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If we combine theorem (3.2) and the biduality theorem (2.1) we obtain
what is usually known as the

(3.6) DE RHAM THEOREM. Integration over smooth singular simplexes induces
an isomorphism

H'(X,C) > H,_(X,C)

from de Rham cohomology to smooth singular cohomology.

4. RELATIVE DE RHAM HOMOLOGY

Let us start by some general remarks on the support of a compact
p-chain T on a smooth n-dimensional manifold X. Since we can realize T
as a section in the sheaf QF" the general sheaf theoretic notion of support
applies: The support of T, Supp(T) is the smallest closed subset Z of X,
such that the restriction of T to X — Z is zero.

(4.1) ExampLE. Integration over an oriented compact p-dimensional sub-
manifold K with boundary defines a compact p-chain x with Supp (x) = K.
From Stokes formula

Jdmzj o, oel(X,Qr),
K 0K

we conclude that Supp (bx) = 0K.

Let us now consider the inclusion j: U — X of an open subset U of X.
The induced map

Jx: DYU,C) > Di(X,C), peN,

Is injective since we may interpret j, as “extension by zero” in the sheaf
Q ), compare (2.5). A compact p-chain T on X belongs to the image of T
if and only if Supp(T) = U. The complex DX, U; C) of relative compact
chains is defined to fit into the following exact sequence

4.2) 0 - DU, C) 3 DYX, C) » DX, U;C) > 0.
On this basis we can define the relative de Rham homology group

H,(X,U;C) = HDYX,U;C), peN.
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In more concrete terms we can describe this homology group as
43) {ZeDyX,C)|Supp(bZ) = U} / {bW|WeDs, (X, C)}
+ {ZeD,(X,C)|Supp(Z) = U}
From the exact sequence (4.2) we deduce the homology sequence
(4.4) - H(U,C)-» Hy(X,C) - H(X,U;C)
- H,_(U,C) - H,_,(X,C) -

Let f: X - Y denote a smooth map, U an open subset of X and V
an open subset of Y containing f(U). Let us notice that

(4.3) Supp (f,T) = f(Supp(T)), TeDyX,C).

These remarks make it evident, that de Rham homology is a covariant
functor on the category of pairs consisting of a manifold and one of its
open subspaces.

(4.6) Excision. Let Z be a closed subset of X and Y an open subset
of X containing Z. The inclusion of V = Y — Zin U = X — Z induces an
isomorphism

HYY,V;C) > HYX, U;C).

Proof. Let i:Z — X denote the inclusion. From the fact that Q-V
consists of soft sheaves we deduce an exact sequence

0-T.(U,QV)->T.(X,Q)>T.(Z,i*Q"Y) >0
compare [5] III. 7.6. This alows us to make the identification
4.7 DYX,U;C)>T.(Z,i*Q2"Y), Z=X-U.

The expression on the right hand side is unchanged, when X is replaced
by Y and U by V. Q.ED.

(4.8) Continuity. Let (X,) be an outward directed open covering of the
manifold X. For any open subset U of X we have that

lim HY(X,, UnX,;C) = HX, U;C)

—a

Proof. As a consequence of the theorem of Borel-Heine, see possibly
[5] III. 5.2, we find that

lim DX, C) = DX, C)
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and similarly with X replaced by U and X, replaced by U n X,. Using
this and the exact sequence 4.2 we get that

lim DX,, UnX,;C) = DIX, U; ()

from which the result follows by passing to homology. Q.E.D.

Let us also notice that in case X is the disjoint union of a family
(X,) of open subsets we have that

(4.9) & HY(X,, UnX,;C) > HY(X, U; C).

5. STOKES FORMULA

Let us consider the open subset U of the n-dimensional smooth manifold X
and the resulting exact sequences

~ Hy(X, ) » H5(X, U;©) 5 H,_ (U, €) 3 H_y(X, ©) -
(5.1) , j*
— H?(X,C) « H?(X,U;C) < H? " Y(U,C) «~ H? (X, C) «

where the first is discussed in the previous section and the second is the
sheaf cohomology sequence. The relative term in the second sequence is often
written

(5.2) HYX,C) = H*(X,U;C), Z=X—-U.
We can now extend the biduality theorem (2.1).
(5.3) THEOREM. The cohomology sequence above is dual to the homology
sequence. In particular we have a Stoke’s formula
<ba,®> = <o, 00>
for ae HY(X,U;C) and ®e H?"Y(U,C).

Proof. The first sequence arises from the following short exact sequence
of complexes, compare (4.2) and (4.7),

0T (U, Q)3 (X, Q) L(Z 0 ¥)—0.

In order to calculate the second sequence we depart from the flabby
resolution Q" of R established in the proof of the biduality theorem (2.1).
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