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THE TOWER OF HANOI

by Andreas M. HINZ

0. INTRODUCTION

About 100 years ago, the famous Tower of Hanoi made its first
appearance in mathematical literature. The account of Allardice and Fraser [2]
contains a literal repetition (in French) of an article by de Parville from
the Journal des Débats for December 27th, 1883 (cp. [36]). In this earliest
printed mention of the puzzle one can find the beautiful story of its
legendary origin, involving brahmins moving 64 golden discs between
diamond needles, and which has caused its popularity (for an early English
version see Ball [3, p. 78 f]).

In a more prosaic diction, the Tower of Hanoi (TH) consists of three
vertical pegs, fixed at the bottom, and a certain number n of circular discs
of mutually different diameter, each disc being pierced in its center to allow
it to be stacked on one of the pegs. Any distribution of the n discs
among the three pegs 1s called a state. A state is called regular, if no disc
lies on a smaller one and it is called perfect, if it is regular and all discs
are stacked on the same peg. Figure 1 shows examples (n=28).

l'j L i J L . |
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state © regular state r perfect state 0
FIGURE 1.

A (legal) move is the transfer of exactly one disc from a peg to a different
one, which apart from the mechanical restrictions (ie. only the topmost
disc on a peg can be moved, and it can only be stacked on an empty
peg or onto the topmost disc of a peg) obeys the rule

(0) No disc must ever be placed on a smaller one.
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Given two states o (initial state) and t (final state), any finite sequence
of moves which starts with ¢ and ends in t© will be called a path from o
to t; the number of moves is the length of the path. The problem posed
in the legend is to find, for n = 64, a shortest path from a perfect state
to a different perfect state.

Actually, the puzzle had been turned out (with n = 8) in 1883 in Paris
by a certain “N. Claus (de Siam)”, anagram for “Lucas d’Amiens”, as found
out by de Parville. (At that time, France began her military involvement
in Tonkin and Annam, so that names like “Hanoi” were in the headlines;
this explains the name of the puzzle) Edouard Lucas (1842-91) was a
distinguished mathematician of his time (for his work see Harkin [24]),
whose main achievements lie in number theory, but whose fame is based on
this puzzle (see e.g. Gridgeman [21, p. 531 f]).

There is a parallel to Sir William Rowan Hamilton (1805-65) about whom
it 1s told (see Graves [23, p. 55]) that the only money he ever earned
with a piece of mathematics were 25 pounds he got for the copyright of
the Icosian Game, the object of which was essentially to find what is
nowadays called a Hamiltonian circuit on a dodecahedral graph. And in fact,
it was pointed out by Crowe [10] that solving the problem of the TH yields
a Hamiltonian circuit on an n-cube. This and the relation to the Chinese
Ring puzzle is discussed in Afriat [1]. The link between the three puzzles
is what Afriat calls, historically correct, the Gros code and what is now
known as a Gray code of binary numbers.

The connection between the TH and binary numbers was of course
familiar to Lucas. The cover plate (see [9, p. 128]) of the box in which
his puzzle was sold, shows the name, written with bamboo leaves on a
sheet of paper carried by a flying crane, of the legendary Chinese emperor
Fo Hi (Fu Xi, —3rd millennium), to whom he attributes the invention of
that number system (see [31, p. XVIII]; cp. [30, p. 149 ff]). With some
more imagination one can even detect the last name of Pierre de Fermat
(1601-65), written in the same manner starting on the disc of the rising
sun. Lucas claims, on the printed leaflet [8] accompanying the puzzle,
that it was found among the unedited writings of “l'illustre Mandarin
FER-FER-TAM-TAM?”. In fact, Lucas had probably been sent to Rome in
1881, to prepare a couple of manuscripts for publication in Fermat’s
“CEuvres” (see Tannery [46, p. 9]), but the only connection of the TH
to Fermat’s papers may be the famous letter to Frenicle ([19, p. 205 f]),
in which Fermat erroneously claims that 2°¢ + 1, which he writes down in
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decimal representation, is prime. Lucas points out on the leaflet [8] that
264 _ 1 is the length of the shortest path in the TH for n = 64 and
that it would take more than five thousand million centuries to carry it
out, moving one disc per second !

So it is very likely that Lucas himself is the inventor of the TH
(cp. also [33, p. 55ff]), and he might have been led to it in search for a
generalization of the Chinese Ring puzzle to different number systems,
for in [9] he mentions the possibility to represent these systems by modifi-
cation of the TH and transformation of the rules. In fact, as can be seen
using similar methods as in what will follow here, asking for a Hamiltonian
path from one perfect state to another amounts in representing the number
system of base 3 and, more generally, asking the same question in a puzzle
with 3 + m pegs will lead to a representation of the system of base
3 + m(meN).

The problem of finding a shortest path from a perfect state to another
in a version of the TH with more than three pegs has been posed by
Dudeney [15]. (L.ucas published a five-peg version in a collection of puzzles
in 1889, but the rules seem to be different (cp. [32]).) All the “solutions”
which have appeared since Dudeney’s challenge (see e.g. Stewart [45],
Frame [20], Roth [41], Brousseau [6], Bendisch [4], Rohl and Gedeon [40])
are incomplete in that they construct short paths without proving them to be
shortest (cp. Editorial Note following [45]). Only Cull and Ecklund [11],
Wood [49], and Lunnon [34] point out that the problem is still open!
This question partly motivated the present investigation.

Apart from that very interesting problem, the TH has experienced in
recent years an astonishing revival. It appears in many textbooks on recursion
(for which the classical TH is a very bad example!) in computer science
(e.g. [39]), on algorithms (e.g. [37]), on discrete mathematics (e.g. [27];
[22] even starts with the TH on page 1!), on artificial intelligence (e.g. [7)),
and on combinatorics (e.g. [5]). It is used in the discussion of complexity
of algorithms (see Cull and Ecklund [12]) and even for psychological tests
(see Simon [44], Matthes [35]). There are also many variants of it, but
which change the rules and will therefore not be considered here.

Instead, the present investigation has been motivated by a second problem
to be found on Lucas’s leaflet [8], namely starting from any (possibly
irregular) state to find a shortest path to a given perfect state. To solve this,
five problems, depending on the type of regularity of the initial and final
states, will be considered in detail : Find a shortest path for
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1nitial final
Problem state state
BO perfect perfect
pal regular perfect
B2 regular regular
B3 irregular perfect
B4 irregular regular

PO, which is the original problem, was solved essentially in the first year
after its coming out (see Allardice and Fraser [2], de Longchamps [29],
Schoute [43]) by constructing a recursive solution and analysing it, but
surprisingly, a complete proof of minimality has not been given until 1981
(Wood [49])! B1 has been considered in recent years in the computer
science literature (see Walsh [48], Er [16, 18], Scarioni and Speranza [42],
Pettorossi [38]), and an average minimal number of moves was given
(Er [17]). Examples of B2 appear as problems in Domoryad [14, p. 75 1],
and there 1s a remark on it in Er [17]. Wood [50] gives rules for a two-
person game based on P2, but his theory of it is false. B3, which is Lucas’s
second problem, has been investigated by Lavallée [28], but there is no
proof of minimality.

