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274 P. BAYER AND E. NART

§ 3. LOCAL REPRESENTATION MASSES AND Q,-EQUIVALENCE
OF FORMS

There is a formula due to Minkowski (cf. [9]) for O(u, f, p') if ¢t is
large enough, in which appear the well-known pair of invariants determining
the Q,-equivalence class of f. As a consequence of this formula (cf. Pro-
position 3.2), we shall obtain a characterization of Q, -equivalence of forms
through local representation masses.

Let s > 1 be an integer and X, = {meQ,| — v,(m) > s}. For any
integral p-adic quadratic form f we define the functions:

rs( > f> Zp) = p——ﬁ(f)/Z(r( > f’ Zp)_p(l_k)sr( > f: ps)) )
0.(, f.Q,) = p7°720(, £,Q,) . 1y,,

where 6(f) = v,(det f).
The reader may check that the function defined on Q%\{0} by

dy(x) = p7°U2 <1 — pt7hs :((J{((ch)),’j{f,’ép)g - Lizpye (%)

is integrable over Q, and that r; = r, ,0; = 0, , so that these functions
follow the general pattern mentioned in the introduction. Note that ¢,
is not a Schwartz-Bruhat function.

PROPOSITION 3.1. rye LY(Z,) and Oy (m) = J ri(n) <m, n> dn.
Zp

Proof. r,is integrable since r and r (mod p°) are integrable. To prove the
second assertion, by Proposition 2.2 we need only to compute

r(m, f,p°) = J r(n, f,p°) <m, n> dn.
Zp
Let m =p'u, ueZ,, pfu t=>0 Let t, = max{s, t}. On each class

a + p°Z,, the integrand is constant and we have

rm, f,p°) =p~" > Ha, f,p°)exp 2niuap™).

acZ/ptoZ

If t < s we have directly:

plTF(m, £, p°) = Oup*™", f, p°) = B(m, [, Q,).
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If t > s the sum is equal to

p™ Y ra,, f,p°) expRmiua,p™t) Y, exp(2miup’*)’ = 0. 0

ac€Z/pSZ beZ/pt —SZ

In order to simplify Minkowski’s formula for the theta-values, we will
make use of the invariant [f], of a p-adic quadratic form introduced by
Conway [2]. Let o, be the last invariant factor of f and let s,(f) = v,(2po).

ProrosiTION 3.2. Let f be a non singular p-adic integral quadratic
formin k variables. For all t > s,(f) and ueZ} we have:

X u kt+3d do t '
e(u’ f, pz) _ p(8+kt)/2 8;(k+26) (E) [f]p (};) , lf p # 2,

2 t 2 kt
O(u, f,2') = 207K DN exp (2mik/8) [f], (d—) (;) [ul’ (u, det ), ,
if p=2.
Here & = 8(f), d, = p~°det f and (a, b), denotes Hilbert’s symbol.

Proof.  Since O(u, f, p') = 6(1, uf, p'), it is easy to reduce the claims
to the case u = 1. Assume first p > 2. Letv = v, .. v,,w = W, ... w,_,, where

f~ L <puw> L <pw;>

1<i<v 1<j<k—r
over Z,, with s; odd, ¢; even, v, wje Zy for all i,j. Let t > max {s;, ti};
i,j

by Prop. 1.1 we have

01, [, p') = p@rron

. v
Since [ f], = &}, <I—?>’ we get the desired formula.
We deal now with the case p = 2. Assume that, over Z,,

f~ 1 <2»H> | <2Yy;> ,

1<i<r 1<j<k—2r
where H; is 2-dimensional improperly primitive and v ;e L% . Let

U= 1L <H>, U= 1 <H>,v= | <v;>,V' = 1 <u>.

sieven s; odd tjeven tjodd
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Let d,d,v,v denote the respective determinants of U, U, V and V'. By

Proposition 1.1 we have for all t > 1 + max {s;, t;}
i, J

2 2\*
01, f,2) = 20TKETDI2 exp (2miw/8) (Zi;> (d_> ’

where w = Z v;. Let s denote the dimension of U; one can see that
1<j<k—-2r

[U]2 = <§>(_i)s/2 , [ZU,:IZ — (__i)(Zr—s)/Z )

Let m be the number of v/s in V congruent to 3 (mod 4), and let
ni,ns, ns,n; be the respective number of v’s in V' congruent to 1,3,5
or 7 (mod 8); we have

[V]2 [2V’]2 — i3n1+n3+2n5+3n7 .

