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THE TOWER OF HANOI 293
1. REGULAR STATES

This chapter will develop an essentially complete theory of finding
minimal paths between regular states of the TH. It starts with an appropriate

formal setting.

1.0. MATHEMATICAL MODEL

The pegs will be denoted by an ie {0, 1,2}, the discs by de {1, .., n}
in natural order of increasing diameter; n € N, throughout, if not otherwise
stated.

Definition 0. T, : = {r:{1,..,n} - {0, 1,2}}. Anr € T, will also be written

as [r(1), ..., r(n)].
It is evident that any regular state of the TH is completely described
by one and only one re T, and that any r € T, can be interpreted as one

and only one regular state of the TH. So it follows immediately by induction:

THEOREM 0. The number of regular states of the TH with ne N,
discs is 3"

Definition 1. i) A pair (ro,r;)e T2 is a (legal) move (of disc d from
peg i to peg j), iff

36,/)e{0, L,2}%i #ji(ro '{i) # @ A (ra*{Jj}) = O v d: = minry '({i})
<minre ({j}) A (ri(d) =j A Yee {1, ., n\{d}: ry(c) = 1o(c))).

ii) For any pair (s, t) e T 2 let

[e 0}

P,(s,t):={pe | Ty 'spo = s,p,, =t nVpe{l,.,p,:

v=0
(Pu-1,p,) 1s a move}
where p, : = ind (p).
A pe Pys, 1) is called a path from s to ¢; p, is the length of p.
With this adequate formal model, it is now possible to treat Ps0 to 2,

namely to find shortest paths between regular states. The following notions
will frequently be used:

Definition 2. i) Forany re T,,.,:7: = r|{l, .., n} (€T,).
i) For (i, j) € {0, 1, 2)2:
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. i, if i=j;
lojJ .=

J kelo, 1,20\, i}, if i#j.
(Note that i oj = (—(i+j)) mod 3.)

iii) Forie {0, 1,2}: i": = [i,..i]eT,. (These are the perfect states.)
As pointed out by Er [17], it is often convenient to regard the TH
as a graph, the vertices of which being the regular states and in which the

edges are formed by the legal moves. It will turn out that this graph is
planar, simple, and connected. An example (n=3) is given in Figure 2:

(0,0,0]

(2,0,01]

[2,1,0]

[2,2,0] (1,1,0]

[0,2,01 [0,1,0]

[01111] [1r0r1] [21012] ‘ [01212]

{1+,7,171 I[12,1,71 [2,0,11 [0,0,1] [0O,0,2] ([1,0,2] [1,2,2] 1[2,2,2]

FIGURE 2.

1.1. EXISTENCE OF A SHORTEST PATH BETWEEN TWO REGULAR STATES AND
AN UPPER BOUND FOR ITS LENGTH

To establish the sheer existence of a shortest path from s to ¢ it
suffices to show that P,(s, t) # Q.
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THEOREM 1. For any pair (s,t) of regular states there is a ('shortest)
path from s to t with length less than or equal to 2" — 1, where n
is the number of discs involved.

Proof by induction. a) The case n = 0 is trivial.

b) Let (s, t)e T2, .

If s(n+1) =tn+1), let pe P,(s,t) with py < 2" — 1, and define
peThht by p, = pp(<2""*—1) and Vve{0,.,p}:p, = p,, pnt+l)
= s(n+1). It is easy to see that p e P, (s, t). R o

If s(n+1) # tn+1), let i: = sn+1)otin+1),peP,s, i) and ge P,(i, 1)
with ), 1; < 2" — 1. Define pe TE5 by p, = pp + pz + 1(<2""'—1)and

Vv e {0,..,pns}:p, = p,,p(n+1) = s(n+1),
Vel + Lo b 1Dy = dyopy—1, pv(n+1) = tn+1).
Then pe P,, (s, t). [

Remark 1. The proof of Theorem 1 1s constructive in that it allows to
determine a path from s to ¢ recursively.

In all papers mentioned in the introduction and dealing with s 0 to 2,
except those by Er [17] and Wood [49], it has been assumed that the
shortest path is uniquely defined by this construction. But neither is the
shortest path unique in general, nor does the construction always produce a
shortest path, even if one chooses p and ¢ minimal!