In Chapter 1, only regular states will be considered. Starting with an
appropriate mathematical model (1.0), Section 1.1 will establish the existence
of a solution to B2 and will give a sharp estimate for the minimal length.
In 1.2, PO will be completely unfolded by proving uniqueness of the minimal
solution (1.2.0) and constructing this solution explicitely (1.2.1). Although
these results can be found, more or less accurately, in many places,
they will be given here to make clear the notions and to prepare Section 1.3,
where Bs 1 and 2 will be solved. The main results are given in 1.3.0,
where all minimal solutions are constructed and minimal lengths given.
In 1.3.1 and 1.3.2 the average minimal numbers for L1 and B2, respectively,
will be determined. Chapter 2 will be concerned with irregular states,
ie. Ps 3 and 4. After adjusting the mathematical model in 2.0, the existence
of a solution for ‘B4 can be established, and a sharp estimate for the
minimal length will be given (2.1). Some tools for a recursive construction
of solutions are provided in 2.2. For 3 one can also prove uniqueness
of the minimal solution (2.3). Finally, Chapter 3 states some remarks on
open problems, in particular the TH with more than three pegs.
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1. REGULAR STATES

This chapter will develop an essentially complete theory of finding
minimal paths between regular states of the TH. It starts with an appropriate

formal setting.

1.0. MATHEMATICAL MODEL

The pegs will be denoted by an ie {0, 1,2}, the discs by de {1, .., n}
in natural order of increasing diameter; n € N, throughout, if not otherwise
stated.

Definition 0. T, : = {r:{1,..,n} - {0, 1,2}}. Anr € T, will also be written

as [r(1), ..., r(n)].
It is evident that any regular state of the TH is completely described
by one and only one re T, and that any r € T, can be interpreted as one

and only one regular state of the TH. So it follows immediately by induction:

THEOREM 0. The number of regular states of the TH with ne N,
discs is 3"

Definition 1. i) A pair (ro,r;)e T2 is a (legal) move (of disc d from
peg i to peg j), iff

36,/)e{0, L,2}%i #ji(ro '{i) # @ A (ra*{Jj}) = O v d: = minry '({i})
<minre ({j}) A (ri(d) =j A Yee {1, ., n\{d}: ry(c) = 1o(c))).

ii) For any pair (s, t) e T 2 let

[e 0}

P,(s,t):={pe | Ty 'spo = s,p,, =t nVpe{l,.,p,:

v=0
(Pu-1,p,) 1s a move}
where p, : = ind (p).
A pe Pys, 1) is called a path from s to ¢; p, is the length of p.
With this adequate formal model, it is now possible to treat Ps0 to 2,

namely to find shortest paths between regular states. The following notions
will frequently be used:

Definition 2. i) Forany re T,,.,:7: = r|{l, .., n} (€T,).
i) For (i, j) € {0, 1, 2)2:
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. i, if i=j;
lojJ .=

J kelo, 1,20\, i}, if i#j.
(Note that i oj = (—(i+j)) mod 3.)

iii) Forie {0, 1,2}: i": = [i,..i]eT,. (These are the perfect states.)
As pointed out by Er [17], it is often convenient to regard the TH
as a graph, the vertices of which being the regular states and in which the

edges are formed by the legal moves. It will turn out that this graph is
planar, simple, and connected. An example (n=3) is given in Figure 2:

(0,0,0]

(2,0,01]

[2,1,0]

[2,2,0] (1,1,0]

[0,2,01 [0,1,0]

[01111] [1r0r1] [21012] ‘ [01212]

{1+,7,171 I[12,1,71 [2,0,11 [0,0,1] [0O,0,2] ([1,0,2] [1,2,2] 1[2,2,2]

FIGURE 2.

1.1. EXISTENCE OF A SHORTEST PATH BETWEEN TWO REGULAR STATES AND
AN UPPER BOUND FOR ITS LENGTH

To establish the sheer existence of a shortest path from s to ¢ it
suffices to show that P,(s, t) # Q.
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THEOREM 1. For any pair (s,t) of regular states there is a ('shortest)
path from s to t with length less than or equal to 2" — 1, where n
is the number of discs involved.

Proof by induction. a) The case n = 0 is trivial.

b) Let (s, t)e T2, .

If s(n+1) =tn+1), let pe P,(s,t) with py < 2" — 1, and define
peThht by p, = pp(<2""*—1) and Vve{0,.,p}:p, = p,, pnt+l)
= s(n+1). It is easy to see that p e P, (s, t). R o

If s(n+1) # tn+1), let i: = sn+1)otin+1),peP,s, i) and ge P,(i, 1)
with ), 1; < 2" — 1. Define pe TE5 by p, = pp + pz + 1(<2""'—1)and

Vv e {0,..,pns}:p, = p,,p(n+1) = s(n+1),
Vel + Lo b 1Dy = dyopy—1, pv(n+1) = tn+1).
Then pe P,, (s, t). [

Remark 1. The proof of Theorem 1 1s constructive in that it allows to
determine a path from s to ¢ recursively.

In all papers mentioned in the introduction and dealing with s 0 to 2,
except those by Er [17] and Wood [49], it has been assumed that the
shortest path is uniquely defined by this construction. But neither is the
shortest path unique in general, nor does the construction always produce a
shortest path, even if one chooses p and ¢ minimal!

Example 1. a) Letn = 2, s = [0,1], t = [1, 0],
b) Letn = 3, s = [0,0,1], t = [1, 1, 0].

Then a look at the graph in Figure 2 immediately shows that ([0, 1], [2, 1],
[2, 0], [1,0]) and ([0, 1], [0, 2], [1, 2], [1, 0]) are both shortest paths for a),
and for b) the construction of Theorem 1 leads to the path ([0,0, 1],
[1,0, 11, [1,2,1], [2,2,1], [2,2,0], [0,2,0], [0, 1,0], [1,1,0]) of length 7,
while ([0, 0, 1], [0,0, 2], [2,0,2], [2,1,2], [1,1,2], [1,1,0]) of length 5 is
shortest.

Er [17] refers to symmetry properties of the graph to establish uniqueness
for Ps0 and 1. In [49], Wood felt the obligation to prove that the path
of Theorem 1 is shortest for s = i, t = jA(see Section 1.2 below), but in [50],
he made the mistake to assume its minimality in the case of general s and ¢,

an error repeated by Cull and Gerety [13] (obviously, TH is really hard!).
This problem will be treated correctly in Section 1.3.
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1.2.  PERFECT STATES

This section will leave no secret about the classical PO. The essential
step 1s to establish uniqueness of the shortest path between perfect states.

1.2.0. UNIQUENESS AND LENGTH OF THE CLASSICAL SOLUTION

THEOREM 2. For any two distinct pegs i and j, there is exactly
to j"; itslengthis 2" — 1.

n

one shortest path from i

Proof. 1t will be shown by induction that

~

V(i,j)e {0,1,2}%, i ;éjﬂlpePn(iA,]): p, = 2" — 1 is minimal .

a) The case n = 0 1s trivial.

b) Let peP,,H(iA,jA) be shortest. As i # j, disc n + 1 must be moved at
least once. Before the first move of disc n + 1, from i to k # i say,
discs 1 to n have to be brought from i to iok by the rules of a legal

move of n 4+ 1; this is equivalent to a path from i toﬁk\", which takes
at least 2" — 1 moves of discs 1 to n.

After the last move of n + 1, from [ # j to j say, discs 1 to »n must
be brought from [-j to j, which again takes at least 2" — 1 moves. So
W, > o+l g

As p, <2""' — 1 by Theorem 1, it follows that disc n + 1 moves
exactly once, i.e. k = [ = ioj, which implies uniqueness of p too. []

Definition 3. The shortest path from i" to jA" will be denoted by
pi,j;n'

Remark 2. Theorem 2 shows that the bound on the length of a shortest
path in Theorem 1 is sharp.

