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ZETA FUNCTIONS AND GENUS OF QUADRATIC FORMS

by Pilar BavEr and Enric NART ')

Let f be a positive definite Z-integral quadratic form in k variables and

let r(n, f) be the number of integral representations of an integer n by f.
A classical analytical invariant associated to f is Epstein’s zeta function

o0

s, f) = ) r(n, f)n~% for a complex s with Res > k/2. In the indefinite

n=1

case, the number of integral representations of an integer by a form can
be infinite. Nevertheless, to any Z-integral quadratic form f and integer n,
Siegel attached representation masses r(n, /) and studied the corresponding
complex zeta function {(s, f).

It is a natural question to ask to what extent {(s, /) contains information
about the arithmetic properties of f. It should be noted that it doesn’t
determine the equivalence class of f, since examples of inequivalent forms
over 7Z with the same representation numbers were already pointed out
by Witt, Kneser and Kitaoka [19,7,5]. However, it was conjectured by
Kitaoka in [5] that for f even and positive definite, {(s, f) determines the
genus of f. We show in Theorem 5.2 that if two non-singular, Z-integral
quadratic forms, with the same signature and the same 2-type, have the same
representation masses, then they must belong to the same genus. From the
analytical point of view, this is equivalent to the statement that two forms,
as above, with the same complex zeta function must be “isogenous”.

The proof of this theorem relies on a previous study of representation
masses of integral quadratic forms, in the local case.

Given a locally compact ring A and a non singular A-integral quadratic
form f in k variables, there are several ways to attach to f representation
masses. Most of them can be unified by the following definition :

(0.1) ro(no, f>A) = lim < J d(x)dx / j dn),
U—{no} -y U

q _‘) The authors have been partially supported by grant PB 850075 from CAICYT,
pain.



264 P. BAYER AND E. NART

for ny € A. Here dn denotes a Haar measure on (A, +), dx the Haar measure
naturally induced on A* by dn, and ¢ is a function in LY(A¥). Let A be the
Pontrjagin dual of A.

In all cases we shall deal with, r, will be integrable over A. This makes
possible the definition of local theta functions simply by taking Fourier
transforms:

(0.2) 0,0m, £, A) : = J ro(n, fo A) <n,m>dn .

A

Since

(0.3) J ron, £, A) <n,m>dn = J d(x) < f(x), m>dx,

these theta functions are nothing else but the Gauss-Weil transform of ¢
by f.

If A = Z/p'Z, the representation masses (0.1) are the congruential
representation numbers of the quadratic form and the Gauss-Weil
transform (0.3) yields the ordinary Gauss sums attached to f. They were
studied by Minkowski in his important paper [8]; his results are reproduced
in § 1.

In general, it is clear from the definition that the representation masses
ro( , f» A) are invariant of the A-equivalence class of f. It is a crucial fact
that in favorable cases they are, in fact, a complete system of invariants
of such a class. This is worked out in Sections 2, 3 and 4 for A = Z,,
Q, and A; the core of the proof is always the same: A-equivalence is
determined by the theta function 04 , f, /A\), for a suitable ¢. The corres-
ponding global statement is then obtained in Section 5 by means of
Siegel’s formula and the local result for Z,. We prove first in Theorem 5.1
that two forms with the same average-in-the-genus theta series must belong
to the same genus, if they have the same signature and the same 2-type.
This result was anticipated by Siegel [13, page 374] for definite forms in
five or more variables. Our proof, essentially of a local nature, deals
simultaneously with the definite case (and k>3) and the indefinite case
(and k>4). From Theorem 5.1 we deduce Theorem 5.2 showing that two
forms, as above, with the same representation masses must have also the
same average-in-the-genus masses.
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§ 1. GAUSS SUMS AND EQUIVALENCE OF QUADRATIC FORMS

We summarize in this section some classical criteria, essentially due to
Minskowski (cf. [8]), for Z,-equivalence of quadratic forms in terms of
Gauss sums.

In general, if f and g are two integral quadratic forms in k variables
over a ring A, and A and B are the symmetric matrices with entries in A
such that f(x) = xTAx, g(x) = x"Bx, we will say that f and g are
A-equivalent, (resp. of the same A-type) if there exist P, Q € GL(k, A) such
that B = PTAP (resp. B = QAP). In the first case we shall write
“f ~ g, over A”.

Let p be a prime, t > 1 an integer and let A = Z/p'Z with discrete
topology. Let dn be the Haar measure of A normalized by dn(A) = p’
and take ¢ = 1. The representation mass (0.1) of ne A by a quadratic
form f over A is the ordinary number of representations

rn, f,p") :=#f""'(n).

Its Fourier transform is given by

SR

8(m, 1, p) Z n, f, p') exp 2rinmp ") .

It clearly coincides with the Gauss-Weil transform (0.3), which in this case
is the ordinary Gauss sum:

Om, f,p') = ), exp (2nimf(x)p~').

xeAKk

By the Fourier inversion formula we have, moreover,

(1.1) rn, f,p) = p7t 21 O(m, f,'p') exp (—2mimnp~").