Example 1. a) Letn = 2, s = [0,1], t = [1, 0],
b) Letn = 3, s = [0,0,1], t = [1, 1, 0].

Then a look at the graph in Figure 2 immediately shows that ([0, 1], [2, 1],
[2, 0], [1,0]) and ([0, 1], [0, 2], [1, 2], [1, 0]) are both shortest paths for a),
and for b) the construction of Theorem 1 leads to the path ([0,0, 1],
[1,0, 11, [1,2,1], [2,2,1], [2,2,0], [0,2,0], [0, 1,0], [1,1,0]) of length 7,
while ([0, 0, 1], [0,0, 2], [2,0,2], [2,1,2], [1,1,2], [1,1,0]) of length 5 is
shortest.

Er [17] refers to symmetry properties of the graph to establish uniqueness
for Ps0 and 1. In [49], Wood felt the obligation to prove that the path
of Theorem 1 is shortest for s = i, t = jA(see Section 1.2 below), but in [50],
he made the mistake to assume its minimality in the case of general s and ¢,

an error repeated by Cull and Gerety [13] (obviously, TH is really hard!).
This problem will be treated correctly in Section 1.3.
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1.2.  PERFECT STATES

This section will leave no secret about the classical PO. The essential
step 1s to establish uniqueness of the shortest path between perfect states.

1.2.0. UNIQUENESS AND LENGTH OF THE CLASSICAL SOLUTION

THEOREM 2. For any two distinct pegs i and j, there is exactly
to j"; itslengthis 2" — 1.

n

one shortest path from i

Proof. 1t will be shown by induction that

~

V(i,j)e {0,1,2}%, i ;éjﬂlpePn(iA,]): p, = 2" — 1 is minimal .

a) The case n = 0 1s trivial.

b) Let peP,,H(iA,jA) be shortest. As i # j, disc n + 1 must be moved at
least once. Before the first move of disc n + 1, from i to k # i say,
discs 1 to n have to be brought from i to iok by the rules of a legal

move of n 4+ 1; this is equivalent to a path from i toﬁk\", which takes
at least 2" — 1 moves of discs 1 to n.

After the last move of n + 1, from [ # j to j say, discs 1 to »n must
be brought from [-j to j, which again takes at least 2" — 1 moves. So
W, > o+l g

As p, <2""' — 1 by Theorem 1, it follows that disc n + 1 moves
exactly once, i.e. k = [ = ioj, which implies uniqueness of p too. []

Definition 3. The shortest path from i" to jA" will be denoted by
pi,j;n'

Remark 2. Theorem 2 shows that the bound on the length of a shortest
path in Theorem 1 is sharp.

1.2.1. CONSTRUCTION OF THE SHORTEST PATH BETWEEN TWO PERFECT STATES

A large part of the interest the TH has raised in recent years, stems
from the discussion, mostly among computer scientists, which algorithm for
the realization of the shortest path between perfect states is the “best”.
The right question is, of course: “best for what?”. Four constructions will be
given here, each of which suitable for a different situation. The recursive
solution in o, already to be found in [8], is the backbone of the theory
and fits best into textbooks on recursion. The iterative solution in i
(cp. [28]), or some derived version of it, can best be used to make a
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computer do the TH. It also immediately leads to a description of the
shortest path in just one formula; this algorithm ii (cp. Hering [25])
can make a parallel computer write down the solution more or less “at once”.
As man’s mental quickness is much more limited, these algorithms are not
suited to him. But there is another iterative variant iii, developped essentially
in [43], allowing a human being to carry out the shortest path at a rate
of about one move per second, a speed consistent with the traditional
assumption of many authors.

o) Recursive algorithm. An immediate consequence of the proof of Theorem 2
1S

ProPOSITION 0. Let (i,j) € {0, 1,2}% i # j. Then

Q) P = (O)
b) For any n,p

Liintlo g given by

Yve{0,.,2" — 1}:pliintl = phiciin p (n41) = i;
Yve {2 .,2"" — 1} phdintl = pleddin p(n41) = j.

It is clear that this algorithm is of little practical interest (for large n,
a huge amount of memory is needed just to do the first move!), but it
serves as theoretical base for the following algorithms.

i) Iterative algorithm. This algorithm tells for the p-th move of the shortest
path which disc to move and determines its initial and final peg during
that move.