1.2.1. CONSTRUCTION OF THE SHORTEST PATH BETWEEN TWO PERFECT STATES

A large part of the interest the TH has raised in recent years, stems
from the discussion, mostly among computer scientists, which algorithm for
the realization of the shortest path between perfect states is the “best”.
The right question is, of course: “best for what?”. Four constructions will be
given here, each of which suitable for a different situation. The recursive
solution in o, already to be found in [8], is the backbone of the theory
and fits best into textbooks on recursion. The iterative solution in i
(cp. [28]), or some derived version of it, can best be used to make a
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computer do the TH. It also immediately leads to a description of the
shortest path in just one formula; this algorithm ii (cp. Hering [25])
can make a parallel computer write down the solution more or less “at once”.
As man’s mental quickness is much more limited, these algorithms are not
suited to him. But there is another iterative variant iii, developped essentially
in [43], allowing a human being to carry out the shortest path at a rate
of about one move per second, a speed consistent with the traditional
assumption of many authors.

o) Recursive algorithm. An immediate consequence of the proof of Theorem 2
1S

ProPOSITION 0. Let (i,j) € {0, 1,2}% i # j. Then

Q) P = (O)
b) For any n,p

Liintlo g given by

Yve{0,.,2" — 1}:pliintl = phiciin p (n41) = i;
Yve {2 .,2"" — 1} phdintl = pleddin p(n41) = j.

It is clear that this algorithm is of little practical interest (for large n,
a huge amount of memory is needed just to do the first move!), but it
serves as theoretical base for the following algorithms.

i) Iterative algorithm. This algorithm tells for the p-th move of the shortest
path which disc to move and determines its initial and final peg during
that move.

Definition 4. Let pe P,(s, t), p € {1, .., u,}. Then

i,(p) : = peg from which d,(p) is moved in the p-th move of p;
i) ju(p) : = peg to which d,(p) is moved in the p-th move of p.

These notions are well-defined in view of Definition 1.

ProOPOSITION 1. Let (i,j) € {0, 1,2}% i # j. Then for any pe {1,.,2"—1}:
0) d:=d(p"/"") = min{ce{l,.,n};2°fu};

i) i,(ph7") = <<% — %)(j—i)((n—d) mod2+1)—|—i) mod 3;
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i) j(p" 7" = <(% + %)(j—i)((n—d) mod2+1)+i> mod 3.

Proof by induction on n.
a) For n = 0, the statement is trivial.
b) Proposition 0b yields: For pe {1, ..,2" — 1}:
d:=dp-"""Y) = d(p"*"") = min{ce {1, .., n}; 2° } pn}
= min{ce{l,.,n + 1};2° ) u},

L(phltt ) = i (phhn = <<% — %) ((iof)—1i) ((n—d) mod 2+1)+i) mod 3
= <<% — %) (i—j) ((n—a) mod2+1)+i> mod 3

— <<% — %) G—i) (n+1)—d) mod 2+1)+i> mod 3,

Lisn*1) = . (analogously);

Jup
forp =2"d =n+ Li(p"7""h) = i,j0"""" ") = j;
forpe {2" + 1,..,2""1 — 1}:

d =d, 5(p*7") =min{ce{l,.,n};2°yp— 2"
min {c € {1, ..,n + 1};2° 4 u},

iu(pi,j;nJrl) — i“_zn(pioj,j;n)

= <<u;d2n - %)(j—(ioj)) (n—d) mod 2+1)+(ioj)) mod 3
— ((2&5 — é—) ((iof)—1) (n—4a) mod2+1)+i) mod 3
- <<% - %) (—1i) ((n+1)—d) mod 2+1)+i> mod 3

(using Vk € Ny: 3|22 — 1),
juph¥rtY) = ... (analogously). [J

ii) Parallel algorithm. A striking consequence of Proposition 1 is a formula
which completely covers the shortest path.
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PrOPOSITION 2. Let (i,j) € {0, 1,2}%,i # j. Then for any ve{0,..,2"— 1}
and any de {1, .., n}:

1
pd): = pLiind) = ((i—i)((n—d) mod 2+ 1) ent(% + ~2—> +i) mod 3 .

Proof. po(d) = i and, by Proposition 1, for pe {1,..,2" — 1}: |

Pu-1(d) , if d+#4d(p);
(Pu_r(d) + (—i) (n—d)mod2+1))mod3, if d=dyp).

So  pfd) = ((—i)(n—d) mod2+1) | {ne{l, .., v};d = d(p)} | +i) mod 3.
But

1) pd) = {

2) d = dp)=IxeNy:p=2""" +x27,
whence

| {ne{l,..,v};d = d(p)}| = min{heNg;v < 2/71 + 227

\% 1
=ent§E—|——2—. ]

The observations from Proposition 1 contained in (1) and (2) can be
used, in the special case d = 1, to yield the ultimate algorithm.

iii) Humane algorithm. The essence of the algorithm most suitable to a human
being comes from the following statement, which is an immediate consequence
of Proposition 1.

PROPOSITION 3. In the shortest path from i* to j"((i,j) € {0, 1, 2}?, i#j),
disc 1 is moved in the p-th move if and only if p is odd. It then moves
in cyclic order

from i through j to icj, if n isodd;
from i through ioj to j, if n iseven.

Following Proposition 3 for odd moves, even moves are dictated by
rule (0), so that the shortest path can be carried out rather speedy.

It has become obvious that the shortest path between perfect states
can be made very transparent. It is even possible, by an inversion of
Proposition 2, to construct a fast (i.e. O(n)) algorithm which decides if a
given state r € T, appears in the shortest path from i" to jA" and, if 1t does,
gives the number p of moves it took to reach it starting from i". This
allows to continue the solution abandoned at a certain stage by somebody.
Similarly, one can also determine p if one finds a person who has died with
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a disc in his hand carrying through the shortest path. If, however, someone
has committed an error during the effectuation, it is necessary to know how
to solve 1.

1.3. PROBLEMS 1 AND 2

By Theorem 1, the existence of a shortest path from se T, to te T,
1S guaranteed.

Definition 5. Let (s, t) € T 2. Then p(s, t) denotes the length of the shortest
path from s to t; if ¢t = j” it will be written p(s; j).
In this section for any pair (s,t) of regular states p(s,t) will be

determined and the shortest path(s) constructed. Finally, average values of p
will be deduced.

1.3.0. CONSTRUCTION OF THE SHORTEST PATHS BETWEEN REGULAR STATES

Although PBs 1 and 2 have been considered in literature (see Introduction),
there is no proof of minimality in any of these papers, since everybody
assumed that in a shortest path the largest disc moves only once (if at
all). Example 1 shows the wrongness of this assumption. However, the following
is true.

LemMma 1. Let peP,,(s,t) be shortest. Then disc n + 1 moves
o) not at all if and only if s(n+1) = t(n+1),
i) at most once if s or t is perfect,

i1) at most twice in general.

Remark 3 and Definition 6. For pe P,(s,t) define — pe TH*1 by
VWel0, .., by} — Py = Py -

It is easy to see that — pe P,(t,s) and therefore it is clear that — p
is shortest iff p has this property. In view of this, part i of Lemma 1 will
be proved for perfect ¢ only.