As 1s well known, any integral p-adic form is Z -equivalent to an
orthogonal sum of 1-dimensional forms if p > 2, and 1-dimensional and
2-dimensional forms if p = 2. Since, on the other hand, given two integral
p-adic forms f and g we have for every t > 1

O, fLg,p") =60, 1, p)6(,g 1),

the 0 values of f can be deduced from the next proposition.
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ProposiTION 1.1. i) Let w,veZ,,pfuv and steZ,s>0,t> 1
Then

P’ if t<s
uv t+s 5
p(t+s)/2 <___) 8g-ks) lf t > s,p> )
p
O(u, p'vX?, p*) =
0 if t=s+1,p=2

2 t+s+1
Quts+1)2 <u*v> exp Qriuv/8) if t > s+ 1,p = 2.

where €, = 1 or i, accordingto p=1 or 3(mod4).

ii) Let F(X,Y) = vX* + 2wXY + zY% 2 ) (v,w,z) be a 2-adic non-
diagonalizable integral quadratic form. Then if t > 1 and ueZ, isodd

25 if t<s.

o1 2 t+s+1 .
2 E lf [ = 8,

O(u, 2°F, 2') =

where d = vz — w>
Proof. From the definition of 0 it is clear that

g™ if t<s,

Ou, p'vf, p') = Oy, f,p') =
pOuv, f,p'75) if t>s,

for any integral p-adic form f and u, v, s, t as in 1). Hence the assertion of 1)
follows from the well-known values of the Gauss sums 0( , X2, p") (cf. [3],
Ch. 7, Thms. 5.6 and 5.7).

Let F(X, Y) be as in ii). Being primitive, F is diagonalizable if and only
if it represents some odd integer, and this is equivalent to v or z being
odd. Suppose that t > s and v and z even. One computes easily by hand that

Ou, F,2) =4, 0Ou F,4) = 8(3)

 Ift > 3, we get ii) from the equality

Ou, F,2') = 40(u, F, 2" 2). n
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TuEOREM 1.2. Let f,g be two non-singular integral p-adic quadratic
forms in k wvariables. If p = 2, assume that they are of the same type.
The following conditions are equivalent :

i) f~g over Z,,

i) r(, f,p)=1r(,gp") foral t=1
iii) 6(,f,p") =0(,gp) forall t>1.

b

Two Z,equivalent forms are, in particular, Z/p'Z-equivalent for all
t > 1, hence they have the same representation numbers r(n, f, p') for all
t>1, neZ,. Since r( , f,p') and 0(, f,p') are Fourier transforms over
Z/p'Z one of each other, ii) and iii) are clearly equivalent. Therefore, the
proof of Theorem 1.2 is reduced to showing that Gauss sums determine
Z -equivalence. This is easy if p > 2:

Proof of Theorem 1.2 for p > 2. We proceed by induction on k.
Let f(X) = p'vX? g(X) = pPvX?, p ¥ vv'. By Proposition 1.1, the equality
0, f,p') = 06(1,g9,p") for t =5+ 1,s + 2 implies that s =s and

<B> = <U—>, thus f ~ g over Z,. Let f = p°fy, g = p*go be two forms
p p

in k variables with f,, g, primitive. If they have the same Gauss sums,
then s = s, otherwise, if s < s" by Proposition 1.1 we would have

161, f,p*) | < 6(1, g, p°) = p°¥,

a contradiction. Since f, and g, will have the same Gauss sums, we can
suppose that f and g are both primitive. Let u be a p-adic unit represented
by f and g. It is well known that, over Z,, we have splittings

f~<u>L1f, g~ <u>1<g;>.

Since 8( ,uX? p') never vanishes and Z ,-equivalent forms have the same
Gauss sums, we will have

oC,f.p) 6,90

0, £, 7 = _ _ :
( fl p) 9(,UX2,pt) 9(,UX2,pt) e(aglap)a

for all #. By the induction hypothesis this implies f; ~ g,, hence f~y
over Z,. []

The proof of Theorem 1.2 for p = 2 is much more delicate, due to the
fact that Gauss sums can vanish in this case. We need a few properties of
2-adic forms which we sum up in Lemma 1.3 below.
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We recall that a primitive 2-adic integral quadratic form is called
properly primitive if it represents some odd integer, otherwise it is called
improperly primitive. Clearly a 2-dimensional primitive form is properly
primitive if and only if it is diagonalizable over Z, .

LeMMmA 1.3. (cf. [1, Ch. 8]). Let H = <(1) é) H = (i‘ ;) Then

1)  Every improperly primitive form over Z, is Z,-equivalent to one of
the following two :

Hl1l.1lH1H o HI1..1lH1H.

i) For any 2-adic unit u we have splittings over Z.,:
<u> 1 H ~<ul —1>,
<u> 1L H ~ <u—2,u+2,Qu+3)u+2)"1>,
<2u> 1L H ~ <2u+8> 1 H'.

Proof of Theorem 1.2 for p = 2. By induction on k. Let f(X) = 25vX?,
g(X) = 25vX? 2 )w. By Proposition 1.1, 01, f,2") = 6(1, g,2") for
t =5+ 2, s+ 3 implies that s = s and v = v (mod &), hence f ~ g
over Z,. Let f and g be two forms in k variables, k > 2, of the same
type. We consider the splittings over Z,:

f~2%f L. L2%f,
g~2g, L. .12, 0<s <s5,<..<35,,

f;, g; with unit determinant and the same number of variables, k;, for all i.
Without restriction we can suppose that f and g are primitive, that is
s; = 0. If £ and g have the same Gauss sums, then for each i, f; and g;
are both properly or improperly primitive since, by Proposition 1.1, this
is equivalent to the vanishing or not of 6(1, f, 2°*1). The proof proceeds in
a different way according to whether f;, g, are properly or improperly
primitive.

