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universel riemannien M (cf. [M1], [W2]). Dés le début sest posée la
question de I’équivalence entre croissance polynomiale et virtuelle nilpotence.
Les premiéres étapes en vue de la réponse affirmative donnée par Gromov
(cf. 4.3) sont les suivantes:

22.1. THEOREME. Un groupe de type fini T d croissance polynomiale
est virtuellement nilpotent dans les cas suivants:

(i) T est virtuellement résoluble (Milnor-Wolf [M2], [W2]).
(i) T est un sous-groupe d’un groupe de Lie (Tits [T).

1l est facile de voir, grice 4 la condition de Fglner ([F¢] cf. [Gre]),
quun groupe topologique a croissance polynomiale est forcément moyen-

nable. Par ailleurs, on a la proposition suivante provenant directement des
définitions:

2.2.2. PROPOSITION. Tout sous-groupe discret de type fini d'un groupe
topologique d croissance polynomiale est a croissance polynomiale.

En groupant ceci avec ce qui précéde, on obtient la genéralisation
suivante de Bieberbach:

2.2.3. THEOREME. Un sous-groupe discret d’'un groupe de Lie a croissance
polynomiale est virtuellement nilpotent de type fini.

Le groupe E(n) = O(n) X R” étant a croissance polynomiale, on retrouve
ainsi I’énoncé classique de Bieberbach en appliquant ce résultat et le petit
lemme 1.2.3. Les groupes de Lie a croissance polynomiale sont classifiés
par le:

2.2.4. TuHEOREME (Guivarc’h [Gui] ou Jenkins [J]). Les groupes de Lie
a croissance polynomiale sont exactement les produits semi-directs de la forme
KX R avec K compact et R un groupe de Lie résoluble ayant une
algebre de Lie triangulaire avec des éléments diagonaux imaginaires purs.

Par exemple, un groupe de Lie lin¢aire orthopotent (cf. [Frl]) c’est-a-dire
un groupe de matrices triangulaires par blocs avec des blocs diagonaux
dans le groupe orthogonal est a croissance polynomiale.

3. LE THEOREME DE BIEBERBACH LORENTZIEN

Le théoréeme de Bieberbach classique est énoncé pour des sous-
groupes cristallographiques de O(n) X R". Remplagons maintenant O(n)
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par O(n—1,1), le groupe des matrices préservant la forme de Lorentz
g(x) = x? + .. + x2_, — x2, et considérons les sous-groupes cristallo-
graphiques de E(n—1, 1) = O(n—1, 1) X R”", le groupe des isométries lorent-
ziennes. Une variété lorentzienne plate est une variété de la relativité restreinte
cest-a-dire telle que les changements de carte peuvent étre pris dans
E(n—1,1). Un résultat récent [C2], donnant I’équivalent de Hopf-Rinow
pour les varietés lorentziennes plates compactes, nous assure que ces variétés
sont le quotient de R” par I', un sous-groupe cristallographique de E(n—1, 1).
Dans [GK], Goldman et Kamishima ont montré qu’un tel sous-groupe est
virtuellement polycyclique (cf. 2.1.4), ceci leur permet d’affirmer grice a des
travaux anterieurs ([Au], [FG]) que les variétés obtenues sont des solvariétés.

Par conséquent, on peut énoncer le théoréme suivant:

THEOREME. Une variété lorentzienne plate compacte est d un revétement
fini pres une solvariété (i.e. le quotient dun groupe de Lie résoluble par
un réseau ).

Le but de ce § est d’exposer la preuve de Goldman et Kamishima un
peu simplifiée grace a 1.2.1. Avant de commencer, nous traiterons un exemple
en dimension 3.

3.1. La VARIETE AFFINE T3. On notera

A

u=(1,0,0),v=(0,10),w=(0,01) et 4= (0

0y |

1) ou AeSLZ?.
La matrice A détermine un automorphisme de T? = R?/Z? et permet de
construire la variété affine compacte T3 = R x T?/(t, z) ~ (t+1, Az). Cette
variété s’écrit encore T3 = R’/T, ou I' est le sous-groupe engendré par les
translations t,, T, et par 1, ° A. Soient Ay et A, les valeurs propres de A4
calculées dans C.

On vérifie que si &, et A, ¢R, A, = h, = €2™/9(g=3,40u6). La
matrice A est alors semblable & une rotation d’ordre 3, 4 ou 6. La variété
T3 est donc une variété riemannienne plate. De plus, le groupe I
possédant 3 translations linéairement indépendantes t,, T, et t,,, T est
a un revétement fini pres un tore, ce qui est conforme au théoréme de
Bieberbach.