Definition 4. Let pe P,(s, t), p € {1, .., u,}. Then

i,(p) : = peg from which d,(p) is moved in the p-th move of p;
i) ju(p) : = peg to which d,(p) is moved in the p-th move of p.

These notions are well-defined in view of Definition 1.

ProOPOSITION 1. Let (i,j) € {0, 1,2}% i # j. Then for any pe {1,.,2"—1}:
0) d:=d(p"/"") = min{ce{l,.,n};2°fu};

i) i,(ph7") = <<% — %)(j—i)((n—d) mod2+1)—|—i) mod 3;
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i) j(p" 7" = <(% + %)(j—i)((n—d) mod2+1)+i> mod 3.

Proof by induction on n.
a) For n = 0, the statement is trivial.
b) Proposition 0b yields: For pe {1, ..,2" — 1}:
d:=dp-"""Y) = d(p"*"") = min{ce {1, .., n}; 2° } pn}
= min{ce{l,.,n + 1};2° ) u},

L(phltt ) = i (phhn = <<% — %) ((iof)—1i) ((n—d) mod 2+1)+i) mod 3
= <<% — %) (i—j) ((n—a) mod2+1)+i> mod 3

— <<% — %) G—i) (n+1)—d) mod 2+1)+i> mod 3,

Lisn*1) = . (analogously);

Jup
forp =2"d =n+ Li(p"7""h) = i,j0"""" ") = j;
forpe {2" + 1,..,2""1 — 1}:

d =d, 5(p*7") =min{ce{l,.,n};2°yp— 2"
min {c € {1, ..,n + 1};2° 4 u},

iu(pi,j;nJrl) — i“_zn(pioj,j;n)

= <<u;d2n - %)(j—(ioj)) (n—d) mod 2+1)+(ioj)) mod 3
— ((2&5 — é—) ((iof)—1) (n—4a) mod2+1)+i) mod 3
- <<% - %) (—1i) ((n+1)—d) mod 2+1)+i> mod 3

(using Vk € Ny: 3|22 — 1),
juph¥rtY) = ... (analogously). [J

ii) Parallel algorithm. A striking consequence of Proposition 1 is a formula
which completely covers the shortest path.
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PrOPOSITION 2. Let (i,j) € {0, 1,2}%,i # j. Then for any ve{0,..,2"— 1}
and any de {1, .., n}:

1
pd): = pLiind) = ((i—i)((n—d) mod 2+ 1) ent(% + ~2—> +i) mod 3 .

Proof. po(d) = i and, by Proposition 1, for pe {1,..,2" — 1}: |

Pu-1(d) , if d+#4d(p);
(Pu_r(d) + (—i) (n—d)mod2+1))mod3, if d=dyp).

So  pfd) = ((—i)(n—d) mod2+1) | {ne{l, .., v};d = d(p)} | +i) mod 3.
But

1) pd) = {

2) d = dp)=IxeNy:p=2""" +x27,
whence

| {ne{l,..,v};d = d(p)}| = min{heNg;v < 2/71 + 227

\% 1
=ent§E—|——2—. ]

The observations from Proposition 1 contained in (1) and (2) can be
used, in the special case d = 1, to yield the ultimate algorithm.

iii) Humane algorithm. The essence of the algorithm most suitable to a human
being comes from the following statement, which is an immediate consequence
of Proposition 1.

PROPOSITION 3. In the shortest path from i* to j"((i,j) € {0, 1, 2}?, i#j),
disc 1 is moved in the p-th move if and only if p is odd. It then moves
in cyclic order

from i through j to icj, if n isodd;
from i through ioj to j, if n iseven.

Following Proposition 3 for odd moves, even moves are dictated by
rule (0), so that the shortest path can be carried out rather speedy.

It has become obvious that the shortest path between perfect states
can be made very transparent. It is even possible, by an inversion of
Proposition 2, to construct a fast (i.e. O(n)) algorithm which decides if a
given state r € T, appears in the shortest path from i" to jA" and, if 1t does,
gives the number p of moves it took to reach it starting from i". This
allows to continue the solution abandoned at a certain stage by somebody.
Similarly, one can also determine p if one finds a person who has died with
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a disc in his hand carrying through the shortest path. If, however, someone
has committed an error during the effectuation, it is necessary to know how
to solve 1.