Suppose that f; and g; are improperly primitive. If k; > 2, by 1) of
Lemma 1.3 we have, over Z,,

f~HLF, ¢g~HLG,

and, since 0( , H, 2') never vanishes, we have

o(,F,2) = . /.2)

=—==0(,G2
9(,H,2t) (9 > )7
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for all z. By the induction hypothesis F ~ G, hence f ~ g over Z,.
If k, =2 and f, ~ g, over Z,, we can proceed as above. Suppose that
k, = 2 and

f~HL1L22f, L .. L2%f,,
g~ H 122, 1 . 12%g,.

If s, > 1 (or k=k,=2)or f,, g, are improperly primitive we have
01, f,4) = 272672 = —0(1,9,4),

a contradiction. Hence s, = 1 and f,,g, are diagonalizable. By 1ii) of
Lemma 1.3, g ~ H 1. 2%2g%, 1 .., over Z,, and we can proceed as above.

Suppose now that f; and g, are properly primitive. Let u be a 2-adic
unit represented by f and g. We have splittings over Z,:

(1.2) f~<u>1F, g~ <u>_1G.

Since O( ,uX?2")#0 for t # 1, we get O( ,F,2") = 0(,G,2") for all
t # 1. We have only to prove that 6( , F,2) = 0( , G, 2) and the claim will
follow from the induction hypothesis. If k&, = 1 or F and G are both
properly or improperly primitive we are done. Assume that F is properly
and G improperly primitive. This is possible indeed (see ii) of Lemma 1.3).
By 11) of Lemma 1.3 we can always find a Z,-splitting g ~ <u> 1 G,
with G’ properly primitive except for the case that over Z,

g~ <u> LH 122, 1 .,

with k; = 3 and s, > 1 (or k=3) or g, improperly primitive. Let us assume
in this case that over Z,

[~ <u,v,w> 12%f, 1 ... .
From 0(1, f,4) = 6(1, g, 4) we get

2
exp (2mi(v+w)/8) = — <—> ,
oW
or, equivalently, vw = 3 (mod 8). This implies that either v or w are congruent
(mod 8) to any of u — 2,u + 2; hence, changing u by v or w we get a
splitting (1.2) with F and G both properly primitive.  []

Remark. For p = 2 and k < 4 we could remove in the theorem the
condition of f and g being of the same type. For k > 5 this is not
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possible anymore, as the following example shows: By Proposition 1.1
the diagonal forms [ = <1,2,2,2,4>, g = <1,1,2,4,4> have the same
Gauss sums 0( , f,2°) = 6( , g, 2") for all ¢t > 1, however they are obviously
not Z,-equivalent.

The theory of Minkowski reproduced in this section was extended by
O’Meara to integral quadratic forms over local fields.

§ 2. LOCAL REPRESENTATION MASSES AND Z -EQUIVALENCE
OF FORMS

We identify Q, with its topological dual by defining <n, m> = x,(nm),
where ¥, 1s Tate’s character:

xp(@) = exp(2ni ), ap®),

s<0

ifa = ) agp’ Let dn be the Haar measure of Q, normalized by dn(Z,) = 1.

SZSo

As is well-known, dn is selfdual. Let dx be the Haar measure of Q,
naturally induced by dn.

Let f be a non-singular integral p-adic quadratic form in k > 1 variables.
We shall deal in this section with the representation mass function given
by (0.1) for ¢ = 1(z,. That is, we define for all n, € Q,:

r(n,, f,Z,) = lim (dx(f~"U)NZ%)/dnU),
U—{no}
whenever this limit exists. Clearly r has support contained in Z,. We can
also consider the Gauss-Weil transform of 1,4« by f given by

Zp

O(m, f,Q,) = J" < f(x), m> dx .

The relationship between these representation masses and the ones introduced
in the preceeding section is given in the following

LeMMA 2.1. 1) Let neZ,,n # 0, and t > v,(4n). Then

r(n, f, Z,) = lim p ™ r(n, f,p*) = p" P r(n, f, p").

ii) Let meZ, and uelZ,,t>1 be chosen arbitrarily satisfying

m = up ‘. Then

O(m, f,Q,) = p “O(u, f,p").
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Proof. i) Let U, = n + p'Z,. We have dn(U,) = p fand

dx(f "N U)NZY) = Y dx(f "' (U)n(a+pZ}) = p~“r(n, f, p"),
as(Z/ptZ)*
since f~Y(U,) n (a+p'Z%) is equal to a + p'Z} or vacuous, according to
f(a) = n(mod p') or not. This-proves the first equality in 1).
We want now to show that p* " r.(n) = p? 06Dy _i(n), for all
s > t. We know that

ps
rin, f,p°) = p~° Y. Ou, f, p°) exp (—2miunp ")
u=1

Let us denote by A4 and B the sum of the terms satisfying p|u and
p ¥ u, respectively. Clearly A = p* ! r(n, f, p°~%); hence, we are reduced to
proving B = 0. Taking into account the explicit computations of Gauss sums
(Proposition 1.1), we can express the sum B as

c > <E> exp (—2miunp %) if p>2

uelZ/pSZ)y*

2\ " 2miu \ ¢ .
D <—> exp <ﬂ> exp (—2miun2~%) if p =2,
\ ue(z/252)% \U 8
where C; D, a, b,c depend on f and s, but are independent of u. Now,
exp (—2minp ) is a primitive p’-th root of 1 with [ > 1 if p > 2, and
| >3 if p =2 One can check that, for any function ¢ defined on
(Z/p™Z)*, m > 1 and & any primitive p'-th root of 1, | > m, one has
L eweE = 0.

ue(Z/p’Z)tla

In particular, B must be zero.
In order to prove ii) we need only to observe that

bm, f,Q,) = f _ €Xp (2mif (x)up ~*)dx

Zp

= Z eXp (Zﬂiif(a)up—t) J k dx = p—kte(u’ f> pt) . [l

ae(Z/ptZ)x a+pth

Remark. After Siegel [13], it was very well known that for n # 0
the values p" ™™ r(n, f, p') become constant for ¢ > 2v,(4n). Lemma 2.1
shows that the minimum value of ¢ with this property can be taken equal
to half of the one found by Siegel.
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By Lemma 2.1, r( , f, Z,) is locally constant, hence continuous on Q},
and r(n, f,Z,) = 0 if and only if n is not represented by f in Z,.
The fundamental fact is that r is integrable on Z, and 0 is its Fourier
transform. This is well-known [4]. For the sake of completeness we give a
short proof of this result using only the background introduced up to now.