: (1 m
Si A, = A,, A s’écrit dans une certaine base entiere (0 1) meZ, T3

est alors soit un tore, soit le quotient du groupe de Heisenberg par un
réseau (i.e. T est une nilvariété).
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Enfin, si A, et A, sont réelles distinctes, on choisit une base de vecteurs

0 1/A
préserve alors la forme de Lorentz ¢'(X) = X;X,, ou X, et X, sont les
coordonnées de X dans cette base. Par conséquent, A est une isométrie
lorentzienne de R® (pour la forme de Lorentz X X, + t?), la variété T}
est donc une variété lorentzienne plate; la partie linéaire de I étant
abélienne, I est résoluble. On constate de plus que pour A, > 0, la variéte
de départ T3 s%écrit G/T', ou G désigne un groupe de Lie diffeomorphe
a R® dont la loi est définie par:

: A 0 :
propres dans laquelle 4 est représentée par la matrice < ' > qui

(ta X, .Y) (t/a xla yl) = (t+ tla (X, y) +At (X/, y,))

et ou I', est le sous-groupe de G constitué des éléments 4 coordonnées
entiéres. Remarquons que G s’identifie a E(1, 1), il ne dépend donc pas
de A. Le groupe I', étant un réseau et G étant un groupe de Lie résoluble,
T3 est une solvariété.

D’aprés [FG], il s’avére que toutes les variétés affines complétes
compactes de dimension 3 sont en fait topologiquement équivalentes aux
exemples que nous venons de traiter.

3.2. LE GROUPE DE LORENTZ O(n—1, 1). Rappelons en quoi la géométrie
hyperbolique est liée a la géométrie lorentzienne. Dans R”, muni de la forme
de Lorentz ¢(x) = x% + .. + x2_, — x2, on considére H"™!, la nappe
supérieure de Ihyperboloide ¢~ '(—1). La restriction de g aux espaces
tangents de H" ! lui donne une structure de variété riemannienne a cour-
bure constante égale a —1 (i.e. de variété hyperbolique). La projection
stéréographique de H"™! sur P'hyperplan x, = 0 par rapport au point
(0, .., 0, —1) permet de visualiser H" ! comme le disque de Poincaré D" 1,
muni de la métrique transportée. Le groupe O(n—1, 1) agit sur les directions
du cone de lumiére g~ '(0) identifiées par la projection stéréographique a
S"~2 = gD""!, la sphére a I'infini.

3.2.1. PROPRIETES. a) Le groupe O(n—1,1) agit sur S"~? par trans-
formations conformes.

b) La projection stéréographique de S""% sur R" 2 est elle aussi
conforme.

Au cours de la preuve, nous utiliserons le lemme suivant sur la nature
des sous-groupes unipotents de O(n—1, 1):
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32.2. LEMME. Soit G un sous-groupe unipotent non trivial de
O(n—1,1), son normalisateur N(G) est inclus dans un groupe de Lie
moyennable.

Démonstration. Soit W le plus grand espace de vecteurs fixes sous
Iaction de G, par hypothése dim W > 1. Si ¢|, était non dégénérée,
action unipotente de G sur W+ fournirait un espace vectoriel non trivial
fixe par G; le sous-espace W ne serait donc pas maximal. Ainsi, q|
est dégenérée et en fait dimker(q|y) = 1. On vérifie que N(G) laisse
ker (g | w) invariant, c’est-a-dire fixe une direction du cone de lumiére corres-
pondant a un point de S"2. Par projection stéréographique sur R""2 de
S"~2 privée de ce point, on obtient d’aprés 3.2.1 que N(G) est inclus dans
le groupe des transformations conformes de R"™2 C(’est-a-dire dans
R*O(n—2) X R""? qui est un groupe de Lie moyennable (cf. §2). [

3.3. DEMONSTRATION DU THEOREME. D’aprés [C2], une variété lorent-
zienne plate compacte M est le quotient de R" par un sous-groupe
cristallographique I' de E(n—1,1). Le théoréme se réduit a démontrer
que I est virtuellement polycyclique. En effet, d’apres ([FG], corollary 1.5),
il existe alors un groupe de Lie résoluble G < E(n—1, 1) agissant librement
et transitivement sur R”, tel que I'y = I' n G est d’indice fini dans T.
Ceci assure que M a un revétement fini difftfomorphe a G/T',,.

3.3.0. Remarque. Pour démontrer que I' est virtuellement polycyclique,
puisque I' est discret, il suffit d’aprés 2.1.4 de montrer que I' ou méme
L(I') est virtuellement résoluble ou encore que IL(I') et donc I' est dans
un groupe de Lie moyennable.

a) Casou L(I') est discret.

Soit V le -sous-espace vectoriel engendré par les translations de I
On vérifie que V est laisse stable par L(I'). Le lemme suivant assure que V
n’est pas trivial:

3.3.1. LemMme. Si L) est discret, L|p nest pas injective.

Démonstration. Raisonnons par Pabsurde et supposons que I' soit iso-
morphe a L(I'). Le groupe I' est sans torsion, en effet lexistence d’un
élément y # id d’ordre fini fournirait une orbite finie dont le barycentre
serait fixe par y ce qui contredirait I'action libre de I'. Par conséquent,
L) est un groupe discret sans torsion, ceci permet de construire la
(n—1)-variété LN\H""! qui est, comme R"I, un espace d’Eilenberg-
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Mac Lane associé a I. Ces deux variétés devraient donc avoir méme
cohomologie ce qui n’est pas le cas puisque la seconde est compacte de
dimension n. La compacité de R/ intervient ici de fagon essentielle
(comparer avec [Ma] cf. 4.1). [

Nous traiterons deux cas selon la dégénérescence de la restriction de g
aV:

o (|, estdégénérée.