Summing up these expressions the result follows. [

Whereas Z,-equivalence of forms is determined by all functions
r(, f,p'),t > 1 (Theorem 1.2), or equivalently by its limit value r( , f, Z,)
(Theorem 2.3), we prove in the next theorem that Q,-equivalent forms are
characterized by having the same differences r( , f, Z,) between these two
functions, for s sufficiently large.

THEOREM 3.3. Let f,g be non singular integral p-adic quadratic forms in
k wvariables. Suppose that s = max (s,(f), s,(g)). Then the following conditions
are equivalent :

1) f~g over Q,,
i) r(,.f.Z,) =r.9.Z,),
i) 0,(, f,Q,) = 6,(,9,Q,).

Proof. For any integer t > 1 we consider the difference

Ar(n, f,p*) 1= p* 70 D r(n, f,p" ) — p T r(n, £, p')

It is clear from the definitions that

ro(n, f, Z,) = p~°I" 5 Arn, f, p).

t=s

If f and g are Q,-equivalent, then Proposition 3.2 implies that

p3N2Q(y, £, pt) = p~3920(y, g, p'),
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forallueZ¥,t > s. Letne Z,, since
S p O, f,p')exp (—2minup™*) = r(n, f,p') — p* " r(n, £, 0"
ue(Z/ptZ)*
— p(k_l)tAl"(n, f, pt—l) ,

we see at once that i) = ii). By Proposition 3.1, ii) = 111).
Assume now condition iii). Let t = s,s + 1 and let ue Z}; from the
equality 0,(up”", 1, Q,) = 6,(up™", g, Q,) it follows, using Proposition 3.2,

that [f], = [g], and (d"(f)> = (@) Since the forms f and g have the
p

same discriminant and Conway invariant, they are equivalent over Q,. [

Next we devote a few lines to R-equivalence. We identify R with its

topological dual by defining <n,m> = yx,(n, m): = exp (—2ninm), for all
n,meR. We denote by dn, dx the Lebesgue measure on R and RK,
respectively.

Let f be a non-singular real quadratic form in k variables with signature
(I, k—1). Let A be the matrix of f and let C be any matrix satisfying:

CTAC = D, D=< Il.' 0 )
0 | =TIy

P:= (CC")™ ! is called a majorant of f. Since P is positive definite, the
function

du(x) = | det f |2 exp (—n(x"Px))

is a Schwartz function on R*. On R* we define the functions

rn, f,R) = lim <J O (x)dx/vol U) ,
f~HU)

U—{n}

O(m, f,R) = J Go(x) < f(x), m> dx .
Rk

We have seen at the end of Section 2 that r(, f,R) is a continuous

function on R*, integrable on R and that 8( , f, R) is its Fourier transform.

These functions do not depend on the chosen matrix C; they depend only

on the signature of f. In fact, since | det C| = | det f | ~ /2, if we make the

change of variables x = Cy we obtain:

r(n, f,R) = lim (J eXp(—Tt(yTy))dy/dn(U)>,
d-1(U)

U—{n}
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for all neR* where we have denoted by d the quadratic form
d(x) = xTDx. It is also easy to check that for all me R we have

Rk

— <j exp (—my*(1 + 2im)) dy>s<J exp (—1y*(1 —2im)) dy)

= (1+2im)?(1 —2im)*~ 972

O(m, f,R) = J exp (—n(y”y)+ 2mmi(y"Dy)) dy

k—s

The following result is now clear:

THEOREM 3.4. Let f,g be non-singular real quadratic forms in
k variables. The following conditions are equivalent.

) f~g over R,
u r(, f,R)=1r(,9,R),
m) O(, fL,R)=06(.,9,R). O

§4. ADELIC REPRESENTATION MASSES

Let A be the ring of adeles over Q. We identify A with its topological
dual by defining <n, m>, where y is Tate’s character

X)) = Xolto) - [T x(a,)

for any a = (a,) € A. Let dn be the restricted product measure of the local
measures used in the preceding sections. As is well-known, dn is also a
selffdual measure. Let dx be the Haar measure on A* naturally induced
by dn.

A non-singular integral adelic quadratic form f in k variables with unit
determinant can be identified to a collection (f,) of non-singular integral
p-adic quadratic forms in k variables such that p 4 det f,, for almost all p.

Let @ be the Schwartz-Bruhat function on A* defined by
@ — d)o() . 1_[ 1(Zp)k .
p

Let A,: = Rx[] Z,. We consider
p
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