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280 P. BAYER AND E. NART

For every finite set S of primes and for every integer s > 1 we consider
the following function defined on A :

rS,s(n:' f> A) = r(noo> f007 R) . IIS rs(np> fp: Zp) . I;Igr(np’ fpa Zp) -

As before, rg is well-defined, continuous and integrable if k > 5. The
corresponding function 65 (( , f, A) will be well-defined and continuous for
all k > 1, being the Fourier transform of the former.

Since f ~ g over A is equivalent to f, ~ g, over Q, for all p including
p = o, and f, ~ g, over Z, for almost all p, we get from Theorem 2.3,
3.3 and 3.4 the following:

THEOREM 4.2. Let f,g be two non-singular integral adelic quadratic
forms in k=5 ovariables. Let S = {p;p|detf,.detg,} and let
s = max (s,(f), s,(g )). Then the following conditions are equivalent :

1) f~g over A,

11) VS’S(,f,A)er,S(,%A)a
i) 6s,(,/,48) =05,(,9.A). O

Note that we could have also expressed these functions as rg ; = rog
Os,s = Qo ,, Where @5 € L'(A¥) is defined as:

q)oo H(b Hl(z)"’

peS

§ 5. REPRESENTATION MASSES IN Z

Let (V,q) be a regular quadratic space over Q of dimension k, and
let G be the proper orthogonal group of this space. The adele group
G(A) operates in the set of lattices L of V; by definition the orbit of L
under this action is called the genus of L. The orbit of L under the
subgroup G(Q) of G(A) is the class of L.

IfL = Ze, ® .. D Ze, is a lattice of V, the formula

Sxg, e X)) = gqlxie+...+xe)

stablishes a one to one correspondence between the set of classes of lattices
of (V,q) and the set of classes, over Z, of quadratic forms which are
Q-equivalent to g.
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For any ne Q¥* a representation of n by L is a couple (x, L) such
that x e L and g(x) = n. Since the groups G(Q), G(A) operate on the set
of such representations, one can group them in classes and genera,
respectively.

For each x e g~ !(n), the stabilizer of G at x can be identified with the
orthogonal group of the quadratic form induced by ¢ on <x>*. By
Witt’s theorem, the action of G(Q) on g~ *(n) is transitive. Suppose that
g n)nL# @ and fix x,eq *(n) n L. Let us choose gauge forms o
on G and ®,_on g, .If o € G(Q)and x = oXx,, we consider on g, = GG, 0 !
the gauge forms ®, obtained from ®, by pull back. Let p,H,, 1;
Hy s My, p» By b€ the respective local measures and Tamagawa measure
induced by these gauge forms on G and g,. The homogeneous space G/g,
can be identified with ¢~ !(n) and there exists a unique gauge form o
on g~ '(n) such that if 'y, p),, p' denote the local measures and Tamagawa
measure induced by o, then u = p, . p' (cf. [18]).

The representation mass of n by (x, L) is defined in [6] as:

r(na (X, L)) - ux, oo(gx (R)/gx (Q)mGL) s
where G is the stabilizer of the lattice L in G(Q). By the above normalization
of gauge forms, this definition depends only of the class of (x, L). Thus,
one can define the representation mass of n by L as

r(n, L) = ) r(n, (x, L)),

X

x running over a system of representatives of the classes (x, L) with fixed L.
Let L;, .., L, be a system of representatives of the classes in the genus
of L and let G; = G.. The mass of the genus of L is defined as

h

m(gen L) Z -(GR)/G;),

and the representation mass of n by the genus of L as
h
r(n,gen L) = m(gen L)™' Y r(n, L;).
i=1

If g 1s definite and k > 3 or if ¢ is indefinite and k > > 4, the Tamagawa
number of G and g, is 2. From this fact it can be deduced (cf. [17]) that

r(n, gen L) = Hup( “Ym)nL,),

where L, is the localization of L at p.
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From now on we shall assume that f is a Z-integral quadratic form
positive definite in k > 3 wvariables or indefinite in k = 4 wvariables.

Let L = Z* By normalizing ® or o, , we can assume that

wo(f " mnZ%) = r(n, f,Z,).