Dans ce cas, ker(g|y) est une direction du cone de lumicre laissée

stable par I(I'). On conclut comme en 3.2.2 que L(I') est dans le groupe de
Lie moyennable R*O(n—1, 1) X R"™2, ce qui est suffisant d’apres 3.3.0.

e g|, estnon dégénérée.

Comme L(T') préserve V, il préserve donc aussi V*, ainsi L(I') = O(V)
x O(VY) ou O(V) (resp. O(V1)) est le groupe orthogonal de g | (resp. gy .).
Il suit que I’ = E(V) x E(V*) ou E(V) (resp. E(V7)) est le groupe engendré
par O(V) (resp. O(V*1)) et par les translations de V (resp. V). Considérons
la projection E(V) x E(V?) et E(V*1). Par construction, V est engendré par
le groupe I'y = ker(L|p) des translations de T" qui agit trivialement sur
V+. Par conséquent, I'y est un sous-groupe normal de ker(p|p) = I';.

3.3.2. Lemme. Le groupe ©';/T’, est fini.

Démonstration. Notons k la dimension de V. Le quotient de V par le
groupe de translations I'j ~ Z* est un tore T*. Par sa définition méme,
I'y n’agit que sur le facteur V' pour donner une varieté de dimension k
qui est aussi le quotient de T* par le groupe I';/T,. [

Il est facile de constater que ceci implique que I' est virtuellement
polycyclique si et seulement si p(I') T'est. Pour conclure la preuve du
théoréeme dans le cas a), 1l reste donc a montrer le

3.3.3. LEMME. Le groupe p(I') est virtuellement polycyclique.

Démonstration. Comme P'action de I" sur le produit T* x V* est pro-
prement discontinue (parce que donnant une variété au quotient) et que le
premier facteur est compact, il est clair que I'action sur le deuxiéme facteur
est a son tour proprement discontinue. Or cette action s’identifie a celle
de p(I') sur V. On vérifie par ailleurs que le quotient ¥*/p(I) est compact.
Pour &tre sGr que ce quotient est une variété, il est connu quil suffit
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de vérifier alors que p(I') n’a pas de torsion. Mais d’apres le lemme de
Selberg [Al], p(T') est virtuellement sans torsion, ce qui assure que V*/p(I)
est a4 un revétement fini prés une variété compacte.

En restriction & V*, g est aussi non dégénérée. Si ¢|,, est lorentzienne,
ayant dim V* < n, on conclut que p(I') est virtuellement polycyclique grace
au théoréeme de Bieberbach lorentzien en dimension < n supposé déja
démontré (récurrence sur n). Si g|,, est définie positive, on sait par le
théoréme de Bieberbach classique que p(I') est virtuellement Z"~% [

b) Casou L(I') west pas discret.

On a alors que L(I'),;, = L(I') n L(T')° est non trivial et d’aprés 1.2.1,
L(I'),4 est unipotent. Comme I(I') normalise L(I'),,, on déduit de 3.2.2 que
L(I') est dans un groupe de Lie moyennable ce qui, d’aprés 3.3.0, est
suffisant pour conclure. []

L’exemple T3 se généralise a toutes les dimensions. Il s’avére d’aprés
Fried [Fr2] que les variétés lorentziennes plates compactes de dimension 4
sont a revétement fini prés des T%. Un résultat récent de Grunewald et
Margulis [GM], généralisant celui de Fried, assure qu’en dimension n ces
variétés sont a revétement fini prés soit un T% (4eSIL(Z"~ ') et lorentzienne),
soit une nilvariété de degré de nilpotence < 3.

4. QUELQUES AUTRES GENERALISATIONS

Nous allons pour finir passer en revue rapidement les autres généra-
lisations que nous connaissons des résultats décrits dans ce qui précede.

4.1. (GROUPES AFFINES CRISTALLOGRAPHIQUES. Rappelons que ce sont les
sous-groupes discrets I' de Aff (R") dont le quotient R"/I" est une variété
(ou méme une « orbifold ») compacte. Le théoréme 1.2.1 décrit en partie
leur structure.

CONJECTURE D’AUSLANDER (1964). Un groupe affine cristallographique est
virtuellement polycyclique.

Tout le probleme d’aprés 2.1.4 (i) est de montrer quun tel groupe est
virtuellement résoluble. Auslander a publié une preuve dont il a reconnu
ensuite qu’elle contenait une erreur irréparable. Aujourd’hui, on peut résumer
les principaux cas ou cette conjecture a €t¢ démontrée: en dimension < 3
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