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Démonstration. D'après ([KM], exercice 21.1.6), un groupe de matrices
localement résoluble est résoluble (cf. aussi [Ra], § 8). Le groupe G est donc
résoluble. Grâce au théorème 2.1.4, énoncé au § suivant, G étant discret
dans un groupe de Lie, il est polycyclique (i.e. tous ses sous-groupes sont
de type fini). Par conséquent, G est de type fini, il est donc nilpotent.

Remarquons que le lemme 1.2.3 permet d'affirmer alors que Fnd est

abélien dans le cas classique (i.e. T a E(n)). Pour terminer la preuve de 1.2.1

dans le cas général, il reste à montrer l'unipotence de Fnd lorsque T est

un groupe cristallographique (i.e. Rn/F est une variété compacte). Dans ce cas,

on considère le sous-espace affine maximal U sur lequel l'action de Fnd

est unipotente (cf. 1.2.2). Cet espace est invariant par F. On considère alors
la variété U/F qui a même type d'homotopie que la n-variété compacte
R"/r. Ceci force U à être de dimension n et donc Fnd à être unipotent
(argument cohomologique de [FGH] p. 496 que l'on retrouvera en 3.3.1).

2. Dans d'autres groupes de Lie

L'objet de ce § est de décrire une autre approche moins élémentaire
du premier théorème de Bieberbach mettant enjeu les notions de moyennabilité
et de croissance qui lui sont aujourd'hui indissociablement liées. L'idée de

départ maintenant est de considérer E(n) comme faisant partie de la classe 0*

des groupes de Lie à croissance polynomiale, elle-même incluse dans celle Jt
des moyennables. Le résultat s'énonce simplement de la façon suivante

(2.1.4, 2.2.3): si F est un sous-groupe discret dans un groupe de Lie
G g Ji (resp. Ge^) alors F est virtuellement polycyclique (resp. virtuellement

nilpotent de type fini). Par ailleurs, les classes Ji et 0 sont caractérisées

ainsi (2.1.3, 2.2.4): G e Ji (resp. Gef) équivaut à G K ix R où K est

compact et R est résoluble (resp. résoluble avec une algèbre de Lie triangulaire
avec des éléments diagonaux imaginaires purs). Ces énoncés vont nous être

utiles au § 3. Nous verrons au § 4 comment ils peuvent encore être généralisés.

2.1. Moyennabilité et résolubilité. Soit G un groupe topologique
localement compact muni de sa a-algèbre borélienne 01. Une moyenne sur
l'espace mesurable (G, 0) est une mesure de probabilité, nulle sur les

négligeables (pour une mesure de Haar de G) et seulement supposée finiment
additive. On dit que le groupe G est moyennable s'il admet une moyenne
invariante à gauche. Il est facile de vérifier alors qu'elle peut être choisie

biinvariante (cf. [Gre] p. 29). Par exemple, l'unique mesure de Haar d'un

groupe compact K qui soit de probabilité fournit une moyenne biinvariante
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sur K (dans ce cas, elle est en plus a-additive). Le lecteur pourra prouver,
à titre d'exercice, la proposition naturelle suivante (cf. [Gre] p. 30 ou

[ZI] p. 61):

2.1.1. Proposition. Tout sous-groupe fermé H d'un groupe localement

compact moyennable G est moyennable (pour la topologie induite par G

sur H).
Si l'on ne précise pas de topologie pour un groupe G et que Ton dit

que G est moyennable, cela sous-entend qu'il l'est en tant que groupe
topologique discret. Un groupe qui est moyennable dans ce sens l'est forcément

pour toute autre structure de groupe localement compact et, d'après la

proposition précédente, tous ses sous-groupes sont moyennables.
Le groupe libre à deux générateurs L(a, b) n'est pas moyennable, ce qui fait

que le groupe 0(3) qui le contient n'est pas moyennable en tant que groupe
discret bien qu'il le soit en tant que groupe de Lie puisque compact
(voir ci-dessus). Ceci est l'origine du célèbre « paradoxe » de Hausdorff-
Banach-Tarski (cf. [Gre] ou [HS]).

Un groupe virtuellement résoluble est moyennable (même références).

Dans [D], Day a posé la question suivante (parfois appelée improprement
« conjecture de von Neumann ») : y a-t-il équivalence entre la moyennabilité
et la non-existence de sous-groupes libres à deux générateurs La réponse
est non dans le cas général d'après Ol'shanski [O]. Cependant, le théorème
suivant donne une réponse positive dans le cas particulier des sous-groupes
du groupe linéaire. Le lecteur trouvera un excellent exposé introductif de ce

résultat dans [H] :

2.1.2. Théorème (Tits [T]). Soit G un sous-groupe de GL(C"). Il est

équivalent de dire que :

(i) G est moyennable.

(ii) G est virtuellement résoluble.

(iii) G ne contient aucun groupe libre à deux générateurs.

Nous avons vu que les groupes de Lie résolubles et les compacts sont
moyennables (en tant que groupes de Lie). En fait, ces deux classes de

groupes de Lie suffisent à construire tous les moyennables (cf. [ZI], p. 62):

2.1.3. Théorème (Furstenberg [Fu]). Les groupes de Lie moyennables
sont exactement les produits semi-directs de la forme K \X R avec K
compact et R résoluble.