Proof of Lemma 1. First observe that disc n + 1, once moved away
from peg ke {0, 1,2} during a shortest path p, will never come back to
that peg, for suppose

', well, ., Mp} , W< pid(p) = dy.(p) =n+1, i (p) = ju(p) = k
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and define a new path p by deleting all the moves p from p with
w<pu<yp, dfp) =n+ 1, then peP,. (s t) (the position of disc n + 1
does not limit the moves of the other discs!) and is shorter than p. This
already proves o (the other part of o is trivial) and 11.

Now assume, for the proof of i, that disc n + 1 moves twice in
a shortest path p, in moves p’ and p’(1<p <p”<p,) say. Then necessarily -
12 :t(/n+\1)\",__ Dy :m and, as t is supposed to be perfect,
_ T . . . " n
Py, = t(n+1)", But this implies, by Theorem 2, p, — p” >2"—1 and
W —1—pw >2"— 1, such that p, > 2"** — 1 4+ p' > 2""', contradicting
Theorem 1. [

With Lemma 1 on hand, it is now easy to construct shortest paths
between regular states. Although the solution of 32 contains of course the
solution of ‘1, it is convenient to state and prove the cases separately.
The following definition will be useful.

Definition 7. For re T, and je {0, 1,2} let r:{0,..,n} - {0, 1,2} be
defined by

3) {’”j(n) =17,
VO<d<n:rd) = rd+1)ord+1).

Note that 3) = Y0 < d < n:rid) = (1" {j+ Y (=1)""rc)}) mod 3.

c=d+1

THEOREM 3. Let re T, and je{0,1,2}. Then

wrsj) =, 2%,
de{l, ..., n}
r(d) #ri(d)
the shortest path from r to j is unique and can be constructed in the
following way :

Beginning with r, do: (for d =1 to n:(if r(d) # r(d): (move disc d
from r(d) to r(d) and do p’j(d“l)”j(d);d_l))).

Definition 8. The shortest path from r to /" will be denoted by p"i.
Proof of Theorem 3 by induction on n.
a) For n = 0 the statement is trivial.

b) If r(n+1) = j, then by Lemma lo disc n + 1 is not moved at all,
and the shortest path from r to j"*! is given by
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¥ e {0, ., W(rs )} pt = pUl, pl i+ 1) = j;
the statements of the theorem follow easily using (3).

If (n4+1) # j, let k: = jor(n+1); then by Lemma lo and i, disc n + 1
1s moved exactly once and so the shortest path from r to j"*! is given by

Vv e {0, ., w(r; k)i plid = plk prii(n+1) = rn+1),

VVE {l«l(”—a k) + 17 seey “‘(’:a k) + 2n}:pc;j = pl\c/,—jij.??;k)—lap:/;j(n—i_l) = j:

from which again the statements of the theorem follow using (3). [

As an example, p(r;0) = 164 for the r of Figure 1.

For presenting the solution of B2 it is, of course, no loss of generality
to disregard the case of an empty TH and, in view of Lemma 1lo, to
assume that the largest disc is on different pegs in s and t. The following
definition is needed.

Definition 9. Let(s,t)e T?,,,s(n+1) # t(n+1). Then

Hi(s, 0) : = 1 + p(s; s(n+ L)et(n+1)) + p(e; s(n+ L)et(n+1))
Ha(s, )i = 2" + 1 + p(s;en+1)) + pt;stn+1)).

TueoreM 4. Let (s, t)e T2, ,sn+1) # t(n+1).  Then  pu(s, 1)
= min {p4(s, 1), uy(s, t)}. There are exactly two shortest paths from s to t
if (s, 1) = pos, t), otherwise the shortest path is unique. The shortest path('s)

can be constructed thus:

s;s(n+ 1)ot(n+ 1)
’

if w= W, Beginning with s, do p move disc n + 1

1:s(n+ Lot(n+1) .

from s(n+1) to tn+1), do —p ;

if W= W, Beginning with s, do p'"""Y  move disc n+ 1 from
sm+1) to sn+1)ot(n+1), do p@tVstFint move disc n+ 1 from
s(n+1)otin+1) to tin+1), do —p

£is(n+1)

Proof. It follows immediately from Lemma 1ii and Theorem 3 that the
paths described in the statement of Theorem 4 are the only candidates
for a shortest path from s to t. So one just has to choose the shorter
of the two or both if their length is equal.  []

Remark 4. It is easy to see that, using Theorems 4 and 3, it is
possible to reduce P2 to the solution of B0, so that any of the algorithms
in 1.2.1 can be employed to construct an algorithm for the solution of 2.
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Although for any (s, t)e T? the length u(s,t) of the shortest path(s)
from s to t can easily be calculated now, it is nevertheless interesting to
know the average length of shortest paths explicitely. This will be examined
in the following two subsections.

1.3.1.  DISCUSSION OF THE MINIMAL LENGTH [i(r ;)

A short glance at the graph of the TH (Figure 2) suggests the following
results.

2
PROPOSITION 4. Let je{0,1,2}. Then v,:= Y u(r;j) = 3"-;(2”—1).

reTh

COROLLARY 1. The average length of shortest paths from regular to
perfect states is 2/3 of the maximal length.

The corollary follows immediately from Proposition 4, together with
Theorems 0 and 2.

Proof of Proposition 4. vy, = 0 and Theorem 3 yields

VneNg: v, = TZ wrsj) + TZ wr;Jj)
1= rint 1) £

=y, + 2" 3"<3 +2"> = 3y, + 2-6".

n—1 2
Thusy, =2 ) 3% 17% = 3 (6"—3"), where use has been made of
k=0

(4) Va e RY(a,), (o) € RN: (0 =0 A VneNy: o, ; =aa, +a,)

n—1
< (VneNgy: o, = Z aKan—l—K))
k=0

and
5 n—1 - a" — bn
(5) Via,b)e R%, a # bVneNy: Y ba" 17 = . n
k=0 a—b>b
The following is an interesting observation.
PROPOSITION 5. Let pne{0,.,2" —1}. Then | {reT;wr;j) = pn}|

= 2P where B(w) is the number of non-zero binary digits of L.
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Remark 5. This is the population number of the p-th level in the shortest
path tree for jA", constructed for example for j = 0 (and n = 3) from Figure 2
by deleting all horizontal edges.

Proposition 5 is an easy consequence of the formula for p(r ; j) in Theorem 3
in view of (3). It can also serve as the base of an alternative proof of
Proposition 4; this idea will be useful in the following subsection.

1.3.2. DISCUSSION OF THE MINIMAL LENGTH (s, t)

The function p(s, t) is much more puzzling than p(r;j) because of the
decision between p,; and p, in Theorem 4. Although there seems to be no
handy method, other than sheer computation, to find out, for given

(s,t)e T?Z,,, which of the two is smaller, one can determine the number
of events for each case.

PROPOSITION 6.
i 6
) [{(s,) e Tiii;snt+1) # tn+1), pui(s, 8) = po(s, ) | = —— (@1 —0O),

i) [{(s,t) e T7ry;s(n+1) # t(n+1), py(s, t) > pols, )} |

3 3 3
i) | {(s,0)e TZ2yq;s(n+1) # tn+1), py(s, £) < py(s, 6} |
3

39 3
= —9" 4+ 2" — —— (O —0");

'}i— _®rf-) »

1
here ©, : = E(Si\/”)'

Remark 6. This is the first time, an irrational number enters, though
implicitely, into considerations about the TH! By the way, \/17 is one of the
“oldest” irrationals, a proof for its incommensurability with unity being known
in — 398 to Theodorus of Cyrene (cp. [47, p. 141 ff]).