Therefore, we obtain Siegel’s formula :

(4.1) r(n,genZ*) =[] rn, f,Z,).

p

The number on the left of (4.1) admits a quite natural interpretation in
the definite case, due to the fact that the set /'~ *(n) n Z*, the group G, and
the three volumes which appear in the formula

Ho(GR)) = 1y (9. (R)) . ni(f ~1(m)

are all finite. In fact, defining r(n, /) =# (f "' (MW)NZ"), o f) = #Gz, and
denoting by f, ..., f, a complete system of representatives of the classes of
forms in the genus of f, from the above considerations it is not hard to
deduce the following set of formulas in the definite case:

Poo(GR))  7(n, f)

ZF) = )
L) =) o)

migen 2) = ., (GR)) 3. o(f)""

h h

r(n, gen Z*) = piy (f ()" (Zl r(n, fi)O(fi)_l)/(__Zl o(fi)™ 1) -
Moreover, the factor p'’,(f~'(n)) is, by definition, equal to the function
Fyn, f,R) for ® = 1 (see the end of Section 2). Hence, we have

W, (f ) = lim (vol(f~ Y(U))/vol U).

U—{n}

We recover in this way Siegel’s real density of representations [13], which
has the well-known value:

W (f710) = 72002) 7 (det ) 22

ifn>0(fn<0ispl,(f n) = 0)

In order to be coherent with the classical notation, we define the
integral representation masses r(n, f), r(n, gen f)in a different way, according f
 to be definite or indefinite.
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o 4 (f Y m)nZ¥) if  f definite
i, f) = {r(n, 7¥) if  f indefinite
o r(n, gen Z¥) . p' (f~'(m)) if  f definite
rin, gen f) i = r(n, gen Z¥) if  f indefinite .

Let us denote, moreover, u(f) = W, (GR)/Gz).
It is a well-known fact that, in the indefinite case, and for all n e Z\{0}

r(n, gen f) = u(f) " 'r(n, f),
since the average representation mass in a spinor genus coincides with
r(n, gen f), but for k > 4 there is only one class in each spinor genus.
Summing up all this considerations we can rewrite Siegel’s formula in

rn,gen f) = pi (f ') . [1r(n £, Z))

the form:

if f is definite,
rn, f) = W) .1 rn, £, Z,),

p

otherwise.
We can now reproduce partially the outline of the preceding sections.
' Considering »( , f), r( , gen f) as functions defined on Z, we can define
theta series by taking the formal Fourier transform:

0z, f) = ), r(n, f)exp(ninz),

n=z0

0(z, gen f) = ). r(n, gen f) exp (ninz) ;

n=0

and zeta functions by taking formal Mellin transforms:

&s, f) = 2 r(m, f)n~,

n>0

{(s,gen f) = > r(n, gen fn~s.

n>0

Both functions have been largely investigated. We recall next their more
relevant properties for our purposes (cf. [13], [14], [15], [12], [10]). If f
is definite, 6(z, /) is a modular form of weight k/2, with character, with
respect to a congruence group I',(N). It satisfies the functional equation

(5.1) O(z, f) = (det f)"V*(—iz)7¥20(—1/z, f#),

where f# denotes the quadratic form associated to the dual lattice of Z*

CEZ N SR N
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in R* with respect to f. And 0(z, gen f) is an Eisenstein series for the same
group.

The Dirichlet series defining {(s, f) converges, both in the definite and
in the indefinite case, for Res > k/2. It has a meromorphic continuation to
the whole plane with a simple pole at s = k/2 (and possibly at s = 1,
if f is indefinite) and it satisfies a functional equation involving (s, f)
and ((k/2—s, f~1). Clearly the zeta function {( , gen f) has the same
properties.

In the indefinite case, the residue at s = k/2 of these zeta functions
1s given by:

(5.2) [C6s, /)2 = 20 | det f[¥2u(f),
(5.3) [C(s, gen f)]k/z = 2p; | det f |92,
where

k—1
pui= 3 TG/

THEOREM 5.1. Let f,g be two non singular Z-integral quadratic forms.
Suppose that f ~ g over R and that they are of the same 2-type if
k = 5. Then the following conditions are equivalent :

i) genf = geng,

i) r(,genf) =r(,geng),

i) & ,genf) =C(,geng).

