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270 P. BAYER AND E. NART

possible anymore, as the following example shows: By Proposition 1.1
the diagonal forms [ = <1,2,2,2,4>, g = <1,1,2,4,4> have the same
Gauss sums 0( , f,2°) = 6( , g, 2") for all ¢t > 1, however they are obviously
not Z,-equivalent.

The theory of Minkowski reproduced in this section was extended by
O’Meara to integral quadratic forms over local fields.

§ 2. LOCAL REPRESENTATION MASSES AND Z -EQUIVALENCE
OF FORMS

We identify Q, with its topological dual by defining <n, m> = x,(nm),
where ¥, 1s Tate’s character:

xp(@) = exp(2ni ), ap®),

s<0

ifa = ) agp’ Let dn be the Haar measure of Q, normalized by dn(Z,) = 1.

SZSo

As is well-known, dn is selfdual. Let dx be the Haar measure of Q,
naturally induced by dn.

Let f be a non-singular integral p-adic quadratic form in k > 1 variables.
We shall deal in this section with the representation mass function given
by (0.1) for ¢ = 1(z,. That is, we define for all n, € Q,:

r(n,, f,Z,) = lim (dx(f~"U)NZ%)/dnU),
U—{no}
whenever this limit exists. Clearly r has support contained in Z,. We can
also consider the Gauss-Weil transform of 1,4« by f given by

Zp

O(m, f,Q,) = J" < f(x), m> dx .

The relationship between these representation masses and the ones introduced
in the preceeding section is given in the following

LeMMA 2.1. 1) Let neZ,,n # 0, and t > v,(4n). Then

r(n, f, Z,) = lim p ™ r(n, f,p*) = p" P r(n, f, p").

ii) Let meZ, and uelZ,,t>1 be chosen arbitrarily satisfying

m = up ‘. Then

O(m, f,Q,) = p “O(u, f,p").
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Proof. i) Let U, = n + p'Z,. We have dn(U,) = p fand

dx(f "N U)NZY) = Y dx(f "' (U)n(a+pZ}) = p~“r(n, f, p"),
as(Z/ptZ)*
since f~Y(U,) n (a+p'Z%) is equal to a + p'Z} or vacuous, according to
f(a) = n(mod p') or not. This-proves the first equality in 1).
We want now to show that p* " r.(n) = p? 06Dy _i(n), for all
s > t. We know that

ps
rin, f,p°) = p~° Y. Ou, f, p°) exp (—2miunp ")
u=1

Let us denote by A4 and B the sum of the terms satisfying p|u and
p ¥ u, respectively. Clearly A = p* ! r(n, f, p°~%); hence, we are reduced to
proving B = 0. Taking into account the explicit computations of Gauss sums
(Proposition 1.1), we can express the sum B as

c > <E> exp (—2miunp %) if p>2

uelZ/pSZ)y*

2\ " 2miu \ ¢ .
D <—> exp <ﬂ> exp (—2miun2~%) if p =2,
\ ue(z/252)% \U 8
where C; D, a, b,c depend on f and s, but are independent of u. Now,
exp (—2minp ) is a primitive p’-th root of 1 with [ > 1 if p > 2, and
| >3 if p =2 One can check that, for any function ¢ defined on
(Z/p™Z)*, m > 1 and & any primitive p'-th root of 1, | > m, one has
L eweE = 0.

ue(Z/p’Z)tla

In particular, B must be zero.
In order to prove ii) we need only to observe that

bm, f,Q,) = f _ €Xp (2mif (x)up ~*)dx

Zp

= Z eXp (Zﬂiif(a)up—t) J k dx = p—kte(u’ f> pt) . [l

ae(Z/ptZ)x a+pth

Remark. After Siegel [13], it was very well known that for n # 0
the values p" ™™ r(n, f, p') become constant for ¢ > 2v,(4n). Lemma 2.1
shows that the minimum value of ¢ with this property can be taken equal
to half of the one found by Siegel.
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By Lemma 2.1, r( , f, Z,) is locally constant, hence continuous on Q},
and r(n, f,Z,) = 0 if and only if n is not represented by f in Z,.
The fundamental fact is that r is integrable on Z, and 0 is its Fourier
transform. This is well-known [4]. For the sake of completeness we give a
short proof of this result using only the background introduced up to now.

PROPOSITION 2.2. re LYZ,) and

O(m, f,Q,) = J rin, f,Z,) <n,m> dn .
ZP
Proof. We assume p > 2. For p = 2 the proof works in the same way
with minor modifications left to the reader. Let m = up™*, ueZ,, s = 0.
For all t > s, Z,\p'Z, is compact, hence r(n), being continuous, is integrable
and we have by Lemma 2.1:

J rn, f,Z,) <n,m>dn = ), J r(n, f,Z,) <n,m> dn
Z\P*'Z, a+ptZ,

acZ/ptZ

a¥0
= Y p ¥ra, f,p")exp Quiaup~*) = p~ (0@ *u, f, p')—r(0, £, p"))
acZ/ptZ
a¥0

= e(m: f> Qp) - p—ktr(o’ f> pt) .

Both assertions of the proposition are consequences of Lebesgue’s dominated
convergence theorem if p~"r(0, f, p') tends to zero as t tends to infinity.
This is checked immediately for k = 1. For k > 1 it can be easily deduced
from (1.1) and the explicit computation of Gauss sums in the preceding
section. [

We are ready to prove a crucial fact for the rest of the paper:

THEOREM 2.3. Let f,g be two non-singular integral p-adic quadratic
forms in k wvariables. If p = 2, assume that they are of the same type.
The following conditions are equivalent :

1) f~g over Z,,
i) n,f,Z,) =1r,97Z,)),
i) 6(, f,Q,) = 0(,4,Q,).
Proof. If f ~g over Z,, then f ~g over Z/pZ and r(, f,p")
=1r(,g p') forall t > 1. By Lemma 2.1 this implies ii). By Proposition 2.2,

ii) implies iii). Again by Lemma 2.1, iii) implies that 6( , f,p’) = 6( , g, p")
for all ¢t > 1, therefore condition 1) follows now from Theorem 1.2. [
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Let K be a local field and f a non-singular quadratic form in
k variables defined over K. If ¢ is a Schwartz-Bruhat function on K¥,
the representation mass function r,( , f, K) defined as in (0.1) coincides with
another classical representation mass function introduced by Weil. This is
Weil’s procedure (see [4] for the details): for n # 0, the (k— 1)-differential
forms

OJL(X) — (—‘l)i—l (Dif)_l dxl AN e A d.)el A e A dxk,

induce a gauge form ®, on the affine variety f~*(n). Since we are in a local
field, ®, induces a positive measure | ®,| on f~(n) such that for every
continuous function ¢ on K* with compact support not containing zero
we have

(2.1) J o(x)dx = j <J 0|, ) dn .
K¥ K \J S~

The representation mass of n e K* by f with respect to ¢ is then defined as

F¢(n)=j ¢|o,l.
=1
This function is continuous and after (2.1) it is easy to prove that F,

is integrable and its Fourier transform coincides with the Gauss-Weil
transform :

J d(x) < f(x), m> dx = j Fy(n) <n,m> dn .
Kk K

Let now n, e K* and let U be any open neighbourhood of n,. From (2.1)
it 1s also easy to justify that:

J O(x)dx = J Fy(n)dn .
ViR (%)] U

Since F is continuous and K is locally compact, we have also:

Fyn,) = lim < j Fy(n)dn / J dn) = ry(n,)
U—{no} U U

thus Fy = r, on K*.
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