Venons-en aux sous-groupes discrets des groupes de Lie. Rappelons
qu'un groupe est polycyclique s'il peut être obtenu à partir d'un nombre fini



252 Y. CARRIÈRE ET F. DAL'BO

d'extensions de groupes cycliques (finis ou infinis). On peut montrer (cf. [Ra])
qu'un groupe G est polycyclique o G est résoluble et a tous ses sous-groupes
de type fini.

2.1.4. Théorème. Soit T un sous-groupe discret d'un groupe de Lie G.

(i) T résoluble <^> F polycyclique.

(ii) Si G est un groupe de Lie moyennable alors F est virtuellement

polycyclique.

Démonstration, (i) Voir [Ra], proposition 3.8.

(ii) T est fermé dans G groupe de Lie moyennable, donc F est

moyennable en tant que groupe discret d'après 2.1.1. On applique alors
2.1.2.

Le point (ii) suffirait à montrer qu'un sous-groupe discret de E(n) est

virtuellement polycyclique puisque E(n) 0(n) ix R" est un groupe de Lie
moyennable (cf. 2.1.3). Signalons pour finir que d'après [M3], tout groupe
polycyclique F peut être réalisé comme sous-groupe discret de Aff (Rn)

pour un n assez grand et même de façon à ce que R"/r soit une variété.

2.2. Croissance polynomiale et nilpotence. Si la notion de moyen-
nabilité a un sens pour n'importe quel groupe topologique, celle de

croissance concerne uniquement les groupes topologiques de type compact,
c'est-à-dire ceux qui possèdent un système générateur compact. Il s'agit là
d'une simple extension de la classe des groupes de type fini où, en présence
d'une structure topologique, les ensembles finis ont été remplacés par les

compacts. Tout groupe de Lie est de type compact.
Définissons maintenant la notion de croissance pour un groupe

topologique de type compact G. Soit Z un système générateur de G compact
et symétrique. On définit sur G la distance invariante à gauche d(x, y)

le nombre d'éléments minimum de Z permettant d'écrire x~1y. Soit p
une mesure de Haar (unique à constante multiplicative près) et B(e, L)
la boule de centre e et de rayon L pour la métrique d. Le type de croissance

de la fonction /(L) \x(B(e, L)) ne dépend pas du choix du système
générateur Z choisi : c'est le type de croissance de G.

La notion de croissance a été introduite pour les groupes discrets de

type fini en vue de l'étude du groupe fondamental de certaines variétés

riemanniennes. L'observation initiale était la suivante: si M est une variété

riemannienne compacte, le type de croissance de n^M) est le même que
celui, contrôlable par l'analyse, du volume des boules du revêtement
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universel riemannien M (cf. [Ml], [W2]). Dès le début s est posée la

question de l'équivalence entre croissance polynomiale et virtuelle nilpotence.

Les premières étapes en vue de la réponse affirmative donnée par Gromov

(cf. 4.3) sont les suivantes:

2.2.1. Théorème. Un groupe de type fini T à croissance polynomiale

est virtuellement nilpotent dans les cas suivants :

(i) T est virtuellement résoluble (Milnor-Wolf [M2], [W2]).

(ii) T est un sous-groupe d'un groupe de Lie (Tits [T]).

Il est facile de voir, grâce à la condition de Feiner ([F0] cf. [Gre]),

qu'un groupe topologique à croissance polynomiale est forcément moyen-
nable. Par ailleurs, on a la proposition suivante provenant directement des

définitions :

2.2.2. Proposition. Tout sous-groupe discret de type fini d'un groupe

topologique à croissance polynomiale est à croissance polynomiale.

En groupant ceci avec ce qui précède, on obtient la généralisation

suivante de Bieberbach :

2.2.3. Théorème. Un sous-groupe discret d'un groupe de Lie à croissance

polynomiale est virtuellement nilpotent de type fini.

Le groupe E(n) 0(n) IX R" étant à croissance polynomiale, on retrouve
ainsi l'énoncé classique de Bieberbach en appliquant ce résultat et le petit
lemme 1.2.3. Les groupes de Lie à croissance polynomiale sont classifiés

par le :

2.2.4. Théorème (Guivarc'h [Gui] ou Jenkins [J]). Les groupes de Lie
à croissance polynomiale sont exactement les produits semi-directs de la forme
K IX R avec K compact et R un groupe de Lie résoluble ayant une

algèbre de Lie triangulaire avec des éléments diagonaux imaginaires purs.

Par exemple, un groupe de Lie linéaire orthopotent (cf. [Frl]) c'est-à-dire

un groupe de matrices triangulaires par blocs avec des blocs diagonaux
dans le groupe orthogonal est à croissance polynomiale.

3. Le théorème de Bieberbach lorentzien

Le théorème de Bieberbach classique est énoncé pour des sous-

groupes cristallographiques de 0(n) X R". Remplaçons maintenant O(n)
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