further limited by methods as in Section 2.3
(e.g. the shortest path (of length 108) from o to r in Figure 1 is unique),
and one can show that no three moves of the largest disc n + 1 occur
if rn+1) = t(n+1) and h(n+1) > 1, it is not clear whether there are shortest
path problems with even three different solutions. Also it seems that
the minimal length in s 3 and 4 can only be determined recursively.

The only existing solution to the TH with more than three pegs is
also recursive, and the preceeding chapters should have demonstrated that
things are not as easy as many authors might hope (see the remarks in
the Introduction). To move the largest disc n + 1 in the solution of PO
with four pegs, the n other discs have to be transferred to two different
pegs; after the last move of disc n + 1, discs 1 to n have to be sent from
some two pegs to the top of disc n + 1. Again it follows by symmetry
that disc n + 1 will only be moved once in a shortest path. But this time,
this does not reduce the problem for n + 1 discs to a similar one with
only n discs, but to the different setting of how to transfer n discs from
a perfect state to two different pegs in the shortest possible way. Here is
where the hitherto unjustified assumption made in literature enters, namely
that this will be achieved by dividing the perfect state in a suitable way
into two parts, then first solving PO for the smaller discs using four pegs,
leaving them untouched thereafter and solving the old problem for the
larger discs using three pegs only.

A\
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