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246 Y. CARRIERE ET F. DAL’BO

donner une preuve simplifiée d’un résultat de Goldman et Kamishima [GK]
qui, joint a [C2] fournit le théoréme de Bieberbach lorentzien: une variété
lorentzienne plate compacte est a revétement fini prés une solvariété (i.e. le
quotient d'un groupe de Lie résoluble par un réseau). Un preprint récent
de Grunewald et Margulis [GM] précise la nature des réseaux concerneés
prolongeant ainsi le travail de Fried [Fr2] en dimension 4. Le §4 est
un survol rapide de quelques autres généralisations.

Convention: Le terme « groupe de Lie» est pour nous synonyme de
« groupe de Lie connexe ».

Nous tenons a remercier A. Haefliger et P. de la Harpe pour les critiques
et les commentaires qu’ils ont ajoutés a ce texte.

1. Dans Aff (R")

Nous allons donner une preuve et une généralisation du théoreme de
Bicberbach qui est élémentaire si le lecteur sait qu'un groupe linéaire
nilpotent admet une décomposition de Jordan (cf. 1.2). L’idée naturelle de
généralisation ici est de remplacer E(n) = O(n) X R" par le groupe de toutes
les transformations affines Aff (R") = GL(R") X R". La perte de compacité
du quotient dans le produit semi-direct se retrouve dans la conclusion plus
faible (mais a notre avis optimale) du théoreme obtenu (1.2.1).

1.1. NILPOTENCE ET COMMUTATEURS DANS UN GROUPE DE LIE. Soit I un
groupe. La suite centrale I'® dérivée de T est définie par ¥ = T
et la relation de récurrence I'**V = [T, T™] ou le crochet désigne le
commutateur des sous-groupes concernés de I'. Le groupe I' est nilpotent
de degré d si la suite centrale dérivée I'™ devient triviale a partir de
k = d. On a le lemme suivant résultant d’une récurrence sur d:

1.1.1. LeMME. Pour que I soit nilpotent de degré d, il faut et il
suffit que pour un systeme générateur % de I on ait

[YO:[Yl:[".[Yd—la’Yd];"] = e: V’YOa-"a ’Ydezo

Autrement dit, la nilpotence d’un groupe se lit sur I'un quelconque de ses
systémes générateurs. Considérons maintenant un groupe de Lie G. L’appli-
cation commutateur: (x,y)eG x Gr—[x,y]€G a en [I’¢lément neutre
(e, ) € G x G ses deux applications partielles x e G [x,e] et y e G [e, y]
constantes égales a e. Par conséquent, le développement de Taylor de [.,.]
en (e, e) na que des termes ou X, y interviennent simultanément. D’ou la
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1.1.2. PROPRIETE DE CONTRACTION DES COMMUTATEURS. Pour toute
constante ¢, 0 < ¢ < 1, il existe un voisinage compact D de e€ G et
des coordonnées locales centrées en 0 (coordonnées de e) telles que Ton ait

Vx,yeD, Doyl <cllx|.lyl

on ||.| désigne la norme euclidienne sur lespace des coordonnées.

Tl est clair que on peut supposer en plus [D, D] = D. On dit alors
que D est un domaine de contraction des commutateurs. Le lemme suivant énonce
dans [Ra] et [W1] est attribué a Zassenhaus:

1.1.3. LeMME. Tout sous-groupe discret T de G ayant un systéme
générateur X < D est nilpotent.

Ce lemme résulte directement de ce qui précede. Il nous semble contenir
la clé de toute tentative de généralisation du premier théoreme de Bieberbach.

1.2. LE THEOREME DE BIEBERBACH DANS Aff (R”). Nantis de ces préli-
minaires, nous allons nous intéresser au cas ou G = Aff (R"). On notera
L: Aff R") — GL(R") le morphisme qui & une transformation affine Ax + b

associe sa partie linéaire A. Soit I' un sous-groupe de Aff (R") et L(I)°
la composante connexe neutre de 'adhérence de I(I'). On notera

L),y = LT) LI’
ce que l'on pourrait appeler «la partie non discrete de L(I')» et
[,=TInL YLI),,) le sous-groupe de I' correspondant. Remarquons
qu’a priori, la discrétion de I' n’implique pas celle de L(I').