PROPOSITION 2.2. re LYZ,) and

O(m, f,Q,) = J rin, f,Z,) <n,m> dn .
ZP
Proof. We assume p > 2. For p = 2 the proof works in the same way
with minor modifications left to the reader. Let m = up™*, ueZ,, s = 0.
For all t > s, Z,\p'Z, is compact, hence r(n), being continuous, is integrable
and we have by Lemma 2.1:

J rn, f,Z,) <n,m>dn = ), J r(n, f,Z,) <n,m> dn
Z\P*'Z, a+ptZ,

acZ/ptZ

a¥0
= Y p ¥ra, f,p")exp Quiaup~*) = p~ (0@ *u, f, p')—r(0, £, p"))
acZ/ptZ
a¥0

= e(m: f> Qp) - p—ktr(o’ f> pt) .

Both assertions of the proposition are consequences of Lebesgue’s dominated
convergence theorem if p~"r(0, f, p') tends to zero as t tends to infinity.
This is checked immediately for k = 1. For k > 1 it can be easily deduced
from (1.1) and the explicit computation of Gauss sums in the preceding
section. [

We are ready to prove a crucial fact for the rest of the paper:

THEOREM 2.3. Let f,g be two non-singular integral p-adic quadratic
forms in k wvariables. If p = 2, assume that they are of the same type.
The following conditions are equivalent :

1) f~g over Z,,
i) n,f,Z,) =1r,97Z,)),
i) 6(, f,Q,) = 0(,4,Q,).
Proof. If f ~g over Z,, then f ~g over Z/pZ and r(, f,p")
=1r(,g p') forall t > 1. By Lemma 2.1 this implies ii). By Proposition 2.2,

ii) implies iii). Again by Lemma 2.1, iii) implies that 6( , f,p’) = 6( , g, p")
for all ¢t > 1, therefore condition 1) follows now from Theorem 1.2. [
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Let K be a local field and f a non-singular quadratic form in
k variables defined over K. If ¢ is a Schwartz-Bruhat function on K¥,
the representation mass function r,( , f, K) defined as in (0.1) coincides with
another classical representation mass function introduced by Weil. This is
Weil’s procedure (see [4] for the details): for n # 0, the (k— 1)-differential
forms

OJL(X) — (—‘l)i—l (Dif)_l dxl AN e A d.)el A e A dxk,

induce a gauge form ®, on the affine variety f~*(n). Since we are in a local
field, ®, induces a positive measure | ®,| on f~(n) such that for every
continuous function ¢ on K* with compact support not containing zero
we have

(2.1) J o(x)dx = j <J 0|, ) dn .
K¥ K \J S~

The representation mass of n e K* by f with respect to ¢ is then defined as

F¢(n)=j ¢|o,l.
=1
This function is continuous and after (2.1) it is easy to prove that F,

is integrable and its Fourier transform coincides with the Gauss-Weil
transform :

J d(x) < f(x), m> dx = j Fy(n) <n,m> dn .
Kk K

Let now n, e K* and let U be any open neighbourhood of n,. From (2.1)
it 1s also easy to justify that:

J O(x)dx = J Fy(n)dn .
ViR (%)] U

Since F is continuous and K is locally compact, we have also:

Fyn,) = lim < j Fy(n)dn / J dn) = ry(n,)
U—{no} U U

thus Fy = r, on K*.
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§ 3. LOCAL REPRESENTATION MASSES AND Q,-EQUIVALENCE
OF FORMS

There is a formula due to Minkowski (cf. [9]) for O(u, f, p') if ¢t is
large enough, in which appear the well-known pair of invariants determining
the Q,-equivalence class of f. As a consequence of this formula (cf. Pro-
position 3.2), we shall obtain a characterization of Q, -equivalence of forms
through local representation masses.

Let s > 1 be an integer and X, = {meQ,| — v,(m) > s}. For any
integral p-adic quadratic form f we define the functions:

rs( > f> Zp) = p——ﬁ(f)/Z(r( > f’ Zp)_p(l_k)sr( > f: ps)) )
0.(, f.Q,) = p7°720(, £,Q,) . 1y,,

where 6(f) = v,(det f).
The reader may check that the function defined on Q%\{0} by

dy(x) = p7°U2 <1 — pt7hs :((J{((ch)),’j{f,’ép)g - Lizpye (%)

is integrable over Q, and that r; = r, ,0; = 0, , so that these functions
follow the general pattern mentioned in the introduction. Note that ¢,
is not a Schwartz-Bruhat function.