1.3. PROBLEMS 1 AND 2

By Theorem 1, the existence of a shortest path from se T, to te T,
1S guaranteed.

Definition 5. Let (s, t) € T 2. Then p(s, t) denotes the length of the shortest
path from s to t; if ¢t = j” it will be written p(s; j).
In this section for any pair (s,t) of regular states p(s,t) will be

determined and the shortest path(s) constructed. Finally, average values of p
will be deduced.

1.3.0. CONSTRUCTION OF THE SHORTEST PATHS BETWEEN REGULAR STATES

Although PBs 1 and 2 have been considered in literature (see Introduction),
there is no proof of minimality in any of these papers, since everybody
assumed that in a shortest path the largest disc moves only once (if at
all). Example 1 shows the wrongness of this assumption. However, the following
is true.

LemMma 1. Let peP,,(s,t) be shortest. Then disc n + 1 moves
o) not at all if and only if s(n+1) = t(n+1),
i) at most once if s or t is perfect,

i1) at most twice in general.

Remark 3 and Definition 6. For pe P,(s,t) define — pe TH*1 by
VWel0, .., by} — Py = Py -

It is easy to see that — pe P,(t,s) and therefore it is clear that — p
is shortest iff p has this property. In view of this, part i of Lemma 1 will
be proved for perfect ¢ only.

Proof of Lemma 1. First observe that disc n + 1, once moved away
from peg ke {0, 1,2} during a shortest path p, will never come back to
that peg, for suppose

', well, ., Mp} , W< pid(p) = dy.(p) =n+1, i (p) = ju(p) = k




THE TOWER OF HANOI 301

and define a new path p by deleting all the moves p from p with
w<pu<yp, dfp) =n+ 1, then peP,. (s t) (the position of disc n + 1
does not limit the moves of the other discs!) and is shorter than p. This
already proves o (the other part of o is trivial) and 11.

Now assume, for the proof of i, that disc n + 1 moves twice in
a shortest path p, in moves p’ and p’(1<p <p”<p,) say. Then necessarily -
12 :t(/n+\1)\",__ Dy :m and, as t is supposed to be perfect,
_ T . . . " n
Py, = t(n+1)", But this implies, by Theorem 2, p, — p” >2"—1 and
W —1—pw >2"— 1, such that p, > 2"** — 1 4+ p' > 2""', contradicting
Theorem 1. [

With Lemma 1 on hand, it is now easy to construct shortest paths
between regular states. Although the solution of 32 contains of course the
solution of ‘1, it is convenient to state and prove the cases separately.
The following definition will be useful.

Definition 7. For re T, and je {0, 1,2} let r:{0,..,n} - {0, 1,2} be
defined by

3) {’”j(n) =17,
VO<d<n:rd) = rd+1)ord+1).

Note that 3) = Y0 < d < n:rid) = (1" {j+ Y (=1)""rc)}) mod 3.

c=d+1

THEOREM 3. Let re T, and je{0,1,2}. Then

wrsj) =, 2%,
de{l, ..., n}
r(d) #ri(d)
the shortest path from r to j is unique and can be constructed in the
following way :

Beginning with r, do: (for d =1 to n:(if r(d) # r(d): (move disc d
from r(d) to r(d) and do p’j(d“l)”j(d);d_l))).

Definition 8. The shortest path from r to /" will be denoted by p"i.
Proof of Theorem 3 by induction on n.
a) For n = 0 the statement is trivial.

b) If r(n+1) = j, then by Lemma lo disc n + 1 is not moved at all,
and the shortest path from r to j"*! is given by
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¥ e {0, ., W(rs )} pt = pUl, pl i+ 1) = j;
the statements of the theorem follow easily using (3).

If (n4+1) # j, let k: = jor(n+1); then by Lemma lo and i, disc n + 1
1s moved exactly once and so the shortest path from r to j"*! is given by

Vv e {0, ., w(r; k)i plid = plk prii(n+1) = rn+1),

VVE {l«l(”—a k) + 17 seey “‘(’:a k) + 2n}:pc;j = pl\c/,—jij.??;k)—lap:/;j(n—i_l) = j:

from which again the statements of the theorem follow using (3). [

As an example, p(r;0) = 164 for the r of Figure 1.