Un résultat de L. Auslander [Au] (cf. [R], theorem 8&.24), utilis¢ dans
I'étude des groupes affines cristallographiques ([FG], [GK] cf. 4.1), permet
d’affirmer que si I' est discret dans Aff (R") alors I(I'),; (et donc I',,)
est resoluble. Nous allons démontrer le théoréme plus précis suivant qui
semble €tre la bonne géneralisation de Bieberbach dans cette direction:

1.2.1. THEOREME. Si I' est un sous-groupe discret dans Aff (R") alors
I',s est nilpotent (de type fini daprés 2.1.4). Si de plus T est cristallo-

graphique (i.e. M = R"/T" est une variété compacte) alors T,; est unipotent
(i.e. L(I'),; est unipotent).

Avant d’aborder la démonstration de ce théoréme, rappelons un résultat
sur les représentations affines nilpotentes. On voit d’abord Aff (R") comme
sous-groupe algebrique via le plongement habituel Aff (R") - GL(R"™!) qui a
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: . : A b
la transformation affine Ax + b associe la matrice (O 1)eGL(R"“).

Soit N un sous-groupe nilpotent de Aff (R") et N’ son adhérence dans
Aff (R") pour la topologie de Zariski. La composante neutre N est un groupe
de Lie nilpotent connexe d’indice fini dans N'. Le groupe N, = N n N
est aussi d’indice fini dans N et on a (cf theorem 1.7 de [FGH]):

1.2.2. PROPOSITION. Il existe un unique sous-espace affine U invariant
par N, et maximal parmi les sous-espaces sur lesquels N, est unipotent.
Ce sous-espace (I« axe» de N) est invariant par le normalisateur de N.

Démonstration. Un sous-groupe de Aff (R") peut étre vu comme sous-
groupe de GL(R"*1!) stabilisant la forme linéaire donnée par la derniére
coordonnée x,, ;. Considérons donc le sous-groupe de Lie connexe nilpotent
N, dans GL(R""1). D’aprés ([Bo], theorem 10.6), N{, admet une décompo-
sition de Jordan, R"*! se décompose donc en somme directe d’un sous-espace
unipotent stable maximal V; et d’un autre sous-espace invariant V,. Le
fait que N, provienne de Aff (R") assure que V; n’est pas trivial. Nécessai-
rement V', ne coupe pas l'espace affine x,,; = 1 car sinon l'action de
N, en restriction a lintersection fournirait un espace unipotent, ce qui
contredirait la maximalité de V;. On en déduit que U = V; N (x,.,=1)
est non vide. Le normalisateur de N normalise aussi N et donc
stabilise U. [

Dans le cas ou I' est dans E(n), c’est-a-dire ou IL(I') = O(n), alors

L(I") est compact et donc n’a qu'un nombre fini de composantes connexes.
Par conséquent, ;L(—F)O est d’indice fini dans ﬁ, ce qui prouve que
I, a un indice fini dans T'. D’apres 1.2.1, T',, est nilpotént. L’énoncé de
Bieberbach suit alors du lemme suivant appliqué a N = I',;:

1.2.3. LeEMME. Tout sous-groupe nilpotent N de E(n) contient un
sous-groupe d’indice fini N, abélien. Si de plus N est un groupe cristallo-
graphique, alors N, est engendré par n translations linéairement indé-
pendantes.

Démonstration. Reprenons la conclusion de la proposition précédente
dans le cas ou N < E(n). L’action de N, sur axe U est par translations
pures, donc abélienne. Celle dans la direction normale a U (i.e. dans V,)
est linéaire, triangulable et orthogonale donc diagonalisable (complexe). Ceci
garantit déja que N, est abélien. On remarque de plus que si U est de
dimension < n, la fonction continue sur R" donnée par la distance
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(euclidienne) au sous-espace invariant U fournit une fonction invariante
par N, et sans maximum local. Dans le cas ou N est cristallographique,
N, lest aussi, et donc, le fait que U = R" (ie. No est un groupe de
translations pures) est assuré par la compacité de la variété M = R"/Ny.
Pour finir, toujours dans ce cas, le méme raisonnement appliqué a la fonction
distance au sous-espace vectoriel V engendré par les vecteurs de translation
de N, montre que V = R". [

1.3. DEMONSTRATION DU THEOREME. Elle se réduit essentiellement au
lemme suivant qui tient a I'existence des dilatations que sont les homothéties
en géométrie affine:

1.3.1. LemMme. Si I' est un sous-groupe discret de Aff (R"), tout sous-
groupe de type fini de T',; est nilpotent.

Démonstration. Fixons pour commencer un domaine de contraction des
commutateurs D du groupe de Lie G = Aff (R”) (cf. 1.1.2). Pour qu’un ¢élément
Ax + b de Aff(R") soit dans D, il suffit d’avoir AeD, < GL(R") et
beD, =« R*" ou D, et D, sont respectivement des voisinages de I'identite
et de zéro, choisis suffisamment petits et a leur tour fixés pour la suite.