PROPOSITION 3.1. rye LY(Z,) and Oy (m) = J ri(n) <m, n> dn.
Zp

Proof. r,is integrable since r and r (mod p°) are integrable. To prove the
second assertion, by Proposition 2.2 we need only to compute

r(m, f,p°) = J r(n, f,p°) <m, n> dn.
Zp
Let m =p'u, ueZ,, pfu t=>0 Let t, = max{s, t}. On each class

a + p°Z,, the integrand is constant and we have

rm, f,p°) =p~" > Ha, f,p°)exp 2niuap™).

acZ/ptoZ

If t < s we have directly:

plTF(m, £, p°) = Oup*™", f, p°) = B(m, [, Q,).
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If t > s the sum is equal to

p™ Y ra,, f,p°) expRmiua,p™t) Y, exp(2miup’*)’ = 0. 0

ac€Z/pSZ beZ/pt —SZ

In order to simplify Minkowski’s formula for the theta-values, we will
make use of the invariant [f], of a p-adic quadratic form introduced by
Conway [2]. Let o, be the last invariant factor of f and let s,(f) = v,(2po).

ProrosiTION 3.2. Let f be a non singular p-adic integral quadratic
formin k variables. For all t > s,(f) and ueZ} we have:

X u kt+3d do t '
e(u’ f, pz) _ p(8+kt)/2 8;(k+26) (E) [f]p (};) , lf p # 2,

2 t 2 kt
O(u, f,2') = 207K DN exp (2mik/8) [f], (d—) (;) [ul’ (u, det ), ,
if p=2.
Here & = 8(f), d, = p~°det f and (a, b), denotes Hilbert’s symbol.

Proof.  Since O(u, f, p') = 6(1, uf, p'), it is easy to reduce the claims
to the case u = 1. Assume first p > 2. Letv = v, .. v,,w = W, ... w,_,, where

f~ L <puw> L <pw;>

1<i<v 1<j<k—r
over Z,, with s; odd, ¢; even, v, wje Zy for all i,j. Let t > max {s;, ti};
i,j

by Prop. 1.1 we have

01, [, p') = p@rron

. v
Since [ f], = &}, <I—?>’ we get the desired formula.
We deal now with the case p = 2. Assume that, over Z,,

f~ 1 <2»H> | <2Yy;> ,

1<i<r 1<j<k—2r
where H; is 2-dimensional improperly primitive and v ;e L% . Let

U= 1L <H>, U= 1 <H>,v= | <v;>,V' = 1 <u>.

sieven s; odd tjeven tjodd
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Let d,d,v,v denote the respective determinants of U, U, V and V'. By

Proposition 1.1 we have for all t > 1 + max {s;, t;}
i, J

2 2\*
01, f,2) = 20TKETDI2 exp (2miw/8) (Zi;> (d_> ’

where w = Z v;. Let s denote the dimension of U; one can see that
1<j<k—-2r

[U]2 = <§>(_i)s/2 , [ZU,:IZ — (__i)(Zr—s)/Z )

Let m be the number of v/s in V congruent to 3 (mod 4), and let
ni,ns, ns,n; be the respective number of v’s in V' congruent to 1,3,5
or 7 (mod 8); we have

[V]2 [2V’]2 — i3n1+n3+2n5+3n7 .

Summing up these expressions the result follows. [

Whereas Z,-equivalence of forms is determined by all functions
r(, f,p'),t > 1 (Theorem 1.2), or equivalently by its limit value r( , f, Z,)
(Theorem 2.3), we prove in the next theorem that Q,-equivalent forms are
characterized by having the same differences r( , f, Z,) between these two
functions, for s sufficiently large.

THEOREM 3.3. Let f,g be non singular integral p-adic quadratic forms in
k wvariables. Suppose that s = max (s,(f), s,(g)). Then the following conditions
are equivalent :

1) f~g over Q,,
i) r(,.f.Z,) =r.9.Z,),
i) 0,(, f,Q,) = 6,(,9,Q,).

Proof. For any integer t > 1 we consider the difference

Ar(n, f,p*) 1= p* 70 D r(n, f,p" ) — p T r(n, £, p')

It is clear from the definitions that

ro(n, f, Z,) = p~°I" 5 Arn, f, p).

t=s

If f and g are Q,-equivalent, then Proposition 3.2 implies that

p3N2Q(y, £, pt) = p~3920(y, g, p'),
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forallueZ¥,t > s. Letne Z,, since
S p O, f,p')exp (—2minup™*) = r(n, f,p') — p* " r(n, £, 0"
ue(Z/ptZ)*
— p(k_l)tAl"(n, f, pt—l) ,

we see at once that i) = ii). By Proposition 3.1, ii) = 111).
Assume now condition iii). Let t = s,s + 1 and let ue Z}; from the
equality 0,(up”", 1, Q,) = 6,(up™", g, Q,) it follows, using Proposition 3.2,

that [f], = [g], and (d"(f)> = (@) Since the forms f and g have the
p

same discriminant and Conway invariant, they are equivalent over Q,. [

Next we devote a few lines to R-equivalence. We identify R with its

topological dual by defining <n,m> = yx,(n, m): = exp (—2ninm), for all
n,meR. We denote by dn, dx the Lebesgue measure on R and RK,
respectively.

Let f be a non-singular real quadratic form in k variables with signature
(I, k—1). Let A be the matrix of f and let C be any matrix satisfying:

CTAC = D, D=< Il.' 0 )
0 | =TIy

P:= (CC")™ ! is called a majorant of f. Since P is positive definite, the
function

du(x) = | det f |2 exp (—n(x"Px))

is a Schwartz function on R*. On R* we define the functions

rn, f,R) = lim <J O (x)dx/vol U) ,
f~HU)

U—{n}

O(m, f,R) = J Go(x) < f(x), m> dx .
Rk

We have seen at the end of Section 2 that r(, f,R) is a continuous

function on R*, integrable on R and that 8( , f, R) is its Fourier transform.