For presenting the solution of B2 it is, of course, no loss of generality
to disregard the case of an empty TH and, in view of Lemma 1lo, to
assume that the largest disc is on different pegs in s and t. The following
definition is needed.

Definition 9. Let(s,t)e T?,,,s(n+1) # t(n+1). Then

Hi(s, 0) : = 1 + p(s; s(n+ L)et(n+1)) + p(e; s(n+ L)et(n+1))
Ha(s, )i = 2" + 1 + p(s;en+1)) + pt;stn+1)).

TueoreM 4. Let (s, t)e T2, ,sn+1) # t(n+1).  Then  pu(s, 1)
= min {p4(s, 1), uy(s, t)}. There are exactly two shortest paths from s to t
if (s, 1) = pos, t), otherwise the shortest path is unique. The shortest path('s)

can be constructed thus:

s;s(n+ 1)ot(n+ 1)
’

if w= W, Beginning with s, do p move disc n + 1

1:s(n+ Lot(n+1) .

from s(n+1) to tn+1), do —p ;

if W= W, Beginning with s, do p'"""Y  move disc n+ 1 from
sm+1) to sn+1)ot(n+1), do p@tVstFint move disc n+ 1 from
s(n+1)otin+1) to tin+1), do —p

£is(n+1)

Proof. It follows immediately from Lemma 1ii and Theorem 3 that the
paths described in the statement of Theorem 4 are the only candidates
for a shortest path from s to t. So one just has to choose the shorter
of the two or both if their length is equal.  []

Remark 4. It is easy to see that, using Theorems 4 and 3, it is
possible to reduce P2 to the solution of B0, so that any of the algorithms
in 1.2.1 can be employed to construct an algorithm for the solution of 2.
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Although for any (s, t)e T? the length u(s,t) of the shortest path(s)
from s to t can easily be calculated now, it is nevertheless interesting to
know the average length of shortest paths explicitely. This will be examined
in the following two subsections.

1.3.1.  DISCUSSION OF THE MINIMAL LENGTH [i(r ;)

A short glance at the graph of the TH (Figure 2) suggests the following
results.

2
PROPOSITION 4. Let je{0,1,2}. Then v,:= Y u(r;j) = 3"-;(2”—1).

reTh

COROLLARY 1. The average length of shortest paths from regular to
perfect states is 2/3 of the maximal length.

The corollary follows immediately from Proposition 4, together with
Theorems 0 and 2.

Proof of Proposition 4. vy, = 0 and Theorem 3 yields

VneNg: v, = TZ wrsj) + TZ wr;Jj)
1= rint 1) £

=y, + 2" 3"<3 +2"> = 3y, + 2-6".

n—1 2
Thusy, =2 ) 3% 17% = 3 (6"—3"), where use has been made of
k=0

(4) Va e RY(a,), (o) € RN: (0 =0 A VneNy: o, ; =aa, +a,)

n—1
< (VneNgy: o, = Z aKan—l—K))
k=0

and
5 n—1 - a" — bn
(5) Via,b)e R%, a # bVneNy: Y ba" 17 = . n
k=0 a—b>b
The following is an interesting observation.
PROPOSITION 5. Let pne{0,.,2" —1}. Then | {reT;wr;j) = pn}|

= 2P where B(w) is the number of non-zero binary digits of L.
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Remark 5. This is the population number of the p-th level in the shortest
path tree for jA", constructed for example for j = 0 (and n = 3) from Figure 2
by deleting all horizontal edges.

Proposition 5 is an easy consequence of the formula for p(r ; j) in Theorem 3
in view of (3). It can also serve as the base of an alternative proof of
Proposition 4; this idea will be useful in the following subsection.

1.3.2. DISCUSSION OF THE MINIMAL LENGTH (s, t)

The function p(s, t) is much more puzzling than p(r;j) because of the
decision between p,; and p, in Theorem 4. Although there seems to be no
handy method, other than sheer computation, to find out, for given

(s,t)e T?Z,,, which of the two is smaller, one can determine the number
of events for each case.

