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§ 1. GAUSS SUMS AND EQUIVALENCE OF QUADRATIC FORMS

We summarize in this section some classical criteria, essentially due to
Minskowski (cf. [8]), for Z,-equivalence of quadratic forms in terms of
Gauss sums.

In general, if f and g are two integral quadratic forms in k variables
over a ring A, and A and B are the symmetric matrices with entries in A
such that f(x) = xTAx, g(x) = x"Bx, we will say that f and g are
A-equivalent, (resp. of the same A-type) if there exist P, Q € GL(k, A) such
that B = PTAP (resp. B = QAP). In the first case we shall write
“f ~ g, over A”.

Let p be a prime, t > 1 an integer and let A = Z/p'Z with discrete
topology. Let dn be the Haar measure of A normalized by dn(A) = p’
and take ¢ = 1. The representation mass (0.1) of ne A by a quadratic
form f over A is the ordinary number of representations

rn, f,p") :=#f""'(n).

Its Fourier transform is given by

SR

8(m, 1, p) Z n, f, p') exp 2rinmp ") .

It clearly coincides with the Gauss-Weil transform (0.3), which in this case
is the ordinary Gauss sum:

Om, f,p') = ), exp (2nimf(x)p~').

xeAKk

By the Fourier inversion formula we have, moreover,

(1.1) rn, f,p) = p7t 21 O(m, f,'p') exp (—2mimnp~").

As 1s well known, any integral p-adic form is Z -equivalent to an
orthogonal sum of 1-dimensional forms if p > 2, and 1-dimensional and
2-dimensional forms if p = 2. Since, on the other hand, given two integral
p-adic forms f and g we have for every t > 1

O, fLg,p") =60, 1, p)6(,g 1),

the 0 values of f can be deduced from the next proposition.



266 P. BAYER AND E. NART

ProposiTION 1.1. i) Let w,veZ,,pfuv and steZ,s>0,t> 1
Then

P’ if t<s
uv t+s 5
p(t+s)/2 <___) 8g-ks) lf t > s,p> )
p
O(u, p'vX?, p*) =
0 if t=s+1,p=2

2 t+s+1
Quts+1)2 <u*v> exp Qriuv/8) if t > s+ 1,p = 2.

where €, = 1 or i, accordingto p=1 or 3(mod4).

ii) Let F(X,Y) = vX* + 2wXY + zY% 2 ) (v,w,z) be a 2-adic non-
diagonalizable integral quadratic form. Then if t > 1 and ueZ, isodd

25 if t<s.

o1 2 t+s+1 .
2 E lf [ = 8,

O(u, 2°F, 2') =

where d = vz — w>
Proof. From the definition of 0 it is clear that

g™ if t<s,

Ou, p'vf, p') = Oy, f,p') =
pOuv, f,p'75) if t>s,

for any integral p-adic form f and u, v, s, t as in 1). Hence the assertion of 1)
follows from the well-known values of the Gauss sums 0( , X2, p") (cf. [3],
Ch. 7, Thms. 5.6 and 5.7).

Let F(X, Y) be as in ii). Being primitive, F is diagonalizable if and only
if it represents some odd integer, and this is equivalent to v or z being
odd. Suppose that t > s and v and z even. One computes easily by hand that

Ou, F,2) =4, 0Ou F,4) = 8(3)

 Ift > 3, we get ii) from the equality

Ou, F,2') = 40(u, F, 2" 2). n
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TuEOREM 1.2. Let f,g be two non-singular integral p-adic quadratic
forms in k wvariables. If p = 2, assume that they are of the same type.
The following conditions are equivalent :

i) f~g over Z,,

i) r(, f,p)=1r(,gp") foral t=1
iii) 6(,f,p") =0(,gp) forall t>1.

b

Two Z,equivalent forms are, in particular, Z/p'Z-equivalent for all
t > 1, hence they have the same representation numbers r(n, f, p') for all
t>1, neZ,. Since r( , f,p') and 0(, f,p') are Fourier transforms over
Z/p'Z one of each other, ii) and iii) are clearly equivalent. Therefore, the
proof of Theorem 1.2 is reduced to showing that Gauss sums determine
Z -equivalence. This is easy if p > 2:

Proof of Theorem 1.2 for p > 2. We proceed by induction on k.
Let f(X) = p'vX? g(X) = pPvX?, p ¥ vv'. By Proposition 1.1, the equality
0, f,p') = 06(1,g9,p") for t =5+ 1,s + 2 implies that s =s and

<B> = <U—>, thus f ~ g over Z,. Let f = p°fy, g = p*go be two forms
p p

in k variables with f,, g, primitive. If they have the same Gauss sums,
then s = s, otherwise, if s < s" by Proposition 1.1 we would have

161, f,p*) | < 6(1, g, p°) = p°¥,

a contradiction. Since f, and g, will have the same Gauss sums, we can
suppose that f and g are both primitive. Let u be a p-adic unit represented
by f and g. It is well known that, over Z,, we have splittings

f~<u>L1f, g~ <u>1<g;>.

Since 8( ,uX? p') never vanishes and Z ,-equivalent forms have the same
Gauss sums, we will have

oC,f.p) 6,90

0, £, 7 = _ _ :
( fl p) 9(,UX2,pt) 9(,UX2,pt) e(aglap)a

for all #. By the induction hypothesis this implies f; ~ g,, hence f~y
over Z,. []

The proof of Theorem 1.2 for p = 2 is much more delicate, due to the
fact that Gauss sums can vanish in this case. We need a few properties of
2-adic forms which we sum up in Lemma 1.3 below.
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We recall that a primitive 2-adic integral quadratic form is called
properly primitive if it represents some odd integer, otherwise it is called
improperly primitive. Clearly a 2-dimensional primitive form is properly
primitive if and only if it is diagonalizable over Z, .