Proof. 1t is clear from the definitions that i) = i1) = 1ii). Assume that 1i1)
is satisfied and let us show first that it must be det f = detg. In the
indefinite case, this is a direct consequence of (5.3) and the fact that

f ~ g over R. In the definite case, and since ii1) is equivalent to the equality
0( ,gen ) = 6( , geng), by (5.1) we have

(det £) 42 8( , gen f¥) = (detg) "> B( , geng¥).
Since f¥, g* are two definite quadratic forms we have

lim 6(it, gen f¥) = lim 0(it, gengf) = 1,
t— o t—>
hence det f = det g and, moreover, p’, (f~1(n) = 1, (97 (n).
By Siegel’s formula, we see that condition iii) implies, in both cases, that

[Irn, f.Z,) = [1r(n 9. Z,,)

p p
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for all n = 0. Let now S be any finite set of primes including those p
dividing 2 det f. Assume n e Z\{0}. If p ¢ S we have by [13, Hilfsatz 16] that

in, £, Z,) = r(n, 6. Z,) # 0.

Therefore, by [13, Hilfsatz 25] we have:
H r(na f> Zp) = H r(n: 9 Zp) e

peS peS

Let Zs = || Z,. By the chinese remainder theorem we get the equality of
peS

functions over Zg:

[1r. f.Z,) = 11,9, Z,).

peS peS

Since

[16m,. f.Z2,) =11 J r(n,, f,Z,) <n,,m,> dn,

peS peS

_ J (I1 ¢y, £, Z,) <n,, m,>}(® dn,)

Zs DPeS peS

= | ([t 520 <>
Zs DES

where ng, mg, dng have their natural meanings, we see that condition 1i1)
implies

[16C.7.Q,) = ]le( .9, Qy)

peS

Taking into account that 6(Z,, f,Q,) = 1, we get that 6(, f,Q,)

= 6(,g,Q,), for all peS. Thus, by applying Theorem 2.3 we get that
f ~goverZ,, forallp. []

We have proved that the representation mass function r( , gen f)
determines the genus of f under certain conditions on the oco-type and the
2-type of f. The following examples of forms f,g such that r( , gen f)

= r( , gen g) but not belonging to the same genus, show that none of these
conditions can be dropped (cf. also [5]).

Examples. We consider I = 1 <l1>, J= 1 <—1>. Let

1<i<4 1<i<4
f=11lIll1lJandg=11JL1J These two forms satisfy f ~ g over Z,
for all p, but they are not R-equivalent. Let [ = <1,1,2 4,4>,




- 286 P. BAYER AND E. NART

g =<L2224>0rf =<-1,1,2,44>andg = <—1,2,2,2,4>.In
 both cases f and g are R-equivalent and satisfy r( ,gen f) = r( , gen g),
- but they are not Z,-equivalent.

In the following theorem we show that, both in the definite and in the
 indefinite case, two quadratic forms with the same representation numbers
must belong to the same genus. In the low dimensional cases (k=2 or
- k=3, indefinite) an analogous result can also be stated. If k = 3 and the
forms are indefinite, the proof requires a finer study of their representation
masses (cf. [11]). If Kk = 2 much more is true, since two Z-integral quadratic
forms with the same 2-type which represent the same set of integers belong
- already to the same genus.

THEOREM 5.2. Let f,g be two non-singular Z-integral quadratic forms
“in k wvariables. Suppose that f ~g over R and that f and ¢
are of the same 2-type if k=5 Then v, f)=r(,g) implies that f
and g belong to the same genus.

Proof. k = 3, f definite. By hypothesis we have 0( , f) = 6( ,g) as
- functions on the upper half-plane. As is well-known, 6( , f) — 6( , gen f)
1s a cusp form. Thus 6( , gen f) — 6( , gen g), being both a cusp form and an
Eisenstein series, must be zero. Applying Theorem 5.1 we have that

gen f = geng.
k > 4, f indefinite. Since r( , gen f) = w(f)"'r(, f), we need only to show

that u(f) = w(g) and apply Theorem 5.1. By hypothesis {( , /) = {( , g);
from the residue formula (5.2) we get

(5.4) |det f| Y2 u(f) = |detg | =Y ulg).

' There is an explicit relation between u(f) and the volume V(f) of the
majorante space [16, p. 110] which, together with the fact V(f) = V(f 1)
furnishes the relation "

u(f ™t = [det f1*" 1 u(f).

Now, from the functional equation of the zeta function [14], it is easily
' deduced that p(f ~1) = pg~ 1), hence

| det f1*" p(f) = |detg |**" w(g).
}This together with (5.4) implies | det f | = |detg| and p(f) = wg). O
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