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universel riemannien M (cf. [Ml], [W2]). Dès le début s est posée la

question de l'équivalence entre croissance polynomiale et virtuelle nilpotence.

Les premières étapes en vue de la réponse affirmative donnée par Gromov

(cf. 4.3) sont les suivantes:

2.2.1. Théorème. Un groupe de type fini T à croissance polynomiale

est virtuellement nilpotent dans les cas suivants :

(i) T est virtuellement résoluble (Milnor-Wolf [M2], [W2]).

(ii) T est un sous-groupe d'un groupe de Lie (Tits [T]).

Il est facile de voir, grâce à la condition de Feiner ([F0] cf. [Gre]),

qu'un groupe topologique à croissance polynomiale est forcément moyen-
nable. Par ailleurs, on a la proposition suivante provenant directement des

définitions :

2.2.2. Proposition. Tout sous-groupe discret de type fini d'un groupe

topologique à croissance polynomiale est à croissance polynomiale.

En groupant ceci avec ce qui précède, on obtient la généralisation

suivante de Bieberbach :

2.2.3. Théorème. Un sous-groupe discret d'un groupe de Lie à croissance

polynomiale est virtuellement nilpotent de type fini.

Le groupe E(n) 0(n) IX R" étant à croissance polynomiale, on retrouve
ainsi l'énoncé classique de Bieberbach en appliquant ce résultat et le petit
lemme 1.2.3. Les groupes de Lie à croissance polynomiale sont classifiés

par le :

2.2.4. Théorème (Guivarc'h [Gui] ou Jenkins [J]). Les groupes de Lie
à croissance polynomiale sont exactement les produits semi-directs de la forme
K IX R avec K compact et R un groupe de Lie résoluble ayant une

algèbre de Lie triangulaire avec des éléments diagonaux imaginaires purs.

Par exemple, un groupe de Lie linéaire orthopotent (cf. [Frl]) c'est-à-dire

un groupe de matrices triangulaires par blocs avec des blocs diagonaux
dans le groupe orthogonal est à croissance polynomiale.

3. Le théorème de Bieberbach lorentzien

Le théorème de Bieberbach classique est énoncé pour des sous-

groupes cristallographiques de 0(n) X R". Remplaçons maintenant O(n)
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par 0(n—1,1), le groupe des matrices préservant la forme de Lorentz
q(x) x\ 4- + *>l-1 — x2, et considérons les sous-groupes cristallo-
graphiques de E(n— 1, 1) 0(n— 1, 1) IX Rn, le groupe des isométries lorent-
ziennes. Une variété lorentzienne plate est une variété de la relativité restreinte
c'est-à-dire telle que les changements de carte peuvent être pris dans

E(n—1,1). Un résultat récent [C2], donnant l'équivalent de Hopf-Rinow
pour les variétés lorentziennes plates compactes, nous assure que ces variétés

sont le quotient de R" par T, un sous-groupe cristallographique de E(n— 1, 1).

Dans [GK], Goldman et Kamishima ont montré qu'un tel sous-groupe est

virtuellement polycyclique (cf. 2.1.4), ceci leur permet d'affirmer grâce à des

travaux antérieurs ([Au], [FG]) que les variétés obtenues sont des solvariétés.

Par conséquent, on peut énoncer le théorème suivant :

Théorème. Une variété lorentzienne plate compacte est à un revêtement

fini près une solvariété (i.e. le quotient d'un groupe de Lie résoluble par
un réseau).

Le but de ce § est d'exposer la preuve de Goldman et Kamishima un

peu simplifiée grâce à 1.2.1. Avant de commencer, nous traiterons un exemple

en dimension 3.

3.1. La variété affine T^. On notera

La matrice A détermine un automorphisme de T2 R2/Z2 et permet de

construire la variété affine compacte T\ R x T2fit, z) ~ (£+1, Az). Cette

variété s'écrit encore R3/T, où T est le sous-groupe engendré par les

translations xu, tv et par tw ° A. Soient et X2 les valeurs propres de A
calculées dans C.

On vérifie que si X1 et E1 X2 e2lnplq (q 3,4 ou 6). La
matrice A est alors semblable à une rotation d'ordre 3, 4 ou 6. La variété

est donc une variété riemannienne plate. De plus, le groupe T

possédant 3 translations linéairement indépendantes tm, tv et Tqw, Tj est

à un revêtement fini près un tore, ce qui est conforme au théorème de

Bieberbach.

est alors soit un tore, soit le quotient du groupe de Heisenberg par un
réseau (i.e. T \ est une nilvariété).