Le groupe L(I),, = L) mﬁO, par sa définition méme, admet des
systemes générateurs aussi proches de l'identité que I'on veut. Ainsi, on est
assuré que tout sous-groupe de type fini de I',,; est inclus dans un sous-groupe
dont les générateurs A;x + by, .., Ax + by, ont leurs parties linéaires
A;,i =1,.,sdans D, .

Il suffit donc de prouver qu’un tel groupe est forcément nilpotent.
Pour ceci, écrivons son conjugué par 'homothétie de rapport A:

<A1X + }\«bl, s, ASX + )Lbs> (= %Fmﬂ\._l

et choisissons A assez petit de fagon que Ab; € D, pouri = 1, ..., s. Ce groupe,
continiment isomorphe au précédent, est lui aussi discret et de plus posseéde
un systeme générateur dans le domaine de contraction des commutateurs D
fixe au début de la preuve. D’aprés le lemme 1.1.3, il est nilpotent. []J

On conclut que I',; est nilpotent grace au petit lemme suivant:

1.3.2. LEMME. Un sous-groupe discret G de GL(C™ localement

nilpotent (i.e. tous les sous-groupes de type fini de G sont nilpotents)
est nilpotent.
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Démonstration. D’apres ([KM], exercice 21.1.6), un groupe de matrices
localement résoluble est résoluble (cf. aussi [Ra], § 8). Le groupe G est donc
résoluble. Grace au théoréme 2.1.4, énoncé au § suivant, G étant discret
dans un groupe de Lie, il est polycyclique (i.e. tous ses sous-groupes sont
de type fini). Par conséquent, G est de type fini, il est donc nilpotent. []

Remarquons que le lemme 1.2.3 permet d’affirmer alors que I',, est
abélien dans le cas classique (i.e. I' = E(n)). Pour terminer la preuve de 1.2.1
dans le cas général, il reste a montrer 'unipotence de I',, lorsque I" est
un groupe cristallographique (i.e. R"/I" est une variété compacte). Dans ce cas,
on considere le sous-espace affine maximal U sur lequel Paction de TI',,
est unipotente (cf. 1.2.2). Cet espace est invariant par I'. On considére alors
la variét¢ U/I’ qui a méme type d’homotopie que la n-variété compacte
R"/T'. Ceci force U a étre de dimension n et donc I',;, 4 étre unipotent
(argument cohomologique de [FGH] p. 496 que I'on retrouvera en 3.3.1). [

2. DANS D’AUTRES GROUPES DE LIE

L’objet de ce § est de décrire une autre approche moins élémentaire
du premier théoréme de Bieberbach mettant en jeu les notions de moyennabilité
et de croissance qui lui sont aujourd’hui indissociablement liées. L’idée de
départ maintenant est de considérer E(n) comme faisant partie de la classe 2
des groupes de Lie a croissance polynomiale, elle-méme incluse dans celle .#
des moyennables. Le résultat s’énonce simplement de la fagon suivante
(2.1.4, 223): st I' est un sous-groupe discret dans un groupe de Lie
G € A (resp. G € P) alors I est virtuellement polycyclique (resp. virtuellement
nilpotent de type fini). Par ailleurs, les classes .# et 2 sont caractérisées
ainsi (2.1.3, 2.2.4): Ge M (resp. Ge &) équivaut a G = K X R ou K est
compact et R est résoluble (resp. résoluble avec une algebre de Lie triangulaire
avec des éléments diagonaux imaginaires purs). Ces énoncés vont nous étre
utiles au § 3. Nous verrons au § 4 comment ils peuvent encore étre généralisés.

2.1. MOYENNABILITE ET RESOLUBILITE. Soit G un groupe topologique
localement compact muni de sa oc-algebre borélienne %. Une moyenne sur
I’espace mesurable (G, %) est une mesure de probabilite, nulle sur les
négligeables (pour une mesure de Haar de G) et seulement supposée finiment
additive. On dit que le groupe G est moyennable s’il admet une moyenne
invariante a gauche. Il est facile de vérifier alors qu’elle peut étre choisie
biinvariante (cf. [Gre] p. 29). Par exemple, 'unique mesure de Haar d’un
groupe compact K qui soit de probabilité fournit une moyenne biinvariante
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