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Démonstration. D’apres ([KM], exercice 21.1.6), un groupe de matrices
localement résoluble est résoluble (cf. aussi [Ra], § 8). Le groupe G est donc
résoluble. Grace au théoréme 2.1.4, énoncé au § suivant, G étant discret
dans un groupe de Lie, il est polycyclique (i.e. tous ses sous-groupes sont
de type fini). Par conséquent, G est de type fini, il est donc nilpotent. []

Remarquons que le lemme 1.2.3 permet d’affirmer alors que I',, est
abélien dans le cas classique (i.e. I' = E(n)). Pour terminer la preuve de 1.2.1
dans le cas général, il reste a montrer 'unipotence de I',, lorsque I" est
un groupe cristallographique (i.e. R"/I" est une variété compacte). Dans ce cas,
on considere le sous-espace affine maximal U sur lequel Paction de TI',,
est unipotente (cf. 1.2.2). Cet espace est invariant par I'. On considére alors
la variét¢ U/I’ qui a méme type d’homotopie que la n-variété compacte
R"/T'. Ceci force U a étre de dimension n et donc I',;, 4 étre unipotent
(argument cohomologique de [FGH] p. 496 que I'on retrouvera en 3.3.1). [

2. DANS D’AUTRES GROUPES DE LIE

L’objet de ce § est de décrire une autre approche moins élémentaire
du premier théoréme de Bieberbach mettant en jeu les notions de moyennabilité
et de croissance qui lui sont aujourd’hui indissociablement liées. L’idée de
départ maintenant est de considérer E(n) comme faisant partie de la classe 2
des groupes de Lie a croissance polynomiale, elle-méme incluse dans celle .#
des moyennables. Le résultat s’énonce simplement de la fagon suivante
(2.1.4, 223): st I' est un sous-groupe discret dans un groupe de Lie
G € A (resp. G € P) alors I est virtuellement polycyclique (resp. virtuellement
nilpotent de type fini). Par ailleurs, les classes .# et 2 sont caractérisées
ainsi (2.1.3, 2.2.4): Ge M (resp. Ge &) équivaut a G = K X R ou K est
compact et R est résoluble (resp. résoluble avec une algebre de Lie triangulaire
avec des éléments diagonaux imaginaires purs). Ces énoncés vont nous étre
utiles au § 3. Nous verrons au § 4 comment ils peuvent encore étre généralisés.

2.1. MOYENNABILITE ET RESOLUBILITE. Soit G un groupe topologique
localement compact muni de sa oc-algebre borélienne %. Une moyenne sur
I’espace mesurable (G, %) est une mesure de probabilite, nulle sur les
négligeables (pour une mesure de Haar de G) et seulement supposée finiment
additive. On dit que le groupe G est moyennable s’il admet une moyenne
invariante a gauche. Il est facile de vérifier alors qu’elle peut étre choisie
biinvariante (cf. [Gre] p. 29). Par exemple, 'unique mesure de Haar d’un
groupe compact K qui soit de probabilité fournit une moyenne biinvariante
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sur K (dans ce cas, elle est en plus c-additive). Le lecteur pourra prouver,
4 titre d’exercice, la proposition naturelle suivante (cf. [Gre] p. 30 ou
[Z1] p. 61):

2.1.1. ProposITION. Tout sous-groupe fermé H d’un groupe localement
compact moyennable G est moyennable (pour la topologie induite par G
sur H).

Si Pon ne précise pas de topologie pour un groupe G et que l'on dit
que G est moyennable, cela sous-entend quil 'est en tant que groupe topo-
logique discret. Un groupe qui est moyennable dans ce sens l'est forcément
pour toute autre structure de groupe localement compact et, d’apres la
proposition précédente, tous ses sous-groupes sont moyennables.

Le groupe libre a deux générateurs L(a, b) n’est pas moyennable, ce qui fait
que le groupe O(3) qui le contient n’est pas moyennable en tant que groupe
discret bien qu’il le soit en tant que groupe de Lie puisque compact
(voir ci-dessus). Ceci est l'origine du célebre « paradoxe » de Hausdorff-
Banach-Tarski (cf. [Gre] ou [HS]).

Un groupe virtuellement résoluble est moyennable (méme références).
Dans [D], Day a posé la question suivante (parfois appelée improprement
« conjecture de von Neumann »): y a-t-il équivalence entre la moyennabilité
et la non-existence de sous-groupes libres a deux générateurs ? La réponse
est non dans le cas général d’aprés Ol'shanski [O]. Cependant, le théoréme
suivant donne une réponse positive dans le cas particulier des sous-groupes
du groupe linéaire. Le lecteur trouvera un excellent exposé introductif de ce
résultat dans [H]:

2.1.2.  TureoreME (Tits [T]). Soit G un sous-groupe de GL(C"). I est
équivalent de dire que:

(1) G est moyennable.
(i) G est virtuellement résoluble.
(i) G ne contient aucun groupe libre d deux générateurs.
Nous avons vu que les groupes de Lie résolubles et les compacts sont

moyennables (en tant que groupes de Lie). En fait, ces deux classes de
groupes de Lie suffisent d construire tous les moyennables (cf. [Z1], p. 62):

2.1.3. THeOREME (Furstenberg [Fu]). Les groupes de Lie moyennables
sont exactement les produits semi-directs de la forme K X R avec K
compact et R résoluble.