u (1, 0, 0), v (0, 1, 0), w (0, 0, 1) et A

Si L2, A s'écrit dans une certaine base entière
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Enfin, si X1 et X2 sont réelles distinctes, on choisit une base de vecteurs

préserve alors la forme de Lorentz qf(X) X1X2, où X1 et X2 sont les

coordonnées de X dans cette base. Par conséquent, A est une isométrie

lorentzienne de R3 (pour la forme de Lorentz X1X2 -f t2), la variété

est donc une variété lorentzienne plate ; la partie linéaire de F étant

abélienne, F est résoluble. On constate de plus que pour X1 > 0, la variété

de départ s'écrit G/FA où G désigne un groupe de Lie difféomorphe
à R3 dont la loi est définie par :

et où est le sous-groupe de G constitué des éléments à coordonnées

entières. Remarquons que G s'identifie à E( 1, 1), il ne dépend donc pas

de A. Le groupe FA étant un réseau et G étant un groupe de Lie résoluble,

T A est une solvariété.

D'après [FG], il s'avère que toutes les variétés affines complètes

compactes de dimension 3 sont en fait topologiquement équivalentes aux

exemples que nous venons de traiter.

3.2. Le groupe de Lorentz 0(n— 1, 1). Rappelons en quoi la géométrie

hyperbolique est liée à la géométrie lorentzienne. Dans R", muni de la forme
de Lorentz q(x) x\ + + x3_i — x2, on considère H"-1, la nappe
supérieure de l'hyperboloïde q~1(— 1). La restriction de q aux espaces

tangents de H"-1 lui donne une structure de variété riemannienne à courbure

constante égale à —1 (i.e. de variété hyperbolique). La projection
stéréographique de H""1 sur l'hyperplan xn 0 par rapport au point
(0,..., 0, —1) permet de visualiser H"-1 comme le disque de Poincaré Dn_1,
muni de la métrique transportée. Le groupe 0(n— 1, 1) agit sur les directions
du cône de lumière g_1(0) identifiées par la projection stéréographique à

S"-2 ÙD"_1, la sphère à l'infini.

3.2.1. Propriétés, a) Le groupe 0(n—1,1) agit sur S"~2 par
transformations conformes.

b) La projection stéréographique de S"-2 sur R"~2 est elle aussi
conforme.

Au cours de la preuve, nous utiliserons le lemme suivant sur la nature
des sous-groupes unipotents de 0(n— 1, 1):

propres dans laquelle

(t, x, y) (t1,x',y')(t + f, (x, y) + A'(x', y'))
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3.2.2. Lemme. Soit G un sous-groupe unipotent non trivial de

0(n—1,1), son normalisateur N(G) est inclus dans un groupe de Lie
moyennable.

Démonstration. Soit W le plus grand espace de vecteurs fixes sous
l'action de G, par hypothèse dim W ^ 1. Si q\w était non dégénérée,
l'action unipotente de G sur W1 fournirait un espace vectoriel non trivial
fixe par G ; le sous-espace W ne serait donc pas maximal. Ainsi, q \ w
est dégénérée et en fait dimker(g|^) 1. On vérifie que N(G) laisse

ker (q \ w) invariant, c'est-à-dire fixe une direction du cône de lumière
correspondant à un point de S"-2. Par projection stéréographique sur Rn_2 de

S"-2 privée de ce point, on obtient d'après 3.2.1 que N{G) est inclus dans

le groupe des transformations conformes de R"~2, c'est-à-dire dans

R*0(n — 2) ix R" 2, qui est un groupe de Lie moyennable (cf. §2).

3.3. Démonstration du théorème. D'après [C2], une variété lorent-
zienne plate compacte M est le quotient de R" par un sous-groupe
cristallographique T de E(n—1,1). Le théorème se réduit à démontrer

que r est virtuellement polycyclique. En effet, d'après ([FG], corollary 1.5),

il existe alors un groupe de Lie résoluble G c= E(n— 1, 1) agissant librement
et transitivement sur R", tel que ro F n G est d'indice fini dans T.

Ceci assure que M a un revêtement fini difféomorphe à G/F0.

3.3.0. Remarque. Pour démontrer que F est virtuellement polycyclique,
puisque F est discret, il suffit d'après 2.1.4 de montrer que F ou même

L(F) est virtuellement résoluble ou encore que L(r) et donc F est dans

un groupe de Lie moyennable.

a) Cas où L(F) est discret.

Soit V le sous-espace vectoriel engendré par les translations de F.

On vérifie que V est laissé stable par L(r). Le lemme suivant assure que V
n'est pas trivial :

3.3.1. Lemme. Si L(F) est discret, L\r n'est pas injective.

Démonstration. Raisonnons par l'absurde et supposons que F soit
isomorphe à L(r). Le groupe F est sans torsion, en effet l'existence d'un
élément y / id d'ordre fini fournirait une orbite finie dont le barycentre
serait fixe par y ce qui contredirait l'action libre de F. Par conséquent,

L(r) est un groupe discret sans torsion, ceci permet de construire la

(n — l)-variété L(r)\FT-1 qui est, comme Rn/F, un espace d'Eilenberg-
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Mac Lane associé à F. Ces deux variétés devraient donc avoir même

cohomologie ce qui n'est pas le cas puisque la seconde est compacte de

dimension n. La compacité de R"/r intervient ici de façon essentielle

(comparer avec [Ma] cf. 4.1).