COROLLARY 2. Asymptotically (for large n), the largest disc moves

0) not at all in 3

, " .13
i) exactly once in 1
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- £y twi . -
11) exactiy iwice n 21

of all shortest paths between regular states.

This is an immediate consequence of Proposition 6 and the construction
of the shortest path in Theorem 4.
The following functions will be useful in the proof of Proposition 6.

Definition 10. Let YueZ:z(u) = [{re T,; wr;i) — w(r;j) = p}|; here
(i,j) is any pair of distinct elements of {0, 1, 2}, and it is clear by symmetry
that the definition does not depend on the specific pair employed.

The following lemma is a summary of properties of these functions.

LEMMA 2. 0) z5(0) = 1, Vpe Z\{0}: zo(w) = O,
Vne NO V]J. eZ:. Zn+1(u) = Zn(u"_zn) + Zn(p') + Zn(u_*_zn) >

1) VH eZ: Zn(_u) =z (“')7 Zn(O) = 19 Zn(l) =n Zn(2n_1) = 1;
(vl =2"=z,) =

. 1
10zaW=4ﬂzmm=EW—mzumm:§W—m

neZ pneN neN

i) let x,:= Y 20) 22"~y = 3 z2(), then

peN pneN

= @ ‘W”"“l(( w/)@“(l ¢17>®" "‘)

Proof. o) The statements about z, are trivial. The recursion relation is
obtained from the fact
Wi — prsiof) — 2% if r(n+1) = i,
Rrsd) — plrs)) =< wrsio) — @) + 2% if rn41) = j,
wrsj) — wrs i), if  rn+1) =ioj,
which in turn follows from the construction in the proof of Theorem 3.
i) is proved by induction on n using o.
i) is proved by induction on n using o and i.

i) Byoandi:xy, = 0,y, = 0,y, = 1 and
VnElvO:xn+1 = 2xn + 2yn + 17yn+1 - 2-)Cn + 3yn + 1)

such that Xnt1 = Vn+1 = Vu and Ynva = 5yn+1 - 2yn + 1.
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: 1 :
Defining n, : = y, + X the following recurrent sequence has to be calculated :
1 3
(6) { nO - 2> nl - 2 >
Vne NO: Mn+2 = 5nn-+-l - 2nn .

The ansatz mn, = ®" with a ® e R leads to the solutions 1, = ®"% of the

1 1 1
recurrence relation, such thatn, = — (|1 + —— | O, 1l ——F=)0O~ ).
! 4(< +J17> ' +< %17> )

The formulas for x, and y, are obtained from this by simple calculations.  []
Proof of Proposition 6. 1) Let (s,t)e T2, s(n+1) # t(n+1), and define
pe= p(s;s(n+1ot(n+1)) — p(s; t(n+1)),
i:= p(t; s+ Dotn+1)) — p(t;s(n+1)).
Then (s, t) — py(s,t) = p + o — 2" and

pis, 8) = pols, )= ppe{l,.,2" — 1}, p = 2" — p.
Thus, in view of the six different choices for (s(n+ 1), t(n+ 1)),
(500 € Ty s+ 1) # tnt 1), pa(s, 1) = pas, 0} | = 6,
and Lemma 2 completes the proof of i

~

ii) By a similar argument and with v = 2" — p:

l {(Sa t) € Tr%-i—l 5 S(n+ 1) # t(n+ 1): H1(5> t) > !~L2(S> t)} I = 6‘/Vn >
p—1
where w, : = Z Y. z,(W)z,(2"—v). It is easy to see, using Lemma 2, that
peN v=1

1
wo =0 and neNg:w,; = 2w, — y, + —2—(32"—1), which yields, by (4)
and (5), the desired result.
ii1) follows from
32040 = | {(s,t)e T}y15s(n+1) = tln+1)} |

+ [ {0 e Tayss(n+1) # tn+1), s, £) < pofs, 0)} |

+ [ {(s ) € TRiysstn+1) # tln+1), pyls, 1) > pals, 1)} |

+ {0 e Thryssm+1) # th+1), py(s, ) = po(s, O} [ O

By the same methods, the total and average number of moves in shortest
paths between all regular states can be determined now.
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ProprosITION 7.

466 1 3 12
_ n_ _ 2 3n 17
" ()ZTZ”(S’” 50 30 5 +<59 1003¢)
s, t)ely

12
i | n
(59 1003*/7>®

COROLLARY 3. Asymptotically (for large n) the average length of shortest
46
paths between regular states is 385 of the maximal length.

Again, this is an immediate consequence of Proposition 7 by Theorems 0
and 2.

Proof of Proposition 7. Clearly, 8, = 0; let n e N; then

8n+1 = Z “(Sa t) + Z “(Sa t)
(s,t)eT,%+1 (s,t)eT,%.,.l
(7) s(n+1)=t(n+1) s(n+ 1)#Ftn+1)
= 3811 + Z “1(89 t) - Z (”1(53 t)_H'Z(Sa t)) @
(s,t)eT,%+1 (S,I)GT3+1
s(n+1)#Ftn+1) s(n+1)#Ft(n+1)

pi(s,t)>pa(s, 1)

Let (i, j) € {0, 1,2}2,i # j. Then

® Y meo=6 ¥ u1<s,r>:6-32"(y+1+yz)

2
(s,)eTp+1 (s, t)eTr%‘F 1 ¥ .
s(n+1)Ft(n+1) s(n+1)=i
tin+1)=j

— 2 . 32n(2n+2__1) )

Using the same arguments as in the proof of Proposition 6, one gets

Z (ul(sa t) _ HZ(Sﬂ t)) = 6un 5 Where
(s, t)eT,%+ 1

s(n+1)#Ft(n+1)
Hi(s, ) > pa(s, 1)

U= Y Y (—V)Wn2 =)

peN v=1

To calculate u,, the following must be defined :

b= Y Y -z .

peN v=1
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Then the recursion relation holds:
Ug = vy = 0,

1
) Vne Ny u,.; = 2u, + 2v, + 5(3"—1—1) (6"—1),

1 1
Vg1 = 2u, + 3v, + 5(6"—1) + 56”(3"—1);

this is proved with the aid of Lemma 2 and the facts

2n—1 p—-1
VneNe: Y Y (Vg2 —wz2"—v) = v,
pu=1 v=1
27—1 p—1 1
2 2 =)z (2" =Wz, (v) = u, + 2"72(3"—1)* — 5(3"—1) (6"—1),
p=1 v=1

which in turn follow from Lemma 2.
The solution of (9) is (analogously to (4))

un nl an—l—K 2 2
= A~ h A =
<Un> KZO (bn—l—x>’ T <2 3>’
1
VheNg: @ = < (3+1)(6~1),

1 1
b, = - (6"—1) + = 6"3*—1).
p =561 + 563 -1

. L. 1
Defining Vk e Ny:n, : = E(A )11+ —

1 (A¥); o, it turns out that (4**1), ,

= 2(Mys1— M) and that (1), fulfils (6). Thus (49, , = —— (O% —©*)

17
1

1 1
and (4%), ; = 5((1 — W) OF + (1 + \/—17—> @'i). A carefu% computa-
tion, with the aid of (5), yields

1 1 31 131
No: ity = — 18" — 17)@n — (= — 17)@" .
neNot, = 5518 (118+2006\/ ) : <118 2006 V 7>®

Inserting this and (8) into (7) leads to

466 3 93
: o — 18" = 29" e e n
VneNg:§,., = 35, + e 9 +<59+ 1003\/17>®+

3 93

- = J11)e~
+(59 1003 v >® ’

and again with (4) and (5) the formula for o, is established. []
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2. IRREGULAR STATES

Although introduced already in the leaflet [8] to the original TH puzzle,
Lucas’s second problem (cp. also [9]) has not yet received an adequate
mathematical treatment. The reason is that the violation of the regularity
assumption on the initial state takes away a great deal of symmetry from
the considerations. In particular, the mathematical model has to be changed.