These functions do not depend on the chosen matrix C; they depend only

on the signature of f. In fact, since | det C| = | det f | ~ /2, if we make the

change of variables x = Cy we obtain:

r(n, f,R) = lim (J eXp(—Tt(yTy))dy/dn(U)>,
d-1(U)

U—{n}
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for all neR* where we have denoted by d the quadratic form
d(x) = xTDx. It is also easy to check that for all me R we have

Rk

— <j exp (—my*(1 + 2im)) dy>s<J exp (—1y*(1 —2im)) dy)

= (1+2im)?(1 —2im)*~ 972

O(m, f,R) = J exp (—n(y”y)+ 2mmi(y"Dy)) dy

k—s

The following result is now clear:

THEOREM 3.4. Let f,g be non-singular real quadratic forms in
k variables. The following conditions are equivalent.

) f~g over R,
u r(, f,R)=1r(,9,R),
m) O(, fL,R)=06(.,9,R). O

§4. ADELIC REPRESENTATION MASSES

Let A be the ring of adeles over Q. We identify A with its topological
dual by defining <n, m>, where y is Tate’s character

X)) = Xolto) - [T x(a,)

for any a = (a,) € A. Let dn be the restricted product measure of the local
measures used in the preceding sections. As is well-known, dn is also a
selffdual measure. Let dx be the Haar measure on A* naturally induced
by dn.

A non-singular integral adelic quadratic form f in k variables with unit
determinant can be identified to a collection (f,) of non-singular integral
p-adic quadratic forms in k variables such that p 4 det f,, for almost all p.

Let @ be the Schwartz-Bruhat function on A* defined by
@ — d)o() . 1_[ 1(Zp)k .
p

Let A,: = Rx[] Z,. We consider
p
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re(n, f, A) 1 = lim q O(x)dx/ j dn)
U=m \J f~1U) u
=rn,, fu,R). H r(n,, fp, Zp) ,

the limit being well-defined whenever the infinite product on the right 1s

absolutely convergent. Applying Siegel’s explicit formulas for r(n,, fps ZLyp)

([13, Hilfsatz 16]), it is easy to check that the product is absolutely

convergent for all ne A, if k > 5. Since  f..,Rye L'R) and []Z, is
p

compact, rg is an everywhere defined continuous function on A, with support
contained in A,, and integrable on A. On the other hand, clearly ® € L'(A¥)
and we have

O(x) < f(x), m> dx = O(m,,, f, R) ][] O(m,, f,, Q,) .

A

Op(m, f, A): = J

Note that the infinite product is always well-defined since only a finite
number of factors are different from 1.

We recall that given two integral adelic quadratic forms in k variables
it is said that they belong to the same genus if f, ~ g, over R and
f, ~ g, over Z, for all p. We say that they are of the same 2-type if
f, and g, are of the same type over Z,.

THEOREM 4.1. Let f,g be two non-singular integral adelic quadratic
forms in k =5 wvariables with unit determinant. Assume that they are of the
same 2-type. Then the following conditions are equivalent :

i) genf = geng,
11) r(D( afaA) = r(IJ( agaA)a
i) Og( , /5 A) = 0( ,9,A).

Proof. Two forms in the same genus have the same local integral
representation masses, hence 1) = ii). Since 04 is just the Fourier transform
of rg, ii) = iii). Now condition iii) is equivalent to 6( , f,,,R) = 0( ,g.,R)
and 6( , f,,Q,) = 0( ,g,,Q,) for all p; therefore by Theorems 2.3 and 3.4,
i) =1). O

We deal now with A-equivalence of forms. If f and g are two non-
singular quadratic forms defined over Q, we have by the Minkowski-Hasse
theorem that f ~ g over Q if and only if f ~ g over A. Thus Theorem 4.2

below can be also considered as a characterization of Q-equivalence in terms
of representation masses.
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For every finite set S of primes and for every integer s > 1 we consider
the following function defined on A :

rS,s(n:' f> A) = r(noo> f007 R) . IIS rs(np> fp: Zp) . I;Igr(np’ fpa Zp) -

As before, rg is well-defined, continuous and integrable if k > 5. The
corresponding function 65 (( , f, A) will be well-defined and continuous for
all k > 1, being the Fourier transform of the former.

Since f ~ g over A is equivalent to f, ~ g, over Q, for all p including
p = o, and f, ~ g, over Z, for almost all p, we get from Theorem 2.3,
3.3 and 3.4 the following:

THEOREM 4.2. Let f,g be two non-singular integral adelic quadratic
forms in k=5 ovariables. Let S = {p;p|detf,.detg,} and let
s = max (s,(f), s,(g )). Then the following conditions are equivalent :

1) f~g over A,

11) VS’S(,f,A)er,S(,%A)a
i) 6s,(,/,48) =05,(,9.A). O

Note that we could have also expressed these functions as rg ; = rog
Os,s = Qo ,, Where @5 € L'(A¥) is defined as:

q)oo H(b Hl(z)"’

peS

§ 5. REPRESENTATION MASSES IN Z

Let (V,q) be a regular quadratic space over Q of dimension k, and
let G be the proper orthogonal group of this space. The adele group
G(A) operates in the set of lattices L of V; by definition the orbit of L
under this action is called the genus of L. The orbit of L under the
subgroup G(Q) of G(A) is the class of L.

IfL = Ze, ® .. D Ze, is a lattice of V, the formula

Sxg, e X)) = gqlxie+...+xe)

stablishes a one to one correspondence between the set of classes of lattices
of (V,q) and the set of classes, over Z, of quadratic forms which are
Q-equivalent to g.
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For any ne Q¥* a representation of n by L is a couple (x, L) such
that x e L and g(x) = n. Since the groups G(Q), G(A) operate on the set
of such representations, one can group them in classes and genera,
respectively.

