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278 P. BAYER AND E. NART

for all neR* where we have denoted by d the quadratic form
d(x) = xTDx. It is also easy to check that for all me R we have

Rk

— <j exp (—my*(1 + 2im)) dy>s<J exp (—1y*(1 —2im)) dy)

= (1+2im)?(1 —2im)*~ 972

O(m, f,R) = J exp (—n(y”y)+ 2mmi(y"Dy)) dy

k—s

The following result is now clear:

THEOREM 3.4. Let f,g be non-singular real quadratic forms in
k variables. The following conditions are equivalent.

) f~g over R,
u r(, f,R)=1r(,9,R),
m) O(, fL,R)=06(.,9,R). O

§4. ADELIC REPRESENTATION MASSES

Let A be the ring of adeles over Q. We identify A with its topological
dual by defining <n, m>, where y is Tate’s character

X)) = Xolto) - [T x(a,)

for any a = (a,) € A. Let dn be the restricted product measure of the local
measures used in the preceding sections. As is well-known, dn is also a
selffdual measure. Let dx be the Haar measure on A* naturally induced
by dn.

A non-singular integral adelic quadratic form f in k variables with unit
determinant can be identified to a collection (f,) of non-singular integral
p-adic quadratic forms in k variables such that p 4 det f,, for almost all p.

Let @ be the Schwartz-Bruhat function on A* defined by
@ — d)o() . 1_[ 1(Zp)k .
p

Let A,: = Rx[] Z,. We consider
p
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re(n, f, A) 1 = lim q O(x)dx/ j dn)
U=m \J f~1U) u
=rn,, fu,R). H r(n,, fp, Zp) ,

the limit being well-defined whenever the infinite product on the right 1s

absolutely convergent. Applying Siegel’s explicit formulas for r(n,, fps ZLyp)

([13, Hilfsatz 16]), it is easy to check that the product is absolutely

convergent for all ne A, if k > 5. Since  f..,Rye L'R) and []Z, is
p

compact, rg is an everywhere defined continuous function on A, with support
contained in A,, and integrable on A. On the other hand, clearly ® € L'(A¥)
and we have

O(x) < f(x), m> dx = O(m,,, f, R) ][] O(m,, f,, Q,) .

A

Op(m, f, A): = J

Note that the infinite product is always well-defined since only a finite
number of factors are different from 1.

We recall that given two integral adelic quadratic forms in k variables
it is said that they belong to the same genus if f, ~ g, over R and
f, ~ g, over Z, for all p. We say that they are of the same 2-type if
f, and g, are of the same type over Z,.

THEOREM 4.1. Let f,g be two non-singular integral adelic quadratic
forms in k =5 wvariables with unit determinant. Assume that they are of the
same 2-type. Then the following conditions are equivalent :

i) genf = geng,
11) r(D( afaA) = r(IJ( agaA)a
i) Og( , /5 A) = 0( ,9,A).

Proof. Two forms in the same genus have the same local integral
representation masses, hence 1) = ii). Since 04 is just the Fourier transform
of rg, ii) = iii). Now condition iii) is equivalent to 6( , f,,,R) = 0( ,g.,R)
and 6( , f,,Q,) = 0( ,g,,Q,) for all p; therefore by Theorems 2.3 and 3.4,
i) =1). O

We deal now with A-equivalence of forms. If f and g are two non-
singular quadratic forms defined over Q, we have by the Minkowski-Hasse
theorem that f ~ g over Q if and only if f ~ g over A. Thus Theorem 4.2

below can be also considered as a characterization of Q-equivalence in terms
of representation masses.
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For every finite set S of primes and for every integer s > 1 we consider
the following function defined on A :

rS,s(n:' f> A) = r(noo> f007 R) . IIS rs(np> fp: Zp) . I;Igr(np’ fpa Zp) -

As before, rg is well-defined, continuous and integrable if k > 5. The
corresponding function 65 (( , f, A) will be well-defined and continuous for
all k > 1, being the Fourier transform of the former.

Since f ~ g over A is equivalent to f, ~ g, over Q, for all p including
p = o, and f, ~ g, over Z, for almost all p, we get from Theorem 2.3,
3.3 and 3.4 the following:

THEOREM 4.2. Let f,g be two non-singular integral adelic quadratic
forms in k=5 ovariables. Let S = {p;p|detf,.detg,} and let
s = max (s,(f), s,(g )). Then the following conditions are equivalent :

1) f~g over A,

11) VS’S(,f,A)er,S(,%A)a
i) 6s,(,/,48) =05,(,9.A). O

Note that we could have also expressed these functions as rg ; = rog
Os,s = Qo ,, Where @5 € L'(A¥) is defined as:

q)oo H(b Hl(z)"’

peS

§ 5. REPRESENTATION MASSES IN Z

Let (V,q) be a regular quadratic space over Q of dimension k, and
let G be the proper orthogonal group of this space. The adele group
G(A) operates in the set of lattices L of V; by definition the orbit of L
under this action is called the genus of L. The orbit of L under the
subgroup G(Q) of G(A) is the class of L.

IfL = Ze, ® .. D Ze, is a lattice of V, the formula

Sxg, e X)) = gqlxie+...+xe)

stablishes a one to one correspondence between the set of classes of lattices
of (V,q) and the set of classes, over Z, of quadratic forms which are
Q-equivalent to g.
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