2.0. MATHEMATICAL MODEL

With pegs 0, 1,2 set up from left to right and counting positions of
discs and bottoms of pegs from top left to bottom right in a given state,
one can attach to each disc d € {1, ..., n} its position p(d) in this enumeration,
and to the bottom of peg i € {0, 1, 2} its position p(n+ 1+1i). This leads to the
following definition.

Definition 11.

1—-1

T,o={p:{l,..,n4+3} = {1, ,n+3}; pln+ D) <pn+2)<pn+3)=n+3}.

onto

As any p e T, corresponds to a state of the TH, it follows immediately:

THEOREM 5. The number of states of the TH with n discs is
(n+2)!
;-

Remark 7. Surprisingly, Lucas writes that for n = 64, this number has
“more than fifty figures” (see [8]); although this is true, it falls short by
some fourty powers of ten!

While the description of a state is simple, the rules of a move are
clumsy in this model and far from intuition. So it is convenient to construct
the following imbedding. |

Definition 12.

1_

1
J:Z, = A, h);r {1, ,n+3} - {0, 1, 2}, b {1, ..., n+3} - {0, .., n}}

>

p(r, h),
where

Vde{l,.,n+3}:
h(d) = min {p(n+1+i) — p(d); p(n+1+i) = p(d), ie {0, 1, 21},
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and r(d) is the i for which this minimum is attained.

It 1s easily checked that J is an injection, and so ¥, and JZI, will
be identified, i.e. p and (r, h) will be used interchangeably. Furthermore, as
r(d) and h(d) do not depend on p for d =n+ 1 + i, ie{0,1,2}, r wil
be identified with r | {1, ..,n} € T, and h with h| {1, .., n}. p e T, will also be
written [(r(1), A(1)), ..., (r(n), h(n))]. Again, r(d) is the peg onto which disc d
is stacked and h(d) is its level above the bottom of that peg. In addition,
by re(r,h) with Vde{l,.,n}:h(d) = |{ce{d,..,n};r(c) = r(d)}]| an
injection is given from T, into T, and again r and (r, h) will be identified.

Definition 13. A pair (py, py) € T is a (legal ) move (of disc d from peg i
to peg j), iff
6, j) e {0, 1,2}%,i # j:d : = top(po; i) < min {n+1, top (po; )}
A (ri(d)=j, hi(d)=hg (top (po )+ 1, Veell, .., n\{d} : r1(c)=r(c) ,
hi(c)=ho(c)) ,
where
VpeI,Vie{0,1,2}:top(p;i)e{l,.,n+3}
with
r(top (p; i) = i, h(top (p; i))=max h(r~({i})) .

For (o,71)eT?, a path nell(c,t) from o to 1 and its length are
defined as in Chapter 1.

Remark 8. If p, is regular in a move (py, p;) € T7, then so is py,
and (py, p;) is a legal move in the sense of Definition 1. As the same
applies to paths, it is clear that no new paths between regular states turn up.

The analogue to Definition 2i is

Definition 14. For any pe I, and d € {1, .., n+3} let
Uld: = {ce{l,.,.n};rc) = r(d) » hic) < h(d)}
and define p?e I, _,, by
Vee{l,..,n—hd)}:7c) = r(uc)),

(@) — W), i r(0) = (),
ne) = {h(t(c)), else
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where 1:{1,..,n—h(d)} - CU{ is strictly increasing; if d =mn, p? will be
written p simply.
Similarly, p, € T4 is defined by

Ve e {1, ..., h(d)}: rc) = r(d), hyc) = h(u(c)) ,

where now t: {1, ..., A(d)} = U%is strictly increasing.

Remark 9. Given UY, it is possible to reconstruct p from p, and
p? Thus, as long as disc d does not move, any move (pg, P eI o
is equivalent to a move (py, p;) € T;, provided that d > max CU’;. This
will frequently be used in the sequel.

2.1. EXISTENCE OF A SHORTEST PATH FROM A STATE TO A REGULAR STATE
AND AN UPPER BOUND FOR ITS LENGTH

In contrast to the situation for regular states, (p;,po)€ T, is not
necessarily a legal move if (py, p;) is. So one can not expect II,(c, 1)
to be non-empty for every pair (o, t) € T7. The goal of this section will be:

THEOREM 6. Let neN\{l}. For any pair (c,t)eZI, x T, there is

a (shortest) path from o to t with length less than or equal to
2" — 1 42" 2

Remark 10. 1) The restriction on n is not serious, since there are no
irregular states for n € {0, 1}.

ii) The bound on the length of a shortest path in Theorem 6 is sharp:

Example 2. o = [(0,n),(0,n—1), .., (0, 3), (0, 1), (0, 2)], t = 0". Before the
first move of disc n (it has to be moved to arrive at a regular state!),
to peg 1 for instance, discs 1 to n — 2, which are regularly distributed on top
of it, have to be moved to peg 2. So, by Theorem 2, at least 2" 2
moves have been carried out after the first move of disc n, when a regular
state is reached from which it takes another 2" — 1 moves to arrive at t,
as can be calculated using Theorem 3.

To prove Theorem 6, some preparations have to be done.

LEMMA 3. For every peZ, and je{0,1,2} there is a peg,
with ¥ = j" and a path from p to p with length less than or equal to
2" —1; if n=0 or r(n) #j, then p is regular.
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Proof by induction on n. a) The case n = 0 is trivial.

b) If r(n+1) = j, then the induction hypothesis can be applied to p,
resulting in a p and a path from p to p in the spirit of Remark 9.

If r(n+1) # j, then transfer p to jor(n+1), which takes at most 2" — 1
moves by hypothesis, move disc n + 1 to j and then the first n discs to j,
together at most 2"*! — 1 moves. As in the last action (if n # 0) disc n
started from a peg different from j, the resulting state is regular by
hypothesis. [

This lemma leads to the following interesting result:

PROPOSITION 8. Let neN\{l}. For any ceZ, there is a teT,
and a path from o to t with length less than or equal to 2" 2

Remark 11. Here again Example 2 shows that the bound on the length
is sharp: Suppose for the o of Example 2 there is a te T, and a path
from o to t of length less than 2"~ 2; then by Theorem 1, there is a path
from ¢ to t = 0 of length less than 2" — 1 4+ 2"~2, which contradicts the
discussion of Example 2.

Proof of Proposition 8 by induction on n. a) For n = 2, the only
irregular states are [(j, 1), (j, 2)] for j € {0, 1, 2}. Here it suffices to move disc 2
to a different peg to get a regular state.

b) If W(n+1) = 1, then the induction hypothesis can be applied to o.
Otherwise, the transfer of o to a peg j different from s(n+1) and
s(n+1—h(n+1)) is achieved in at most 2""*7"**H — 1 moves by Lemma 3.
Then move disc n + 1 to jos(n+1). If hin+1) = 2, the resulting state is
regular and the number of moves at most 2"~ 1. Otherwise, discs 1 to n can
be transferred to a regular state in at most 2""? moves by hypothesis,
and the total number of moves is less than or equal to 2""!17R+1)
+ 2n—2 < 2n—l. D

Now the proof of Theorem 6 is a trivial combination of Proposition 8
and Theorem 1.

