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GENERALISATIONS DU PREMIER THEOREME DE BIEBERBACH
SUR LES GROUPES CRISTALLOGRAPHIQUES

par Yves CARRIERE et Francoise DAL'BO

INTRODUCTION

On dira quun groupe a virtuellement la propriété P s’il contient un
sous-groupe d’indice fini vérifiant P. Le premier théoréme de Bieberbach [Bi]
concerne la classification « virtuelle » des sous-groupes discrets du groupe
d’isométries E(n) de I'espace euclidien E"

THEOREME DE BIEBERBACH ([W1]). Un sous-groupe discret T de E(n)
est virtuellement abélien. Si de plus, T est cristallographique (ie. si E"/T’
est compact ), alors T est virtuellement constitué de translations.

C’est en fait ce dernier cas qui était traité par Bieberbach. L’¢noncé
géométrique correspondant étant que toute variété riemannienne plate
compacte est a revétement fini prés un tore plat (ie. le quotient de E”
par un groupe Z" de translations). Le cas général traite par Wolf permet, lui,
d’affirmer qu’une variété riemannienne plate supposée seulement compleéte
est a revétement fini pres topologiquement un cylindre.

Le but de ce texte est de fournir une introduction a ce que nous
estimons étre des généralisations plus ou moins lointaines de ce théoréme.
Des Ie § 1, nous démontrons un théoreme de Bieberbach (1.2.1) pour les
sous-groupes discrets du groupe affine Aff (R") qui améliore un résultat
provenant du travail d’Auslander [Au] utile dans I’étude des variétés affines
completes. La démonstration est, comme celle de Buser [Bu], inspirée par
les varietés presque plates [Grol] mais elle a 'avantage d’étre un peu plus
conceptuelle et de fournir, de ce fait, directement le cas général. Le § 2 est
destiné a introduire les notions de moyennabilité et de croissance polynomiale
ainsi que leur lien avec les propriétés algébriques de résolubilité et de
nilpotence. Nous rappelons rapidement les travaux de Milnor [M1-2],
Wolf [W2], Tits [T], etc,, permettant d’analyser les propriétés algébriques
des sous-groupes discrets des groupes de Lie moyennables et de retrouver
ainsi le theoreme de Bieberbach. Les §1 et §2 sont utilisés au §3 pour
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donner une preuve simplifiée d’un résultat de Goldman et Kamishima [GK]
qui, joint a [C2] fournit le théoréme de Bieberbach lorentzien: une variété
lorentzienne plate compacte est a revétement fini prés une solvariété (i.e. le
quotient d'un groupe de Lie résoluble par un réseau). Un preprint récent
de Grunewald et Margulis [GM] précise la nature des réseaux concerneés
prolongeant ainsi le travail de Fried [Fr2] en dimension 4. Le §4 est
un survol rapide de quelques autres généralisations.

Convention: Le terme « groupe de Lie» est pour nous synonyme de
« groupe de Lie connexe ».

Nous tenons a remercier A. Haefliger et P. de la Harpe pour les critiques
et les commentaires qu’ils ont ajoutés a ce texte.

1. Dans Aff (R")

Nous allons donner une preuve et une généralisation du théoreme de
Bicberbach qui est élémentaire si le lecteur sait qu'un groupe linéaire
nilpotent admet une décomposition de Jordan (cf. 1.2). L’idée naturelle de
généralisation ici est de remplacer E(n) = O(n) X R" par le groupe de toutes
les transformations affines Aff (R") = GL(R") X R". La perte de compacité
du quotient dans le produit semi-direct se retrouve dans la conclusion plus
faible (mais a notre avis optimale) du théoreme obtenu (1.2.1).

1.1. NILPOTENCE ET COMMUTATEURS DANS UN GROUPE DE LIE. Soit I un
groupe. La suite centrale I'® dérivée de T est définie par ¥ = T
et la relation de récurrence I'**V = [T, T™] ou le crochet désigne le
commutateur des sous-groupes concernés de I'. Le groupe I' est nilpotent
de degré d si la suite centrale dérivée I'™ devient triviale a partir de
k = d. On a le lemme suivant résultant d’une récurrence sur d:

1.1.1. LeMME. Pour que I soit nilpotent de degré d, il faut et il
suffit que pour un systeme générateur % de I on ait

[YO:[Yl:[".[Yd—la’Yd];"] = e: V’YOa-"a ’Ydezo

Autrement dit, la nilpotence d’un groupe se lit sur I'un quelconque de ses
systémes générateurs. Considérons maintenant un groupe de Lie G. L’appli-
cation commutateur: (x,y)eG x Gr—[x,y]€G a en [I’¢lément neutre
(e, ) € G x G ses deux applications partielles x e G [x,e] et y e G [e, y]
constantes égales a e. Par conséquent, le développement de Taylor de [.,.]
en (e, e) na que des termes ou X, y interviennent simultanément. D’ou la
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