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donner une preuve simplifiée d'un résultat de Goldman et Kamishima [GK]
qui, joint à [C2] fournit le théorème de Bieberbach lorentzien: une variété
lorentzienne plate compacte est à revêtement fini près une solvariété (i.e. le

quotient d'un groupe de Lie résoluble par un réseau). Un preprint récent
de Grunewald et Margulis [GM] précise la nature des réseaux concernés

prolongeant ainsi le travail de Fried [Fr2] en dimension 4. Le § 4 est

un survol rapide de quelques autres généralisations.

Convention : Le terme « groupe de Lie » est pour nous synonyme de

« groupe de Lie connexe ».

Nous tenons à remercier A. Haefliger et P. de la Harpe pour les critiques
et les commentaires qu'ils ont ajoutés à ce texte.

1. Dans Aff{W)

Nous allons donner une preuve et une généralisation du théorème de

Bieberbach qui est élémentaire si le lecteur sait qu'un groupe linéaire

nilpotent admet une décomposition de Jordan (cf. 1.2). L'idée naturelle de

généralisation ici est de remplacer E(n) 0(n) R" par le groupe de toutes
les transformations affines Aff (R") — GL(R") ix R". La perte de compacité
du quotient dans le produit semi-direct se retrouve dans la conclusion plus
faible (mais à notre avis optimale) du théorème obtenu (1.2.1).

1.1. Nilpotence et commutateurs dans un groupe de Lie. Soit T un

groupe. La suite centrale T(fc) dérivée de Y est définie par r(0) Y

et la relation de récurrence Y(k + 1) [r, T(/c)] où le crochet désigne le

commutateur des sous-groupes concernés de Y. Le groupe Y est nilpotent
de degré d si la suite centrale dérivée Y{k) devient triviale à partir de

k d. On a le lemme suivant résultant d'une récurrence sur d :

1.1.1. Lemme. Pour que Y soit nilpotent de degré d, il faut et il
suffit que pour un système générateur Y, de Y on ait

[Yo.LYiT—[Yi-i.Yd]—] e, Vyo,..., ydeE.

Autrement dit, la nilpotence d'un groupe se lit sur l'un quelconque de ses

systèmes générateurs. Considérons maintenant un groupe de Lie G. L'application

commutateur : (x, y) e G x G i— [x, y] e G a en l'élément neutre

(e, e) e G x G ses deux applications partielles x e G i— [x, e] et y e G [e, y]
constantes égales à e. Par conséquent, le développement de Taylor de [.,.]
en (e, e) n'a que des termes où x, y interviennent simultanément. D'où la
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1.1.2. Propriété de contraction des commutateurs. Pour toute

constante c, 0 < c < 1, il existe un voisinage compact D de e e G et

des coordonnées locales centrées en 0 (coordonnées de e) telles que Ion ait

Vx,yeD, || [x, y] || < c || x [J* | y ||

où II Il désigne la norme euclidienne sur Vespace des coordonnées.

Il est clair que l'on peut supposer en plus [D, D] c= D. On dit alors

que D est un domaine de contraction des commutateurs. Le lemme suivant énoncé

dans [Ra] et [Wl] est attribué à Zassenhaus:

1.1.3. Lemme. Tout sous-groupe discret Y de G ayant un système

générateur X c= D est nilpotent.

Ce lemme résulte directement de ce qui précède. Il nous semble contenir

la clé de toute tentative de généralisation du premier théorème de Bieberbach.

1.2. Le théorème de Bieberbach dans Äff (Rn). Nantis de ces

préliminaires, nous allons nous intéresser au cas où G Äff (R"). On notera

L : Äff (R") -> GL(R") le morphisme qui à une transformation affine Ax -h b

associe sa partie linéaire A. Soit Y un sous-groupe de Aff (Rn) et L(r)°
la composante connexe neutre de l'adhérence de L(Y). On notera

L(Y)nd L(Y)nMY)°

ce que l'on pourrait appeler « la partie non discrète de L(Y) » et

Ynd Y n L~1(L(Y)nd) le sous-groupe de Y correspondant. Remarquons
qu'a priori, la discrétion de Y n'implique pas celle de L(Y).

