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GÉNÉRALISATIONS DU PREMIER THÉORÈME DE BIEBERBACH

SUR LES GROUPES CRISTALLOGRAPHIQUES

par Yves Carrière et Françoise Dal'bo

Introduction

On dira qu'un groupe a virtuellement la propriété P s'il contient un

sous-groupe d'indice fini vérifiant P. Le premier théorème de Bieberbach [Bi]
concerne la classification « virtuelle » des sous-groupes discrets du groupe
d'isométries E(n) de l'espace euclidien En.

Théorème de Bieberbach ([Wl]). Un sous-groupe discret T de E(n)

est virtuellement abélien. Si de plus, T est cristaliographique (i.e. si E"/Y
est compact), alors T est virtuellement constitué de translations.

C'est en fait ce dernier cas qui était traité par Bieberbach. L'énoncé

géométrique correspondant étant que toute variété riemannienne plate

compacte est à revêtement fini près un tore plat (i.e. le quotient de En

par un groupe Z" de translations). Le cas général traité par Wolf permet, lui,
d'affirmer qu'une variété riemannienne plate supposée seulement complète

est à revêtement fini près topologiquement un cylindre.
Le but de ce texte est de fournir une introduction à ce que nous

estimons être des généralisations plus ou moins lointaines de ce théorème.

Dès le § 1, nous démontrons un théorème de Bieberbach (1.2.1) pour les

sous-groupes discrets du groupe affine Aff (Rn) qui améliore un résultat

provenant du travail d'Auslander [Au] utile dans l'étude des variétés affines

complètes. La démonstration est, comme celle de Buser [Bu], inspirée par
les variétés presque plates [Grol] mais elle a l'avantage d'être un peu plus
conceptuelle et de fournir, de ce fait, directement le cas général. Le § 2 est

destiné à introduire les notions de moyennabilité et de croissance polynomiale
ainsi que leur lien avec les propriétés algébriques de résolubilité et de

nilpotence. Nous rappelons rapidement les travaux de Milnor [M 1-2],
Wolf [W2], Tits [T], etc., permettant d'analyser les propriétés algébriques
des sous-groupes discrets des groupes de Lie moyennables et de retrouver
ainsi le théorème de Bieberbach. Les § 1 et § 2 sont utilisés au § 3 pour
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donner une preuve simplifiée d'un résultat de Goldman et Kamishima [GK]
qui, joint à [C2] fournit le théorème de Bieberbach lorentzien: une variété
lorentzienne plate compacte est à revêtement fini près une solvariété (i.e. le

quotient d'un groupe de Lie résoluble par un réseau). Un preprint récent
de Grunewald et Margulis [GM] précise la nature des réseaux concernés

prolongeant ainsi le travail de Fried [Fr2] en dimension 4. Le § 4 est

un survol rapide de quelques autres généralisations.

Convention : Le terme « groupe de Lie » est pour nous synonyme de

« groupe de Lie connexe ».

Nous tenons à remercier A. Haefliger et P. de la Harpe pour les critiques
et les commentaires qu'ils ont ajoutés à ce texte.

1. Dans Aff{W)

Nous allons donner une preuve et une généralisation du théorème de

Bieberbach qui est élémentaire si le lecteur sait qu'un groupe linéaire

nilpotent admet une décomposition de Jordan (cf. 1.2). L'idée naturelle de

généralisation ici est de remplacer E(n) 0(n) R" par le groupe de toutes
les transformations affines Aff (R") — GL(R") ix R". La perte de compacité
du quotient dans le produit semi-direct se retrouve dans la conclusion plus
faible (mais à notre avis optimale) du théorème obtenu (1.2.1).

1.1. Nilpotence et commutateurs dans un groupe de Lie. Soit T un

groupe. La suite centrale T(fc) dérivée de Y est définie par r(0) Y

et la relation de récurrence Y(k + 1) [r, T(/c)] où le crochet désigne le

commutateur des sous-groupes concernés de Y. Le groupe Y est nilpotent
de degré d si la suite centrale dérivée Y{k) devient triviale à partir de

k d. On a le lemme suivant résultant d'une récurrence sur d :

1.1.1. Lemme. Pour que Y soit nilpotent de degré d, il faut et il
suffit que pour un système générateur Y, de Y on ait

[Yo.LYiT—[Yi-i.Yd]—] e, Vyo,..., ydeE.

Autrement dit, la nilpotence d'un groupe se lit sur l'un quelconque de ses

systèmes générateurs. Considérons maintenant un groupe de Lie G. L'application

commutateur : (x, y) e G x G i— [x, y] e G a en l'élément neutre

(e, e) e G x G ses deux applications partielles x e G i— [x, e] et y e G [e, y]
constantes égales à e. Par conséquent, le développement de Taylor de [.,.]
en (e, e) n'a que des termes où x, y interviennent simultanément. D'où la
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