Venons-en aux sous-groupes discrets des groupes de Lie. Rappelons
qu’un groupe est polycyclique s’il peut étre obtenu a partir d'un nombre fini
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d’extensions de groupes cycliques (finis ou infinis). On peut montrer (cf. [Ra])
qu’un groupe G est polycyclique <> G est résoluble et a tous ses sous-groupes
de type fini.

2.1.4. THEOREME. Soit I un sous-groupe discret d’'un groupe de Lie G.
(i) [ résoluble < I polycyclique.

() Si G est un groupe de Lie moyennable alors T est virtuellement
polycyclique.

Démonstration. (1) Voir [Ra], proposition 3.8.

(i) [ est fermé dans G groupe de Lie moyennable, donc I' est
moyennable en tant que groupe discret d’aprés 2.1.1. On applique alors
212, O

Le point (ii) suffirait 2 montrer qu’un sous-groupe discret de E(n) est
virtuellement polycyclique puisque E(n) = O(n) X R" est un groupe de Lie
moyennable (cf. 2.1.3). Signalons pour finir que d’aprés [M3], tout groupe
polycyclique I' peut étre réalis€ comme sous-groupe discret de Aff (R”)
pour un n assez grand et méme de fagon a ce que R"/I" soit une variété.

2.2. CROISSANCE POLYNOMIALE ET NILPOTENCE. Si la notion de moyen-
nabilit¢ a un sens pour n’importe quel groupe topologique, celle de
croissance concerne uniquement les groupes topologiques de type compact,
c’est-a-dire ceux qui possedent un systeme générateur compact. Il s’agit la
d’'une simple extension de la classe des groupes de type fini ou, en présence
d’'une structure topologique, les ensembles finis ont été remplacés par les
compacts. Tout groupe de Lie est de type compact.

Définissons maintenant la notion de croissance pour un groupe topo-
logique de type compact G. Soit ¥ un systeme générateur de G compact
et symétrique. On définit sur G la distance invariante a gauche d(x, y)
= le nombre d’¢léments minimum de X permettant d’écrire x~'y. Soit p
une mesure de Haar (unique a constante multiplicative pres) et B(e, L)
la boule de centre e et de rayon L pour la métrique d. Le type de croissance
de la fonction f(L) = w(B(e, L)) ne dépend pas du choix du systéme géné-
rateur X choisi: c’est le type de croissance de G.

La notion de croissance a été introduite pour les groupes discrets de
type fini en vue de I’¢tude du groupe fondamental de certaines variétés
riemanniennes. L’observation initiale €tait la suivante: si M est une variété
riemannienne compacte, le type de croissance de m,(M) est le méme que
celui, controlable par I’analyse, du volume des boules du revétement
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universel riemannien M (cf. [M1], [W2]). Dés le début sest posée la
question de I’équivalence entre croissance polynomiale et virtuelle nilpotence.
Les premiéres étapes en vue de la réponse affirmative donnée par Gromov
(cf. 4.3) sont les suivantes:

22.1. THEOREME. Un groupe de type fini T d croissance polynomiale
est virtuellement nilpotent dans les cas suivants:

(i) T est virtuellement résoluble (Milnor-Wolf [M2], [W2]).
(i) T est un sous-groupe d’un groupe de Lie (Tits [T).

1l est facile de voir, grice 4 la condition de Fglner ([F¢] cf. [Gre]),
quun groupe topologique a croissance polynomiale est forcément moyen-

nable. Par ailleurs, on a la proposition suivante provenant directement des
définitions:

2.2.2. PROPOSITION. Tout sous-groupe discret de type fini d'un groupe
topologique d croissance polynomiale est a croissance polynomiale.

En groupant ceci avec ce qui précéde, on obtient la genéralisation
suivante de Bieberbach:

2.2.3. THEOREME. Un sous-groupe discret d’'un groupe de Lie a croissance
polynomiale est virtuellement nilpotent de type fini.

Le groupe E(n) = O(n) X R” étant a croissance polynomiale, on retrouve
ainsi I’énoncé classique de Bieberbach en appliquant ce résultat et le petit
lemme 1.2.3. Les groupes de Lie a croissance polynomiale sont classifiés
par le:

2.2.4. TuHEOREME (Guivarc’h [Gui] ou Jenkins [J]). Les groupes de Lie
a croissance polynomiale sont exactement les produits semi-directs de la forme
KX R avec K compact et R un groupe de Lie résoluble ayant une
algebre de Lie triangulaire avec des éléments diagonaux imaginaires purs.

Par exemple, un groupe de Lie lin¢aire orthopotent (cf. [Frl]) c’est-a-dire
un groupe de matrices triangulaires par blocs avec des blocs diagonaux
dans le groupe orthogonal est a croissance polynomiale.

3. LE THEOREME DE BIEBERBACH LORENTZIEN

Le théoréeme de Bieberbach classique est énoncé pour des sous-
groupes cristallographiques de O(n) X R". Remplagons maintenant O(n)
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