For each x e g~ !(n), the stabilizer of G at x can be identified with the
orthogonal group of the quadratic form induced by ¢ on <x>*. By
Witt’s theorem, the action of G(Q) on g~ *(n) is transitive. Suppose that
g n)nL# @ and fix x,eq *(n) n L. Let us choose gauge forms o
on G and ®,_on g, .If o € G(Q)and x = oXx,, we consider on g, = GG, 0 !
the gauge forms ®, obtained from ®, by pull back. Let p,H,, 1;
Hy s My, p» By b€ the respective local measures and Tamagawa measure
induced by these gauge forms on G and g,. The homogeneous space G/g,
can be identified with ¢~ !(n) and there exists a unique gauge form o
on g~ '(n) such that if 'y, p),, p' denote the local measures and Tamagawa
measure induced by o, then u = p, . p' (cf. [18]).

The representation mass of n by (x, L) is defined in [6] as:

r(na (X, L)) - ux, oo(gx (R)/gx (Q)mGL) s
where G is the stabilizer of the lattice L in G(Q). By the above normalization
of gauge forms, this definition depends only of the class of (x, L). Thus,
one can define the representation mass of n by L as

r(n, L) = ) r(n, (x, L)),

X

x running over a system of representatives of the classes (x, L) with fixed L.
Let L;, .., L, be a system of representatives of the classes in the genus
of L and let G; = G.. The mass of the genus of L is defined as

h

m(gen L) Z -(GR)/G;),

and the representation mass of n by the genus of L as
h
r(n,gen L) = m(gen L)™' Y r(n, L;).
i=1

If g 1s definite and k > 3 or if ¢ is indefinite and k > > 4, the Tamagawa
number of G and g, is 2. From this fact it can be deduced (cf. [17]) that

r(n, gen L) = Hup( “Ym)nL,),

where L, is the localization of L at p.
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From now on we shall assume that f is a Z-integral quadratic form
positive definite in k > 3 wvariables or indefinite in k = 4 wvariables.

Let L = Z* By normalizing ® or o, , we can assume that

wo(f " mnZ%) = r(n, f,Z,).

Therefore, we obtain Siegel’s formula :

(4.1) r(n,genZ*) =[] rn, f,Z,).

p

The number on the left of (4.1) admits a quite natural interpretation in
the definite case, due to the fact that the set /'~ *(n) n Z*, the group G, and
the three volumes which appear in the formula

Ho(GR)) = 1y (9. (R)) . ni(f ~1(m)

are all finite. In fact, defining r(n, /) =# (f "' (MW)NZ"), o f) = #Gz, and
denoting by f, ..., f, a complete system of representatives of the classes of
forms in the genus of f, from the above considerations it is not hard to
deduce the following set of formulas in the definite case:

Poo(GR))  7(n, f)

ZF) = )
L) =) o)

migen 2) = ., (GR)) 3. o(f)""

h h

r(n, gen Z*) = piy (f ()" (Zl r(n, fi)O(fi)_l)/(__Zl o(fi)™ 1) -
Moreover, the factor p'’,(f~'(n)) is, by definition, equal to the function
Fyn, f,R) for ® = 1 (see the end of Section 2). Hence, we have

W, (f ) = lim (vol(f~ Y(U))/vol U).

U—{n}

We recover in this way Siegel’s real density of representations [13], which
has the well-known value:

W (f710) = 72002) 7 (det ) 22

ifn>0(fn<0ispl,(f n) = 0)

In order to be coherent with the classical notation, we define the
integral representation masses r(n, f), r(n, gen f)in a different way, according f
 to be definite or indefinite.
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o 4 (f Y m)nZ¥) if  f definite
i, f) = {r(n, 7¥) if  f indefinite
o r(n, gen Z¥) . p' (f~'(m)) if  f definite
rin, gen f) i = r(n, gen Z¥) if  f indefinite .

Let us denote, moreover, u(f) = W, (GR)/Gz).
It is a well-known fact that, in the indefinite case, and for all n e Z\{0}

r(n, gen f) = u(f) " 'r(n, f),
since the average representation mass in a spinor genus coincides with
r(n, gen f), but for k > 4 there is only one class in each spinor genus.
Summing up all this considerations we can rewrite Siegel’s formula in

rn,gen f) = pi (f ') . [1r(n £, Z))

the form:

if f is definite,
rn, f) = W) .1 rn, £, Z,),

p

otherwise.
We can now reproduce partially the outline of the preceding sections.
' Considering »( , f), r( , gen f) as functions defined on Z, we can define
theta series by taking the formal Fourier transform:

0z, f) = ), r(n, f)exp(ninz),

n=z0

0(z, gen f) = ). r(n, gen f) exp (ninz) ;

n=0

and zeta functions by taking formal Mellin transforms:

&s, f) = 2 r(m, f)n~,

n>0

{(s,gen f) = > r(n, gen fn~s.

n>0

Both functions have been largely investigated. We recall next their more
relevant properties for our purposes (cf. [13], [14], [15], [12], [10]). If f
is definite, 6(z, /) is a modular form of weight k/2, with character, with
respect to a congruence group I',(N). It satisfies the functional equation

(5.1) O(z, f) = (det f)"V*(—iz)7¥20(—1/z, f#),

where f# denotes the quadratic form associated to the dual lattice of Z*

CEZ N SR N
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in R* with respect to f. And 0(z, gen f) is an Eisenstein series for the same
group.