Although Example 2 shows that shortest paths may be as long as
2" — 1 + 2"~ 2, this worst case will not occur very frequently, as the following
proposition tells, which will also be important in the subsequent sections.
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PrOPOSITION 9. Let neN\{1},(c,t)e X, x T,. Then
o, £) = 2" = (s(n)=t(n) A h(n)>1).

Proof. The proof is by constructing paths from o to ¢ shorter than 2"
for all cases different from the r.h.s. For convenience suppose that n > 3
(for n = 2, cp. the proof of Proposition 8).

i) s(n) = t(n) A h(n) = 1. Then bring o to ¢ which takes at most
2"~1 — 1 4+ 2" 3 moves by Theorem 6.

i) s(n) # t(n) A (h(n)>1vs(n—1)=s(n)et(n)). Then bring c to peg s(n) ° (n)
in at most 2""2 — 1 moves (by Lemma 3), move disc n to t(n) and then
the other discs to ¢ in at most another 2""' — 1 + 2"73 moves by
Theorem 6.

_ el
i) s(n) # tn) A (h(n):l/\s(n—l)aés(n)ot(n)). Then move o to s(n) o t(n)" in
at most 2"~! — 1 moves (by Lemma 3), move disc n to t(n) and finally

M” to ¢ in at most 2"~ ! — 1 moves by Theorem 1.  []

Remark 12. As in Theorem 1, the proof of Theorem 6 (Proposition 9)
is constructive, allowing (if s(n)#t(n) v h(n)=1) to find a path from o to ¢
with at most 2" — 1 + 2"~ 2 (2"—1) moves. But again, it does not necessarily
lead to a shortest path, even if the steps are carried out efficiently;
see Example 3 below. So the construction of shortest paths has to be
discussed further.

2.2. CONSTRUCTION OF SHORTEST PATHS FROM A STATE TO A REGULAR
STATE

Although it is now possible, in principle, to find all shortest paths from
a state ¢ to a regular state ¢ by sheer listing the paths between them not
longer than the upper bound in Theorem 6, this crude proceeding is neither
efficient nor does it provide any a priori information about the number of
shortest paths. The following three lemmas will help to overcome these
weaknesses.

LEMMA 4. Let mell,,(o,t) be shortest. Then disc n + 1 does not
move twice to the same peg; consequently, it moves at most three times.

Proof. Suppose j € {0, 1, 2} appears as goal of disc n + 1 at least twice
in m, in moves p' and p”(W' <p”) say. Then, as h+1) = 1 after the first
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move of n + 1, one can leave out all the moves p with d,(n) = n + 1
and B’ < p < p” and gets a shorter path from o to . [

LEmMA 5. Let je{0,1,2},(c,1)e X2 with t =" Then
(0,7 # O < 3de{l,..,n+3}, h(d)

vd>max0U4: U =Ul A1, =0, 1% =

n

~

in—hg(d)

Proof. “=":1If tis regular, then take d > n. Otherwise
{de{l,.,n};3ce{l,.,d—1}:hfc) = h(d)—1} # D .

Choose the d with h(d) a maximum. Then h(d) = n or d > max CU?,
and ¢ = [* %@ Furthermore, as there is a path from o to t, U = U*
and o, = 14, and so also h (d) = h/(d).

“— " follows from Theorem 6. If T is not regular, a path from o to
is given by a path from c? to ¢ fixing disc d and the discs under it. [

Lemma 6. Let je {0, 1,2}

i) Let ©ce€Z,,1,,7, as in Lemma 5 for d,,d, with h(d,) = h(d,).
Then o, 1) < Wo, 1,).

ii) Let i,ke{0,1,2},i # k,(c,,0,) eI} with

Vd e {1, .., n}: (sy(d)=s,(d)= :5(d) A s(d) #k A (s(d) =i=>hy(d) = h,(d))
A (8(d)=ick=h,(d)=|{ce{d, ..., n}; s(c)=i°k}|)) ;

let 7t.(xe{l1,2}) be as in Lemma 5 applied to o, and d, with
h(d,) a maximum.
Then oy, Ty) < po,, T5).

Proof. 1) Take a shortest path from o to t, and skip the moves of
discs in U4,
ii) By induction on n. a) The case n = 0 is trivial.

b) By part i, it suffices to construct a path m; from o, to peg j not
longer than w,, a given shortest path from o, to 1,.

The first, and possibly only, part of m, is equivalent to a path from
5, to some peg je€ {0, 1,2}. Define &, € Xt 1-nym+1) DY deleting discs in
Uzl from o, analogously to Definition 14. Then, by induction, there is a
path from &, to peg j~ not longer than the former and by deleting all the
moves of discs in U"'' one gets a path %, from o; to peg j. If
s(n+1) = j, then disc n + 1 does not move in m,, whence j = j and
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n, = 7, does the job. Otherwise, add to m; the move, also present in m,,
of disc n + 1 from s(n+1) to jo s(n+1). Now, if s(n+1) = iok, a perfect
n-state (perfect substate if j = i) moves from j to some other peg in 7,
while in m, the latter peg can be reached in at most as many moves by
Theorem 2 or Proposition 9. After that, or if s(n+1) = i, the induction
hypothesis provides the rest of path ©;. [

By Lemma 4, the possible patterns of movements of the largest
disc n + 1 in a shortest path are determined, while Lemma 5 limits the
number of cases to be considered before each move of disc n + 1. After
the last move of disc n + 1, the other discs have to be brought to t.
This leads to a recursive construction of all shortest paths from o to t.
Lemma 6, finally, makes this construction more efficient by pointing out the
advantages of leaving the intermediate states as irregular as possible.

While Example 1 revealed that even in the case of a regular initial state
uniqueness of the shortest path does not hold and that there are shortest
paths with two moves of the largest disc, the following example indicates
that things are even more complicated now.

Example 3. o = [(2,1),(2,2),(0,1),(2,3),(0,2)], t = [1,1,1,1,2]. Then
a careful analysis shows that a path from o to ¢ needs at least 11 moves
if disc 5 moves only once and 22 if it moves exactly twice, but there is a
shortest path of length 9 where disc 5 moves three times! As in the
construction of Theorem 6 (Proposition 9) disc 5 would not move but once,
this example also verifies the assertions in Remark 12.

This shows that in general the number of candidates for a shortest
path may still be considerable. That is not so if ¢ is perfect. So the rest
of this chapter is devoted to the final analysis of Lucas’s second problem.

2.3.  UNIQUENESS OF THE SOLUTION TO LUCAS’S SECOND PROBLEM

The goal of this section is the following satisfying result.

THEOREM 7. Let peX, and je{0,1, 2} Then the shortest path from p
to ] IS unique, except for the case r = ] AP F# ], when there are exactly

two shortest paths, generated from each other by interchanging the roles of the
elements of {0, 1, 2}\{j}.

As in the case of regular states, it will be important to know how
often the largest disc will be moved in a shortest path.
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Lemma 7. Let neN,je{0, 1,2}, nell,, (p, /) be shortest. Then
disc n+ 1 moves

o) not at allif r(n+1) =j and h(n+1) = 1,
1) exactly once if r(n+1) #j,
1) exactly twice if r(n+1) =j and hin+1) > 1.

Proof. o) If there are moves of disc n + 1 in m, delete them all to

arrive at a strictly shorter m e IT,. ,(p, j)-

1) The possibilities of two or three moves of the largest disc n + 1 in a
shortest path m will be excluded by constructing a strictly shorter path «
with only one move of disc n + 1.