Un résultat de L. Auslander [Au] (cf. [R], theorem 8.24), utilisé dans

l'étude des groupes affines cristallographiques ([FG], [GK] cf. 4.1), permet
d'affirmer que si Y est discret dans Aff (R") alors L(Y)nd (et donc r„d)
est résoluble. Nous allons démontrer le théorème plus précis suivant qui
semble être la bonne généralisation de Bieberbach dans cette direction:

1.2.1. Théorème. Si Y est un sous-groupe discret dans Aff (Rn) alors
Ynd est nilpotent (de type fini d'après 2.1.4). Si de plus Y est cristallo-
graphique (i.e. M Rn/Y est une variété compacte) alors Tnd est unipotent
(i.e. L(Y)nd est unipotent).

Avant d'aborder la démonstration de ce théorème, rappelons un résultat
sur les représentations affines nilpotentes. On voit d'abord Aff (R") comme
sous-groupe algébrique via le plongement habituel Aff (R") -> GL(Rn + 1) qui à
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la transformation affine Ax + b associe la matrice

Soit N un sous-groupe nilpotent de Aff (R") et N' son adhérence dans

Aff(Rn) pour la topologie de Zariski. La composante neutre N'0 est un groupe
de Lie nilpotent connexe d'indice fini dans N'. Le groupe N0 N n N'0
est aussi d'indice fini dans N et on a (cf. theorem 1.7 de [FGH]):

1.2.2. Proposition. Il existe un unique sous-espace affine U invariant

par N0 et maximal parmi les sous-espaces sur lesquels N0 est unipotent.
Ce sous-espace (F«axe» de N) est invariant par le normalisateur de N.

Démonstration. Un sous-groupe de Aff (Rn) peut être vu comme sous-

groupe de GL(R"+1) stabilisant la forme linéaire donnée par la dernière
coordonnée xn+1. Considérons donc le sous-groupe de Lie connexe nilpotent
N o dans GL(R" + 1). D'après ([Bo], theorem 10.6), N'0 admet une décomposition

de Jordan, R" + 1
se décompose donc en somme directe d'un sous-espace

unipotent stable maximal VY et d'un autre sous-espace invariant V2. Le
fait que N'0 provienne de Aff (R") assure que V1 n'est pas trivial. Nécessairement

V2 ne coupe pas l'espace affine xn + 1
1 car sinon l'action de

N'o en restriction à l'intersection fournirait un espace unipotent, ce qui
contredirait la maximalité de V1. On en déduit que U V1 n(x„ + 1 l)
est non vide. Le normalisateur de N normalise aussi N'0 et donc
stabilise U.

Dans le cas où F est dans E(n\ c'est-à-dire où L(r) c= 0(n\ alors

L(r) est compact et donc n'a qu'un nombre fini de composantes connexes.

Par conséquent, L(r)° est d'indice fini dans LÇT), ce qui prouve que
Tnd a un indice fini dans T. D'après 1.2.1, Tnd est nilpotent. L'énoncé de

Bieberbach suit alors du lemme suivant appliqué à N r„d:

1.2.3. Lemme. Tout sous-groupe nilpotent N de E(n) contient un

sous-groupe d'indice fini N0 abélien. Si de plus N est un groupe cristallo-

graphique, alors N0 est engendré par n translations linéairement

indépendantes.

Démonstration. Reprenons la conclusion de la proposition précédente
dans le cas où N <= E(n). L'action de N0 sur l'axe U est par translations

pures, donc abélienne. Celle dans la direction normale à U (i.e. dans V2)

est linéaire, triangulable et orthogonale donc diagonalisable (complexe). Ceci

garantit déjà que N0 est abélien. On remarque de plus que si U est de

dimension < n, la fonction continue sur R" donnée par la distance
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(euclidienne) au sous-espace invariant U fournit une fonction invariante

par N0 et sans maximum local. Dans le cas où N est cristallographique,

N0 l'est aussi, et donc, le fait que U Rn (i.e. N0 est un groupe de

translations pures) est assuré par la compacité de la variété M W/N0.
Pour finir, toujours dans ce cas, le même raisonnement appliqué à la fonction

distance au sous-espace vectoriel V engendré par les vecteurs de translation

de N0 montre que V R".

1.3. Démonstration du théorème. Elle se réduit essentiellement au

lemme suivant qui tient à l'existence des dilatations que sont les homothéties

en géométrie affine:

1.3.1. Lemme. Si F est un sous-groupe discret de Aff (R"), tout sous-

groupe de type fini de Fnd est nilpotent.