The Dirichlet series defining {(s, f) converges, both in the definite and
in the indefinite case, for Res > k/2. It has a meromorphic continuation to
the whole plane with a simple pole at s = k/2 (and possibly at s = 1,
if f is indefinite) and it satisfies a functional equation involving (s, f)
and ((k/2—s, f~1). Clearly the zeta function {( , gen f) has the same
properties.

In the indefinite case, the residue at s = k/2 of these zeta functions
1s given by:

(5.2) [C6s, /)2 = 20 | det f[¥2u(f),
(5.3) [C(s, gen f)]k/z = 2p; | det f |92,
where

k—1
pui= 3 TG/

THEOREM 5.1. Let f,g be two non singular Z-integral quadratic forms.
Suppose that f ~ g over R and that they are of the same 2-type if
k = 5. Then the following conditions are equivalent :

i) genf = geng,

i) r(,genf) =r(,geng),

i) & ,genf) =C(,geng).

Proof. 1t is clear from the definitions that i) = i1) = 1ii). Assume that 1i1)
is satisfied and let us show first that it must be det f = detg. In the
indefinite case, this is a direct consequence of (5.3) and the fact that

f ~ g over R. In the definite case, and since ii1) is equivalent to the equality
0( ,gen ) = 6( , geng), by (5.1) we have

(det £) 42 8( , gen f¥) = (detg) "> B( , geng¥).
Since f¥, g* are two definite quadratic forms we have

lim 6(it, gen f¥) = lim 0(it, gengf) = 1,
t— o t—>
hence det f = det g and, moreover, p’, (f~1(n) = 1, (97 (n).
By Siegel’s formula, we see that condition iii) implies, in both cases, that

[Irn, f.Z,) = [1r(n 9. Z,,)

p p
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for all n = 0. Let now S be any finite set of primes including those p
dividing 2 det f. Assume n e Z\{0}. If p ¢ S we have by [13, Hilfsatz 16] that

in, £, Z,) = r(n, 6. Z,) # 0.

Therefore, by [13, Hilfsatz 25] we have:
H r(na f> Zp) = H r(n: 9 Zp) e

peS peS

Let Zs = || Z,. By the chinese remainder theorem we get the equality of
peS

functions over Zg:

[1r. f.Z,) = 11,9, Z,).

peS peS

Since

[16m,. f.Z2,) =11 J r(n,, f,Z,) <n,,m,> dn,

peS peS

_ J (I1 ¢y, £, Z,) <n,, m,>}(® dn,)

Zs DPeS peS

= | ([t 520 <>
Zs DES

where ng, mg, dng have their natural meanings, we see that condition 1i1)
implies

[16C.7.Q,) = ]le( .9, Qy)

peS

Taking into account that 6(Z,, f,Q,) = 1, we get that 6(, f,Q,)

= 6(,g,Q,), for all peS. Thus, by applying Theorem 2.3 we get that
f ~goverZ,, forallp. []

We have proved that the representation mass function r( , gen f)
determines the genus of f under certain conditions on the oco-type and the
2-type of f. The following examples of forms f,g such that r( , gen f)

= r( , gen g) but not belonging to the same genus, show that none of these
conditions can be dropped (cf. also [5]).

Examples. We consider I = 1 <l1>, J= 1 <—1>. Let

1<i<4 1<i<4
f=11lIll1lJandg=11JL1J These two forms satisfy f ~ g over Z,
for all p, but they are not R-equivalent. Let [ = <1,1,2 4,4>,
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g =<L2224>0rf =<-1,1,2,44>andg = <—1,2,2,2,4>.In
 both cases f and g are R-equivalent and satisfy r( ,gen f) = r( , gen g),
- but they are not Z,-equivalent.

In the following theorem we show that, both in the definite and in the
 indefinite case, two quadratic forms with the same representation numbers
must belong to the same genus. In the low dimensional cases (k=2 or
- k=3, indefinite) an analogous result can also be stated. If k = 3 and the
forms are indefinite, the proof requires a finer study of their representation
masses (cf. [11]). If Kk = 2 much more is true, since two Z-integral quadratic
forms with the same 2-type which represent the same set of integers belong
- already to the same genus.

THEOREM 5.2. Let f,g be two non-singular Z-integral quadratic forms
“in k wvariables. Suppose that f ~g over R and that f and ¢
are of the same 2-type if k=5 Then v, f)=r(,g) implies that f
and g belong to the same genus.

Proof. k = 3, f definite. By hypothesis we have 0( , f) = 6( ,g) as
- functions on the upper half-plane. As is well-known, 6( , f) — 6( , gen f)
1s a cusp form. Thus 6( , gen f) — 6( , gen g), being both a cusp form and an
Eisenstein series, must be zero. Applying Theorem 5.1 we have that

gen f = geng.
k > 4, f indefinite. Since r( , gen f) = w(f)"'r(, f), we need only to show

that u(f) = w(g) and apply Theorem 5.1. By hypothesis {( , /) = {( , g);
from the residue formula (5.2) we get

(5.4) |det f| Y2 u(f) = |detg | =Y ulg).

' There is an explicit relation between u(f) and the volume V(f) of the
majorante space [16, p. 110] which, together with the fact V(f) = V(f 1)
furnishes the relation "

u(f ™t = [det f1*" 1 u(f).

Now, from the functional equation of the zeta function [14], it is easily
' deduced that p(f ~1) = pg~ 1), hence

| det f1*" p(f) = |detg |**" w(g).
}This together with (5.4) implies | det f | = |detg| and p(f) = wg). O
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