Nous traiterons deux cas selon la dégénérescence de la restriction de q

à F :

• q\v est dégénérée.

Dans ce cas, ker(g|F) est une direction du cône de lumière laissée

stable par L(F). On conclut comme en 3.2.2 que L(r) est dans le groupe de

Lie moyennable R*0(n — 1, 1) IX Rn~2, ce qui est suffisant d'après 3.3.0.

• q | v est non dégénérée.

Comme L(F) préserve F, il préserve donc aussi F1, ainsi L(r) c= O(F)

a 0(F1) où 0(F) (resp. 0(F1)) est le groupe orthogonal de g \ y (resp. q | V1).

Il suit que T c £(F) x J^F1) où E(V) (resp. E^V1)) est le groupe engendré

par 0(F) (resp. 0(F1)) et par les translations de F (resp. F1). Considérons

la projection E(V) x F(FX) -> f^F1). Par construction, F est engendré par
le groupe ro ker(L|r) des translations de T qui agit trivialement sur
F1. Par conséquent, T0 est un sous-groupe normal de ker (p | r) T1.

3.3.2. Lemme. Le groupe rl/ro est fini.

Démonstration. Notons k la dimension de F. Le quotient de F par le

groupe de translations T0 ~ Zk est un tore Tk. Par sa définition même,

Fx n'agit que sur le facteur F pour donner une variété de dimension k

qui est aussi le quotient de Tk par le groupe I^/To.

Il est facile de constater que ceci implique que F est virtuellement
polycyclique si et seulement si p(F) l'est. Pour conclure la preuve du
théorème dans le cas a), il reste donc à montrer le

3.3.3. Lemme. Le groupe p(F) est virtuellement polycyclique.

Démonstration. Comme l'action de F sur le produit Tk x F1 est

proprement discontinue (parce que donnant une variété au quotient) et que le

premier facteur est compact, il est clair que l'action sur le deuxième facteur
est à son tour proprement discontinue. Or cette action s'identifie à celle
de p(F) sur F1. On vérifie par ailleurs que le quotient V1/p(F) est compact.
Pour être sûr que ce quotient est une variété, il est connu qu'il suffit
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de vérifier alors que p(T) n'a pas de torsion. Mais d'après le lemme de

Selberg [Al], p(T) est virtuellement sans torsion, ce qui assure que V1/p(T)
est à un revêtement fini près une variété compacte.

En restriction à V1, q est aussi non dégénérée. Si q\VL est lorentzienne,
ayant dim V1 < n, on conclut que p(T) est virtuellement polycyclique grâce

au théorème de Bieberbach lorentzien en dimension < n supposé déjà
démontré (récurrence sur n). Si q \V1 est définie positive, on sait par le

théorème de Bieberbach classique que p(T) est virtuellement Zn~k.

b) Cas où L(T) n'est pas discret.

On a alors que L(T)nd L(T) n L(T)° est non trivial et d'après 1.2.1,

L(r)nd est unipotent. Comme L(r) normalise L(r)„d, on déduit de 3.2.2 que
L(r) est dans un groupe de Lie moyennable ce qui, d'après 3.3.0, est

suffisant pour conclure.

L'exemple se généralise à toutes les dimensions. Il s'avère d'après
Fried [Fr2] que les variétés lorentziennes plates compactes de dimension 4

sont à revêtement fini près des Un résultat récent de Grunewald et

Margulis [GM], généralisant celui de Fried, assure qu'en dimension n ces

variétés sont à revêtement fini près soit un T\ (AeSL(Zn~1) et lorentzienne),
soit une nilvariété de degré de nilpotence ^ 3.

4. Quelques autres généralisations

Nous allons pour finir passer en revue rapidement les autres
généralisations que nous connaissons des résultats décrits dans ce qui précède.

4.1. Groupes affines cristallographiques. Rappelons que ce sont les

sous-groupes discrets F de Aff (Rn) dont le quotient R"/F est une variété

(ou même une « orbifold ») compacte. Le théorème 1.2.1 décrit en partie
leur structure.

Conjecture d'Auslander (1964). Un groupe affine cristallographique est

virtuellement polycyclique.

Tout le problème d'après 2.1.4 (i) est de montrer qu'un tel groupe est

virtuellement résoluble. Auslander a publié une preuve dont il a reconnu
ensuite qu'elle contenait une erreur irréparable. Aujourd'hui, on peut résumer

les principaux cas où cette conjecture a été démontrée: en dimension ^ 3
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