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270 P. BAYER AND E. NART

possible anymore, as the following example shows: By Proposition 1.1

the diagonal forms / < 1, 2, 2, 2, 4>} g =* < 1, 1, 2, 4, 4 > have the same
Gauss sums 0( /, 2f) ô( g, 2') for all t ^ 1, however they are obviously
not Z2-equivalent.

The theory of Minkowski reproduced in this section was extended by
O'Meara to integral quadratic forms over local fields.

§ 2. Local representation masses and Zp-equivalence
OF FORMS

We identify Qp with its topological dual by defining <n,m> %p(nm),

where %p is Tate's character:

Xp(a) exp (2ra £
s< 0

if a Yj asPs• Let dn be the Haar measure of Qp normalized by dn(Zp) 1.

S-^So

As is well-known, dn is selfdual. Let dx be the Haar measure of Qp

naturally induced by dn.

Let / be a non-singular integral p-adic quadratic form in k > 1 variables.

We shall deal in this section with the representation mass function given

by (0.1) for cj) l(zP)k- That is, we define for all n0e Qp :

r(n0,f, Zp)= lim (dx{f-\U)nZkp)/dnU),
U^{n0}

whenever this limit exists. Clearly r has support contained in Zp. We can
also consider the Gauss-Weil transform of l(Zp)k by / given by

0(m, f,Q= < f(x), m> dx

The relationship between these representation masses and the ones introduced
in the preceeding section is given in the following

Lemma 2.1. i) Let neZp,n # 0, and t > vp(4n). Then

r(n,f,Zp) lim p(1 r(n,f,ps) p(1 "*>'
S^> CO

ii) Let m e Zp and u e Zp, t > 1 be chosen arbitrarily satisfying

m up~x. Then

9(m, /, QP) p"fct0(M, /,?')•
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Proof, i) Let U, n + p'Zp.Wehave dn(Ut) 'and

dx{f~x(Ut)n Zkp)Y dxif-'iU^n
ae(Z/ptZ)k

since f~1{Ut)c\(a + ptZkp) is equal to a + p'Z* or vacuous, according to

f(a) n (mod pv) or not. This proves the first equality in i).

We want now to show that p{1~k)s rpS(ri) p(1-fc)(s_1) rpS-i(n), for all

s > t. We know that

r(n, /, ps) p~s Y f, ps) zxp (-2niunp-s).
u= 1

Let us denote by A and B the sum of the terms satisfying p \ u and

p u, respectively. Clearly A — pk~x r(n, /, ps_1); hence, we are reduced to

proving B 0. Taking into account the explicit computations of Gauss sums

(Proposition 1.1), we can express the sum B as

B
ueÇZ/psZ)*

C Y, (-) exp( — 2niunp s) if p > 2

^ /2\b (2niu\
D Y _ exP / exP (—2niun2 s) if p 2

where C, D, a, b, c depend on / and s, but are independent of u. Now,

exp — 2ninp~s) is a primitive pl-th root of 1 with I > 1 if p > 2, and
I > 3 if p 2. One can check that, for any function (p defined on
(Z/pmZ)*, m ^ 1 and E, any primitive pz-th root of 1, I > m, one has

X cp(")Çu 0
ue(Z/plZ)*.

In particular, B must be zero.

In order to prove ii) we need only to observe that

0(wi, f,Q„)

Y. exp (2nif(a)up '

ae(Z/ptZ)k

^
exp (27iif(x)up *)dx

•p

dx p~ktd(u, /, //) n
a + ptZkp

Remark. After Siegel [13], it was very well known that for n ¥= 0
the values p{1~k)t r(n, f, p*) become constant for t > 2vp(4n). Lemma 2.1

shows that the minimum value of t with this property can be taken equal
to half of the one found by Siegel.
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By Lemma 2.1, r( /, Zp) is locally constant, hence continuous on Q*,
and r(n,f,Zp) 0 if and only if n is not represented by / in Zp.
The fundamental fact is that r is integrable on Zp and 9 is its Fourier
transform. This is well-known [4]. For the sake of completeness we give a

short proof of this result using only the background introduced up to now.

Proposition 2.2. r e L\Zp) and

0(wi, /> Q„) r(n, /, Zp) <n,m> dn

ProofWe assume p > 2. For p 2 the proof works in the same way
with minor modifications left to the reader. Let m up~\ ueZp, s ^ 0.

For all t > s, Zp\plZp is compact, hence r(n), being continuous, is integrable
and we have by Lemma 2.1 :

r(n, /, Zp) <n,m>dn= ^
Zp\ptZp aeZlplZ

af 0

r(n, /, Zp) <n,m> dn
p

a + plZp

X P
kt r(a,f,p')exp(2niaups)p k'(Q(p' su, f, p')-r(0, f, p'j)

aeZ/ptZ
afO

Q(m,f,Qp) - p~k'r(0, f,
Both assertions of the proposition are consequences of Lebesgue's dominated

convergence theorem if p~ktr(0, /, p*) tends to zero as t tends to infinity.
This is checked immediately for k 1. For k > 1 it can be easily deduced

from (1.1) and the explicit computation of Gauss sums in the preceding
section.

We are ready to prove a crucial fact for the rest of the paper:

Theorem 2.3. Let /, g be two non-singular integral p-adic quadratic

forms in k variables. If p 2, assume that they are of the same type.
The following conditions are equivalent :

i) f ~ g over Zp,

ii) r( f, Zp) r( g, Zp),

iii) 0( ,/, Qp) 9( Qp).

Proof. If f ~ g over Zp, then f ~ g over Z/p'Z and r( ,f,p')
r( g,pl) for all t ^ 1. By Lemma 2.1 this implies ii). By Proposition 2.2,

ii) implies iii). Again by Lemma 2.1, iii) implies that 0( /, pf) 0( g, pl)
for all t > 1, therefore condition i) follows now from Theorem 1.2.
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Let K be a local field and / a non-singular quadratic form in
k variables defined over K. If 4> is a Schwartz-Bruhat function on Kk,

the representation mass function r^( /, X) defined as in (0.1) coincides with
another classical representation mass function introduced by Weil. This is

Weil's procedure (see [4] for the details): for n ^ 0, the (k— l)-differential
forms

cöf(x) (—l)l_1 (Dtf)~1 dxy a a dxt a a dxk,

induce a gauge form co„ on the affine variety /_1(n). Since we are in a local
field, con induces a positive measure | co„ | on /_1(n) such that for every
continuous function cp on Kk with compact support not containing zero
we have

(2.1) cp(x)dx
Kk

(plcoj )dn.
f ~ 1(n)

The representation mass of n e K* by / with respect to <\> is then defined as

*"(«) <l> I I
•

This function is continuous and after (2.1) it is easy to prove that F^
is integrable and its Fourier transform coincides with the Gauss-Weil
transform :

c[)(x) < /(x), m> dx
Kk

F^(n) <n,m> dn

Let now n0 e K* and let U be any open neighbourhood of n0. From (2.1)
it is also easy to justify that:

§(x)dx —

f~Hv)
F^n)dn.

Since F^ is continuous and K is locally compact, we have also :

F^{n0) lim
U^{n0} \J

F$(n)dn / dn UX)

thus Fa on K*.
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