Suppose disc n + 1 moves three times. Then, by Lemma 4, its sequence
of moves is necessarily from r(n+ 1) through j o r(n+ 1) and again r(n+1) to j.
Also, if p is the number of the last move of disc n + 1, m, is regular

i _ T
with p(n+1) =, and p, = jor(n+1)" and thus, by Theorem 2,
L, = U + 2" — 1. Now carrying out the first p — 1 moves of =, skip every
move of discs in U, "', then move disc n 4 1 to j. This gives a path from p
to my with py(n+1) = j, h}l(nJr 1) = 1 and py(n) # j, so that, by Proposition 9,
j"*1 is reached in at most another 2" — 1 moves, resulting, as fi < p

by at least two moves of disc n + 1, in a path from p to f shorter than m.

Suppose disc n + 1 moves twice. Then these moves, with numbers p’
and p” say, are necessarily from r(n+1) through jeor(n+1) to j. Carrying
out only those of the first u’ moves of m with discs in C Ur*t, one arrives
at a my with py = fr+1-htn+ ) 1 eaving disc n + 1 at r(n+ 1), one proceeds
by carrying through those moves p of T with p’ < p < p”and d,(n)eCUZ*?,
but changing the roles of r(n+1) and jeor(n+1) for i(n) and j,(m). One

= T

arrives at my._, with pg._; = jor(n+1)""* """V and py._, = p, allowing
disc n + 1 to be moved to j. Now, by Lemma 5 applied to ¢ = =, and
is either regular on r(n+1), in which case, by Proposition 9,

A

T = My, Ty
“(ﬁﬁ:]) <2'—-1= I-J'(nu”>j)= Or

dde{l,.,nfh(d) =nvd>maxC UL U= Ul a1 =0,n

_ /\
T = rn+1)y" @

but then discs in U¢ have not been moved neither in the first p” moves
of m nor in the first p” moves of m. Let p” be the first move of d in m,
so that p” = p” + 2" "9; on the other hand, state m,. can be reached
from 7z in at most 2"~ " moves by Proposition 9, since for
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~

d:=max CUL . p.(d) = rin+1) v hy(d) = 1.

ii) Disc n + 1 has to be moved at least once. After its first move, situa-
tion 1 is reached. [

The last step shows that the only possible ambiguity in the sequence
of moves of the largest disc might arise in case ii of Lemma 7 by the
question to which of the pegs # j it should be moved. Lemma 8 answers
this question.

LEMMA 8. Let (i,j)e{0,1,2}%i#j,peT, with r(n) =icj Then
A A ~ T~
wp, i) = wp,j)=r =iej.
Proof. “ <" is trivial by interchanging i and j.

<

‘=" will be proved by induction on n.
a) Casesn = 0 and n = 1 are trivial.

b) Suppose {c € {1, .., n};r(c) # i-j} # @.Letn,, n; be shortest paths from p

to i"*! and j"*1, respectively, and let d : = max CU."".

If (d) = icj, then w(p,i) = w(p,j) + 2" and w(p,j) = u(p,i) + 2" by
Lemma 7, Lemma 3 and Theorem 2. But by induction hypothesis
u(p, i) # H(p.J):

If, without loss of generality, r(d) = i, then in m; leave out the first
move of disc d, go on until the move of disc n + 1 ignoring the moves
of discs in U¢ and interchanging i and j in the moves of the other discs;
then move disc n + 1 to j. To the rest of the moves, Lemma 6 can be
applied (again interchanging i and j), yielding a path from p to jA strictly
shorter (by at least one move of disc d) than ;. [

Now Lemmas 5 to 8 comprise all the information necessary to prove
Theorem 7.

Proof of Theorem 7 by induction on n. a) Case n = 0 is trivial.

b) If (n+1) = j and h(n+1) > 1, then there are still two possible sequences
of moves for disc n + 1, differing in the intermediate peg to be passed.
Let d : = maxCUZ"'. If n(d) = j, then Lemma 8 can be applied. Otherwise
the path which moves disc n + 1 to jo r(d) is strictly shorter than the one

with intermediate peg r(d) by an argument similar to that in the proof of
Lemma &8 and with the aid of Lemma 6.
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In all the other cases, the moves of disc n + 1 are determined by
Lemma 7, the moves of the other n discs are governed by Lemmas 5
and 6, and their uniqueness follows by induction hypothesis, keeping in mind
that the paths of Lemma 5 are actually paths from ¢ to j* %@ ]

Using the methods of this chapter, one finds the shortest path from o
to 0 in Figure 1 with length 102.

3. OPEN PROBLEMS

Much of the discussion of the TH in computer science literature has been
a controversy between recursion and iteration. It has turned out here that
problems involving just regular states, can be solved by iteration very
elegantly (Chapter 1). On the other hand, as soon as irregular states are
considered, only recursive solutions are available (Chapter 2). While for 33
the solution is essentially unique and the recursion will work efficiently,
the situation for 34 is less straightforward. Although the number of cases
to be considered can be further limited by methods as in Section 2.3
(e.g. the shortest path (of length 108) from o to r in Figure 1 is unique),
and one can show that no three moves of the largest disc n + 1 occur
if rn+1) = t(n+1) and h(n+1) > 1, it is not clear whether there are shortest
path problems with even three different solutions. Also it seems that
the minimal length in s 3 and 4 can only be determined recursively.

The only existing solution to the TH with more than three pegs is
also recursive, and the preceeding chapters should have demonstrated that
things are not as easy as many authors might hope (see the remarks in
the Introduction). To move the largest disc n + 1 in the solution of PO
with four pegs, the n other discs have to be transferred to two different
pegs; after the last move of disc n + 1, discs 1 to n have to be sent from
some two pegs to the top of disc n + 1. Again it follows by symmetry
that disc n + 1 will only be moved once in a shortest path. But this time,
this does not reduce the problem for n + 1 discs to a similar one with
only n discs, but to the different setting of how to transfer n discs from
a perfect state to two different pegs in the shortest possible way. Here is
where the hitherto unjustified assumption made in literature enters, namely
that this will be achieved by dividing the perfect state in a suitable way
into two parts, then first solving PO for the smaller discs using four pegs,
leaving them untouched thereafter and solving the old problem for the
larger discs using three pegs only.

A\
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The validity of this hypothesis is the most interesting open problem
about the TH. It might be found by checking a suitable guess about the
minimal length for B2 with four pegs against the recursive solution which can
easily be constructed using the fact, proved as Lemma 1, that the largest disc
will not move more than three times.

In contrast to this recursive solution, the use of the hypothesis leads to
a very elegant iterative solution to B0 with four (or more) pegs (see Hinz [26]),
resembling algorithm i in 1.2.1, with the astonishing result that the transfer
of 64 discs can be carried out in less than 6 hours (compare the time
needed with three pegs, indicated in the Introduction!).

To conclude, it can be said that the invention of Edouard Lucas,
besides its appeal as a puzzle for human beings as well as for computer
performance, has been endowed with enough structure to be treated
mathematically (the problem B5 : = irregular — irregular without the “devine
rule” (0) seems to have almost no mathematical structure), but not with so
much to be trivial and uncapable of meaningful generalizations. As long as
there are still open problems, a mathematical subject is not dead. The
brahmins are alive and as long as they are still moving golden discs, the
world will, according to legend, not fall to dust. Let us hope so!
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