Démonstration. Fixons pour commencer un domaine de contraction des

commutateurs D du groupe de Lie G Aff (Rn) (cf. 1.1.2). Pour qu'un élément

Ax + b de AffÇR") soit dans D, il suffit d'avoir AeD1 œ GL(R") et

b e D2 c: R" où D1 et D2 sont respectivement des voisinages de l'identité
et de zéro, choisis suffisamment petits et à leur tour fixés pour la suite.

Le groupe L(F)nd L(F) n L(F) °, par sa définition même, admet des

systèmes générateurs aussi proches de l'identité que l'on veut. Ainsi, on est

assuré que tout sous-groupe de type fini de Tnd est inclus dans un sous-groupe
dont les générateurs Axx + b1,..., Asx -h bs ont leurs parties linéaires

At, i 1,..., s dans D1.
Il suffit donc de prouver qu'un tel groupe est forcément nilpotent.

Pour ceci, écrivons son conjugué par l'homothétie de rapport X :

<Apc + Xb1,...,Asx A Xbs> a

et choisissons X assez petit de façon que Xbt e D2 pour i 1,..., s. Ce groupe,
continûment isomorphe au précédent, est lui aussi discret et de plus possède
un système générateur dans le domaine de contraction des commutateurs D
fixé au début de la preuve. D'après le lemme 1.1.3, il est nilpotent.

On conclut que T„d est nilpotent grâce au petit lemme suivant :

1.3.2. Lemme. Un sous-groupe discret G de GL(Cm) localement
nilpotent (i.e. tous les sous-groupes de type fini de G sont nilpotents)
est nilpotent.
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Démonstration. D'après ([KM], exercice 21.1.6), un groupe de matrices
localement résoluble est résoluble (cf. aussi [Ra], § 8). Le groupe G est donc
résoluble. Grâce au théorème 2.1.4, énoncé au § suivant, G étant discret
dans un groupe de Lie, il est polycyclique (i.e. tous ses sous-groupes sont
de type fini). Par conséquent, G est de type fini, il est donc nilpotent.

Remarquons que le lemme 1.2.3 permet d'affirmer alors que Fnd est

abélien dans le cas classique (i.e. T a E(n)). Pour terminer la preuve de 1.2.1

dans le cas général, il reste à montrer l'unipotence de Fnd lorsque T est

un groupe cristallographique (i.e. Rn/F est une variété compacte). Dans ce cas,

on considère le sous-espace affine maximal U sur lequel l'action de Fnd

est unipotente (cf. 1.2.2). Cet espace est invariant par F. On considère alors
la variété U/F qui a même type d'homotopie que la n-variété compacte
R"/r. Ceci force U à être de dimension n et donc Fnd à être unipotent
(argument cohomologique de [FGH] p. 496 que l'on retrouvera en 3.3.1).

2. Dans d'autres groupes de Lie

L'objet de ce § est de décrire une autre approche moins élémentaire
du premier théorème de Bieberbach mettant enjeu les notions de moyennabilité
et de croissance qui lui sont aujourd'hui indissociablement liées. L'idée de

départ maintenant est de considérer E(n) comme faisant partie de la classe 0*

des groupes de Lie à croissance polynomiale, elle-même incluse dans celle Jt
des moyennables. Le résultat s'énonce simplement de la façon suivante

(2.1.4, 2.2.3): si F est un sous-groupe discret dans un groupe de Lie
G g Ji (resp. Ge^) alors F est virtuellement polycyclique (resp. virtuellement

nilpotent de type fini). Par ailleurs, les classes Ji et 0 sont caractérisées

ainsi (2.1.3, 2.2.4): G e Ji (resp. Gef) équivaut à G K ix R où K est

compact et R est résoluble (resp. résoluble avec une algèbre de Lie triangulaire
avec des éléments diagonaux imaginaires purs). Ces énoncés vont nous être

utiles au § 3. Nous verrons au § 4 comment ils peuvent encore être généralisés.

2.1. Moyennabilité et résolubilité. Soit G un groupe topologique
localement compact muni de sa a-algèbre borélienne 01. Une moyenne sur
l'espace mesurable (G, 0) est une mesure de probabilité, nulle sur les

négligeables (pour une mesure de Haar de G) et seulement supposée finiment
additive. On dit que le groupe G est moyennable s'il admet une moyenne
invariante à gauche. Il est facile de vérifier alors qu'elle peut être choisie

biinvariante (cf. [Gre] p. 29). Par exemple, l'unique mesure de Haar d'un

groupe compact K qui soit de probabilité fournit une moyenne biinvariante
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