LeMMmA 1.3. (cf. [1, Ch. 8]). Let H = <(1) é) H = (i‘ ;) Then

1)  Every improperly primitive form over Z, is Z,-equivalent to one of
the following two :

Hl1l.1lH1H o HI1..1lH1H.

i) For any 2-adic unit u we have splittings over Z.,:
<u> 1 H ~<ul —1>,
<u> 1L H ~ <u—2,u+2,Qu+3)u+2)"1>,
<2u> 1L H ~ <2u+8> 1 H'.

Proof of Theorem 1.2 for p = 2. By induction on k. Let f(X) = 25vX?,
g(X) = 25vX? 2 )w. By Proposition 1.1, 01, f,2") = 6(1, g,2") for
t =5+ 2, s+ 3 implies that s = s and v = v (mod &), hence f ~ g
over Z,. Let f and g be two forms in k variables, k > 2, of the same
type. We consider the splittings over Z,:

f~2%f L. L2%f,
g~2g, L. .12, 0<s <s5,<..<35,,

f;, g; with unit determinant and the same number of variables, k;, for all i.
Without restriction we can suppose that f and g are primitive, that is
s; = 0. If £ and g have the same Gauss sums, then for each i, f; and g;
are both properly or improperly primitive since, by Proposition 1.1, this
is equivalent to the vanishing or not of 6(1, f, 2°*1). The proof proceeds in
a different way according to whether f;, g, are properly or improperly
primitive.

Suppose that f; and g; are improperly primitive. If k; > 2, by 1) of
Lemma 1.3 we have, over Z,,

f~HLF, ¢g~HLG,

and, since 0( , H, 2') never vanishes, we have

o(,F,2) = . /.2)

=—==0(,G2
9(,H,2t) (9 > )7
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for all z. By the induction hypothesis F ~ G, hence f ~ g over Z,.
If k, =2 and f, ~ g, over Z,, we can proceed as above. Suppose that
k, = 2 and

f~HL1L22f, L .. L2%f,,
g~ H 122, 1 . 12%g,.

If s, > 1 (or k=k,=2)or f,, g, are improperly primitive we have
01, f,4) = 272672 = —0(1,9,4),

a contradiction. Hence s, = 1 and f,,g, are diagonalizable. By 1ii) of
Lemma 1.3, g ~ H 1. 2%2g%, 1 .., over Z,, and we can proceed as above.

Suppose now that f; and g, are properly primitive. Let u be a 2-adic
unit represented by f and g. We have splittings over Z,:

(1.2) f~<u>1F, g~ <u>_1G.

Since O( ,uX?2")#0 for t # 1, we get O( ,F,2") = 0(,G,2") for all
t # 1. We have only to prove that 6( , F,2) = 0( , G, 2) and the claim will
follow from the induction hypothesis. If k&, = 1 or F and G are both
properly or improperly primitive we are done. Assume that F is properly
and G improperly primitive. This is possible indeed (see ii) of Lemma 1.3).
By 11) of Lemma 1.3 we can always find a Z,-splitting g ~ <u> 1 G,
with G’ properly primitive except for the case that over Z,

g~ <u> LH 122, 1 .,

with k; = 3 and s, > 1 (or k=3) or g, improperly primitive. Let us assume
in this case that over Z,

[~ <u,v,w> 12%f, 1 ... .
From 0(1, f,4) = 6(1, g, 4) we get

2
exp (2mi(v+w)/8) = — <—> ,
oW
or, equivalently, vw = 3 (mod 8). This implies that either v or w are congruent
(mod 8) to any of u — 2,u + 2; hence, changing u by v or w we get a
splitting (1.2) with F and G both properly primitive.  []

Remark. For p = 2 and k < 4 we could remove in the theorem the
condition of f and g being of the same type. For k > 5 this is not
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possible anymore, as the following example shows: By Proposition 1.1
the diagonal forms [ = <1,2,2,2,4>, g = <1,1,2,4,4> have the same
Gauss sums 0( , f,2°) = 6( , g, 2") for all ¢t > 1, however they are obviously
not Z,-equivalent.

The theory of Minkowski reproduced in this section was extended by
O’Meara to integral quadratic forms over local fields.

§ 2. LOCAL REPRESENTATION MASSES AND Z -EQUIVALENCE
OF FORMS

We identify Q, with its topological dual by defining <n, m> = x,(nm),
where ¥, 1s Tate’s character:

xp(@) = exp(2ni ), ap®),

s<0

ifa = ) agp’ Let dn be the Haar measure of Q, normalized by dn(Z,) = 1.

SZSo

As is well-known, dn is selfdual. Let dx be the Haar measure of Q,
naturally induced by dn.

Let f be a non-singular integral p-adic quadratic form in k > 1 variables.
We shall deal in this section with the representation mass function given
by (0.1) for ¢ = 1(z,. That is, we define for all n, € Q,:

r(n,, f,Z,) = lim (dx(f~"U)NZ%)/dnU),
U—{no}
whenever this limit exists. Clearly r has support contained in Z,. We can
also consider the Gauss-Weil transform of 1,4« by f given by

Zp

O(m, f,Q,) = J" < f(x), m> dx .

The relationship between these representation masses and the ones introduced
in the preceeding section is given in the following

LeMMA 2.1. 1) Let neZ,,n # 0, and t > v,(4n). Then

r(n, f, Z,) = lim p ™ r(n, f,p*) = p" P r(n, f, p").

ii) Let meZ, and uelZ,,t>1 be chosen arbitrarily satisfying

m = up ‘. Then

O(m, f,Q,) = p “O(u, f,p").
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