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278 P. BAYER AND E. NART

for all n g R*, where we have denoted by d the quadratic form
d(x) xTDx. It is also easy to check that for all m g R we have

0(m, /, R)
Rk

exp — n(yTy) + 2nmi (yTDy)) dy

exp — ny2{l — 2im)) dyexp — 7ty2(l + 2im)) dy

(1 + 2zm)s/2(l — 2im)(fc-s)/2

The following result is now clear :

Theorem 3.4. Let /, g be non-singular real quadratic forms in
k variables. The following conditions are eguivalent.

i) f ~ g over R,
ii) r( /, R) « r( g, R) 5

iii) 0( /, R) 0( ,g, R).

§4. Adelic representation masses

Let A be the ring of adeles over Q. We identify A with its topological
dual by defining <n, m>, where % is Tate's character

X(a) Xjaj FI XP(ap) >

P

for any a (ap) e A. Let dn be the restricted product measure of the local

measures used in the preceding sections. As is well-known, dn is also a

selfdual measure. Let dx be the Haar measure on Ak naturally induced

by dn.

A non-singular integral adelic quadratic form f in k variables with unit
determinant can be identified to a collection (fp) of non-singular integral
p-adic quadratic forms in k variables such that p det fp, for almost all p.

Let ® be the Schwartz-Bruhat function on Ak defined by

$ ^cx) • n i(zP)k •

p

Let A0 : Rx Zp. We consider
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r®(w, /, A) : lim
£/-(») VJ

<!>(x)dx/ J dn

/-Ht/)
k^oo foo r) • n r(nP> fp> zp) '

the limit being well-defined whenever the infinite product on the right is

absolutely convergent. Applying Siegel's explicit formulas for r(np,fp,Zp)
([13, Hilfsatz 16]), it is easy to check that the product is absolutely

convergent for all ne A0 if k ^ 5. Since r( fm, R) g L1ÇR) and Y[ Zp
p

compact, r$ is an everywhere defined continuous function on A, with support

contained in A0, and integrable on A. On the other hand, clearly <D g L1(Afc)

and we have

!>(m, /, A) : $0) </M> m> dx /^, R) f] ö(mp, /p, Qp
Ak

Note that the infinite product is always well-defined since only a finite
number of factors are different from 1.

We recall that given two integral adelic quadratic forms in k variables

it is said that they belong to the same genus if /œ ~ over R and

fP ~ 9p over Zp for all p. We say that they are of the same 2-type if
f2 and g2 are of the same type over Z2.

Theorem 4.1. Let /, g be two non-singular integral adelic quadratic
forms in k ^ 5 variables with unit determinant. Assume that they are of the

same 2-type. Then the following conditions are equivalent :

i) gen / - gen g

ü) r0( /, A) r0( g, A),

iii) 0O( /, A) eo( g, A).

Proo/ Two forms in the same genus have the same local integral
representation masses, hence i) => ii). Since 0^ is just the Fourier transform
of r0, ii) iii). Now condition iii) is equivalent to 0( fm, R) 0( g O0, R)
and 0( fp, Qp) 0( ,gp, Qp) for all p; therefore by Theorems 2.3 and 3.4,

iii) i).

We deal now with A-equivalence of forms. If / and g are two non-
singular quadratic forms defined over Q, we have by the Minkowski-Hasse
theorem that f ~ g over Q if and only if f ~ g over A. Thus Theorem 4.2
below can be also considered as a characterization of Q-equivalence in terms
of representation masses.
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For every finite set S of primes and for every integer s ^ 1 we consider
the following function defined on A :

rs>, /, A) r(nx,,R).f] fp, Zp). f] f„ Zp).
peS p$S

As before, rS s
is well-defined, continuous and integrable if k ^ 5. The

corresponding function 0S s /, A) will be well-defined and continuous for
all k ^ 1, being the Fourier transform of the former.

Since f ~ g over A is equivalent to fp ~ gp over Qp for all p including
p oo, and fp ~ gp over Zp for almost all p, we get from Theorem 2.3,

3.3 and 3.4 the following:

Theorem 4.2. Let /, g be two non-singular integral adelic quadratic
forms in k ^ 5 variables. Let S {p ; p | det fp det gp} and let

s ^ max (s0(/), 50(öf)). T/zen the following conditions are equivalent:

i) f ~ g over A,
ü) rStS( ,/, A) rSjS( g, A),

hi) eSiS(,/,A) eSfS{,0,A).

Note that we could have also expressed these functions as rs>5 — ros,s,

0s,s öos where s e L1(Afc) is defined as:

®s,s n - n i(zP)k •

peS p$S

§ 5. Representation masses in Z

Let (V, q) be a regular quadratic space over Q of dimension k, and
let G be the proper orthogonal group of this space. The adele group
G(A) operates in the set of lattices L of V ; by definition the orbit of L
under this action is called the genus of L. The orbit of L under the

subgroup G(Q) of G(A) is the class of L.

If L Zet © © Zek is a lattice of V, the formula

f(xL,...,xk) <sr(x1e1 + + ;c

stablishes a one to one correspondence between the set of classes of lattices
of (V, q) and the set of classes, over Z, of quadratic forms which are

Q-equivalent to q.
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