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274 P. BAYER AND E. NART

§ 3. Local representation masses and Qp-equivalence
OF FORMS

There is a formula due to Minkowski (cf. [9]) for 0(u, /, pl) if t is

large enough, in which appear the well-known pair of invariants determining
the Qp-equivalence class of /. As a consequence of this formula (cf.

Proposition 3.2), we shall obtain a characterization of Qp-equivalence of forms

through local representation masses.

Let s > 1 be an integer and Xs {m g Qp | — vp(m) > s}. For any
integral p-adic quadratic form / we define the functions :

rs( ,/,Zp) p-ô(/)/2(r( ?/?Zp)_p(l-/c)M j

es( ,/, Qp) p-6(/)/20( ,/,Q,).lZs,
where 5(/) pp(det /).

The reader may check that the function defined on Q^\{0} by

A _ r,-ô(/)/2 A
_ (l-k)s K/(X)> / x

is integrable over Qp and that rs r^s, 0S 0^, so that these functions
follow the general pattern mentioned in the introduction. Note that <j)s

is not a Schwartz-Bruhat function.

Proposition 3.1. rseL1{Zp) and 0s(m) rs (n) < m, n > dn.

Proof. rs is integrable since r and r(mod ps) are integrable. To prove the
second assertion, by Proposition 2.2 we need only to compute

r>,/,ps) « r(n, /, ps) <m,n> dn

Let m p tu, ueZp, p J( u, t ^ 0. Let max {s, t). On each class

a + pt0Zp, the integrand is constant and we have

r{m,f, ps) p~'°E f, ps) exp
aeZ/ptoZ

If t ^ s we have directly :

r{m, f, ps) Q(uf~<,/, ps) 9(m, /, Qp).
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If t > s the sum is equal to

p~x Yu r(ao> /> Ps) exp(27um<z0p~') Y Qxp(2niups~t)b 0.
a0eZ/psZ beZ/pt~sZ

In order to simplify Minkowski's formula for the theta-values, we will
make use of the invariant \_f~\p of a p-adic quadratic form introduced by

Conway [2], Let ak be the last invariant factor of / and let s0(f) vp(2pak).

Proposition 3.2. Let f be a non singular p-adic integral quadratic
form in k variables. For all t ^ s0(f) and u e Z* we have:

Q(u, f, p>)

k>+&

[/], (jj\ if

0(m, f,2')2(8+k(,+ 1))/2 exp(2ra/c/8) [/]2 C3 (Tj [«]* (u, det/)2,

if p

Here 8 8(f), d„ p~h det / and (a, b)p denotes Hilbert's symbol.

Proof. Since 0(i/, /, p') 0(1, uf, px), it is easy to reduce" the claims
to the case u 1. Assume first p > 2. Let v v± vr, w w1 wk_r, where

f ~ _L <pSivt> _L <ptjwj>

over Zp, with st odd, tj even, vi9WjeZ* for all ij. Let t > max {s^tj};
i, i

by Prop. 1.1 we have

-J if t even

0(1,/,p<) p^+mf2
' w

\P
ekp r — if t odd

Since \_f~\p — ep ^~j, we get the desired formula.

We deal now with the case p 2. Assume that, over Z2,

/ ~ ± <2SiHf> 1 <2tjvi>

where Ht is 2-dimensional improperly primitive and Vj e Zf. Let

u= 1 <Hi> ,U' 1<Hi> 1 <„ > 1 <„.>
even ' t.odd

< '
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Let d, d', v, v' denote the respective determinants of U, U\ V and V. By
Proposition 1.1 we have for all t > 1 + max {s£,

Uj

0(1,/, 2')2(6+i:(t+1,1/2 exp (2raw/8) (y) '

where w Vj. Let s denote the dimension of U; one can see that
l^j^k-2r

m2 ^ (-if2,[2 U12 (-i)«2"*»

Let m be the number of vfs in V congruent to 3 (mod 4), and let

n1,n3,n5, n7 be the respective number of vfs in V congruent to 1, 3, 5

or 7 (mod 8); we have

i^ni +"3 + + ^ny

Summing up these expressions the result follows. Q

Whereas Zp-equivalence of forms is determined by all functions
r( /> ^ 1 (Theorem 1.2), or equivalently by its limit value r( /, Zp)
(Theorem 2.3), we prove in the next theorem that Qp-equivalent forms are
characterized by having the same differences rs( /, Zp) between these two
functions, for s sufficiently large.