PROPOSITION 6.
i 6
) [{(s,) e Tiii;snt+1) # tn+1), pui(s, 8) = po(s, ) | = —— (@1 —0O),

i) [{(s,t) e T7ry;s(n+1) # t(n+1), py(s, t) > pols, )} |

3 3 3
i) | {(s,0)e TZ2yq;s(n+1) # tn+1), py(s, £) < py(s, 6} |
3

39 3
= —9" 4+ 2" — —— (O —0");

'}i— _®rf-) »

1
here ©, : = E(Si\/”)'

Remark 6. This is the first time, an irrational number enters, though
implicitely, into considerations about the TH! By the way, \/17 is one of the
“oldest” irrationals, a proof for its incommensurability with unity being known
in — 398 to Theodorus of Cyrene (cp. [47, p. 141 ff]).

COROLLARY 2. Asymptotically (for large n), the largest disc moves

0) not at all in 3

, " .13
i) exactly once in 1
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- £y twi . -
11) exactiy iwice n 21

of all shortest paths between regular states.

This is an immediate consequence of Proposition 6 and the construction
of the shortest path in Theorem 4.
The following functions will be useful in the proof of Proposition 6.

Definition 10. Let YueZ:z(u) = [{re T,; wr;i) — w(r;j) = p}|; here
(i,j) is any pair of distinct elements of {0, 1, 2}, and it is clear by symmetry
that the definition does not depend on the specific pair employed.

The following lemma is a summary of properties of these functions.

LEMMA 2. 0) z5(0) = 1, Vpe Z\{0}: zo(w) = O,
Vne NO V]J. eZ:. Zn+1(u) = Zn(u"_zn) + Zn(p') + Zn(u_*_zn) >

1) VH eZ: Zn(_u) =z (“')7 Zn(O) = 19 Zn(l) =n Zn(2n_1) = 1;
(vl =2"=z,) =

. 1
10zaW=4ﬂzmm=EW—mzumm:§W—m

neZ pneN neN

i) let x,:= Y 20) 22"~y = 3 z2(), then

peN pneN

= @ ‘W”"“l(( w/)@“(l ¢17>®" "‘)

Proof. o) The statements about z, are trivial. The recursion relation is
obtained from the fact
Wi — prsiof) — 2% if r(n+1) = i,
Rrsd) — plrs)) =< wrsio) — @) + 2% if rn41) = j,
wrsj) — wrs i), if  rn+1) =ioj,
which in turn follows from the construction in the proof of Theorem 3.
i) is proved by induction on n using o.
i) is proved by induction on n using o and i.

i) Byoandi:xy, = 0,y, = 0,y, = 1 and
VnElvO:xn+1 = 2xn + 2yn + 17yn+1 - 2-)Cn + 3yn + 1)

such that Xnt1 = Vn+1 = Vu and Ynva = 5yn+1 - 2yn + 1.
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: 1 :
Defining n, : = y, + X the following recurrent sequence has to be calculated :
1 3
(6) { nO - 2> nl - 2 >
Vne NO: Mn+2 = 5nn-+-l - 2nn .

The ansatz mn, = ®" with a ® e R leads to the solutions 1, = ®"% of the

1 1 1
recurrence relation, such thatn, = — (|1 + —— | O, 1l ——F=)0O~ ).
! 4(< +J17> ' +< %17> )

The formulas for x, and y, are obtained from this by simple calculations.  []
Proof of Proposition 6. 1) Let (s,t)e T2, s(n+1) # t(n+1), and define
pe= p(s;s(n+1ot(n+1)) — p(s; t(n+1)),
i:= p(t; s+ Dotn+1)) — p(t;s(n+1)).
Then (s, t) — py(s,t) = p + o — 2" and

pis, 8) = pols, )= ppe{l,.,2" — 1}, p = 2" — p.
Thus, in view of the six different choices for (s(n+ 1), t(n+ 1)),
(500 € Ty s+ 1) # tnt 1), pa(s, 1) = pas, 0} | = 6,
and Lemma 2 completes the proof of i

~

ii) By a similar argument and with v = 2" — p:

l {(Sa t) € Tr%-i—l 5 S(n+ 1) # t(n+ 1): H1(5> t) > !~L2(S> t)} I = 6‘/Vn >
p—1
where w, : = Z Y. z,(W)z,(2"—v). It is easy to see, using Lemma 2, that
peN v=1