Theorem 3.3. Let /, g be non singular integral p-adic quadratic forms in
k variables. Suppose that s ^ max (s0(f), s0(#)). Then the following conditions

are equivalent:

i) / - g over Qp,

ii) rs( ,/, Zp) rs( g, Zp),

iii) 0S( /, QP) 0s( > QP) •

Proof For any integer t ^ 1 we consider the difference

Ar(n, /, pl) : pd-*)(«+D pt+1) — r(n, /, p').

It is clear from the definitions that

rs(n, f, Zp) p"5</>/2 £ Ar(n, /, p') •

t^S

If / and g are Q^-equivalent, then Proposition 3.2 implies that

p-5(/)/20(^ p() p-mi2Q^ pt) >
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for all u e Z*, t ^ 5. Let ne Zp, since

X p~lQ(u, /, p') exp( — Ininup'1) r(n, /, pf) — pfc_1r(n, /, p1 x)

Ue(Z/ptZ)*

p(k~1]tAr(n, /, p'-1),

we see at once that i) => ii). By Proposition 3.1, ii) => iii).
Assume now condition iii). Let t s, s + 1 and let ue Z*; from the

equality Qs(up~t, f, Qp) 6s(up~{, g, Qp) it follows, using Proposition 3.2,

fà0{f)\ d0{g)\
that \_g\ and —J • Since the forms / anci ^ have the

same discriminant and Conway invariant, they are equivalent over Qp.

Next we devote a few lines to R-equivalence. We identify R with its

topological dual by defining <n,m> Xoo(A m) '• exp( — Ininm), for all

n, m e R. We denote by dn9 dx the Lebesgue measure on R and Rfc,

respectively.
Let / be a non-singular real quadratic form in k variables with signature

(,l,k — l). Let A be the matrix of / and let C be any matrix satisfying:

CTAC D D
I, 0

o 71

P : (CCT) 1 is called a majorant of /. Since P is positive definite, the
function

I det / 11/2 exp —7i(xrPx))

is a Schwartz function on Rfe. On R* we define the functions

r(n, /, R) lim
U-{n} \J

Qnfädx/Vol U
f~HU)

e(m, /, R) -
Rk

^ooW </W, m> dx

We have seen at the end of Section 2 that r( /, R) is a continuous
function on R*, integrable on R and that 0( /, R) is its Fourier transform.
These functions do not depend on the chosen matrix C; they depend only
on the signature of /. In fact, since | det C | | det / |~ 1/2> if we make the
change of variables x Cy we obtain :

r(n, /, R) lim
U^{n}

exp(-7T(j >Ty))dy/dn
d~HU) J
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for all n g R*, where we have denoted by d the quadratic form
d(x) xTDx. It is also easy to check that for all m g R we have

0(m, /, R)
Rk

exp — n(yTy) + 2nmi (yTDy)) dy

exp — ny2{l — 2im)) dyexp — 7ty2(l + 2im)) dy

(1 + 2zm)s/2(l — 2im)(fc-s)/2

The following result is now clear :

Theorem 3.4. Let /, g be non-singular real quadratic forms in
k variables. The following conditions are eguivalent.

i) f ~ g over R,
ii) r( /, R) « r( g, R) 5

iii) 0( /, R) 0( ,g, R).

§4. Adelic representation masses

Let A be the ring of adeles over Q. We identify A with its topological
dual by defining <n, m>, where % is Tate's character

X(a) Xjaj FI XP(ap) >

P

for any a (ap) e A. Let dn be the restricted product measure of the local

measures used in the preceding sections. As is well-known, dn is also a

selfdual measure. Let dx be the Haar measure on Ak naturally induced

by dn.

A non-singular integral adelic quadratic form f in k variables with unit
determinant can be identified to a collection (fp) of non-singular integral
p-adic quadratic forms in k variables such that p det fp, for almost all p.

Let ® be the Schwartz-Bruhat function on Ak defined by

$ ^cx) • n i(zP)k •

p

Let A0 : Rx Zp. We consider
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