1
wo =0 and neNg:w,; = 2w, — y, + —2—(32"—1), which yields, by (4)
and (5), the desired result.
ii1) follows from
32040 = | {(s,t)e T}y15s(n+1) = tln+1)} |

+ [ {0 e Tayss(n+1) # tn+1), s, £) < pofs, 0)} |

+ [ {(s ) € TRiysstn+1) # tln+1), pyls, 1) > pals, 1)} |

+ {0 e Thryssm+1) # th+1), py(s, ) = po(s, O} [ O

By the same methods, the total and average number of moves in shortest
paths between all regular states can be determined now.
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ProprosITION 7.

466 1 3 12
_ n_ _ 2 3n 17
" ()ZTZ”(S’” 50 30 5 +<59 1003¢)
s, t)ely

12
i | n
(59 1003*/7>®

COROLLARY 3. Asymptotically (for large n) the average length of shortest
46
paths between regular states is 385 of the maximal length.

Again, this is an immediate consequence of Proposition 7 by Theorems 0
and 2.

Proof of Proposition 7. Clearly, 8, = 0; let n e N; then

8n+1 = Z “(Sa t) + Z “(Sa t)
(s,t)eT,%+1 (s,t)eT,%.,.l
(7) s(n+1)=t(n+1) s(n+ 1)#Ftn+1)
= 3811 + Z “1(89 t) - Z (”1(53 t)_H'Z(Sa t)) @
(s,t)eT,%+1 (S,I)GT3+1
s(n+1)#Ftn+1) s(n+1)#Ft(n+1)

pi(s,t)>pa(s, 1)

Let (i, j) € {0, 1,2}2,i # j. Then

® Y meo=6 ¥ u1<s,r>:6-32"(y+1+yz)

2
(s,)eTp+1 (s, t)eTr%‘F 1 ¥ .
s(n+1)Ft(n+1) s(n+1)=i
tin+1)=j

— 2 . 32n(2n+2__1) )

Using the same arguments as in the proof of Proposition 6, one gets

Z (ul(sa t) _ HZ(Sﬂ t)) = 6un 5 Where
(s, t)eT,%+ 1

s(n+1)#Ft(n+1)
Hi(s, ) > pa(s, 1)

U= Y Y (—V)Wn2 =)

peN v=1

To calculate u,, the following must be defined :

b= Y Y -z .

peN v=1
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Then the recursion relation holds:
Ug = vy = 0,

1
) Vne Ny u,.; = 2u, + 2v, + 5(3"—1—1) (6"—1),

1 1
Vg1 = 2u, + 3v, + 5(6"—1) + 56”(3"—1);

this is proved with the aid of Lemma 2 and the facts

2n—1 p—-1
VneNe: Y Y (Vg2 —wz2"—v) = v,
pu=1 v=1
27—1 p—1 1
2 2 =)z (2" =Wz, (v) = u, + 2"72(3"—1)* — 5(3"—1) (6"—1),
p=1 v=1

which in turn follow from Lemma 2.
The solution of (9) is (analogously to (4))

un nl an—l—K 2 2
= A~ h A =
<Un> KZO (bn—l—x>’ T <2 3>’
1
VheNg: @ = < (3+1)(6~1),

1 1
b, = - (6"—1) + = 6"3*—1).
p =561 + 563 -1

. L. 1
Defining Vk e Ny:n, : = E(A )11+ —

1 (A¥); o, it turns out that (4**1), ,

= 2(Mys1— M) and that (1), fulfils (6). Thus (49, , = —— (O% —©*)

17
1

1 1
and (4%), ; = 5((1 — W) OF + (1 + \/—17—> @'i). A carefu% computa-
tion, with the aid of (5), yields

1 1 31 131
No: ity = — 18" — 17)@n — (= — 17)@" .
neNot, = 5518 (118+2006\/ ) : <118 2006 V 7>®

Inserting this and (8) into (7) leads to

466 3 93
: o — 18" = 29" e e n
VneNg:§,., = 35, + e 9 +<59+ 1003\/17>®+

3 93

- = J11)e~
+(59 1003 v >® ’

and again with (4) and (5) the formula for o, is established. []
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