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L’Enseignement Mathématique, t. 35 (1989), p. 245-262

GENERALISATIONS DU PREMIER THEOREME DE BIEBERBACH
SUR LES GROUPES CRISTALLOGRAPHIQUES

par Yves CARRIERE et Francoise DAL'BO

INTRODUCTION

On dira quun groupe a virtuellement la propriété P s’il contient un
sous-groupe d’indice fini vérifiant P. Le premier théoréme de Bieberbach [Bi]
concerne la classification « virtuelle » des sous-groupes discrets du groupe
d’isométries E(n) de I'espace euclidien E"

THEOREME DE BIEBERBACH ([W1]). Un sous-groupe discret T de E(n)
est virtuellement abélien. Si de plus, T est cristallographique (ie. si E"/T’
est compact ), alors T est virtuellement constitué de translations.

C’est en fait ce dernier cas qui était traité par Bieberbach. L’¢noncé
géométrique correspondant étant que toute variété riemannienne plate
compacte est a revétement fini prés un tore plat (ie. le quotient de E”
par un groupe Z" de translations). Le cas général traite par Wolf permet, lui,
d’affirmer qu’une variété riemannienne plate supposée seulement compleéte
est a revétement fini pres topologiquement un cylindre.

Le but de ce texte est de fournir une introduction a ce que nous
estimons étre des généralisations plus ou moins lointaines de ce théoréme.
Des Ie § 1, nous démontrons un théoreme de Bieberbach (1.2.1) pour les
sous-groupes discrets du groupe affine Aff (R") qui améliore un résultat
provenant du travail d’Auslander [Au] utile dans I’étude des variétés affines
completes. La démonstration est, comme celle de Buser [Bu], inspirée par
les varietés presque plates [Grol] mais elle a 'avantage d’étre un peu plus
conceptuelle et de fournir, de ce fait, directement le cas général. Le § 2 est
destiné a introduire les notions de moyennabilité et de croissance polynomiale
ainsi que leur lien avec les propriétés algébriques de résolubilité et de
nilpotence. Nous rappelons rapidement les travaux de Milnor [M1-2],
Wolf [W2], Tits [T], etc,, permettant d’analyser les propriétés algébriques
des sous-groupes discrets des groupes de Lie moyennables et de retrouver
ainsi le theoreme de Bieberbach. Les §1 et §2 sont utilisés au §3 pour
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donner une preuve simplifiée d’un résultat de Goldman et Kamishima [GK]
qui, joint a [C2] fournit le théoréme de Bieberbach lorentzien: une variété
lorentzienne plate compacte est a revétement fini prés une solvariété (i.e. le
quotient d'un groupe de Lie résoluble par un réseau). Un preprint récent
de Grunewald et Margulis [GM] précise la nature des réseaux concerneés
prolongeant ainsi le travail de Fried [Fr2] en dimension 4. Le §4 est
un survol rapide de quelques autres généralisations.

Convention: Le terme « groupe de Lie» est pour nous synonyme de
« groupe de Lie connexe ».

Nous tenons a remercier A. Haefliger et P. de la Harpe pour les critiques
et les commentaires qu’ils ont ajoutés a ce texte.

1. Dans Aff (R")

Nous allons donner une preuve et une généralisation du théoreme de
Bicberbach qui est élémentaire si le lecteur sait qu'un groupe linéaire
nilpotent admet une décomposition de Jordan (cf. 1.2). L’idée naturelle de
généralisation ici est de remplacer E(n) = O(n) X R" par le groupe de toutes
les transformations affines Aff (R") = GL(R") X R". La perte de compacité
du quotient dans le produit semi-direct se retrouve dans la conclusion plus
faible (mais a notre avis optimale) du théoreme obtenu (1.2.1).

1.1. NILPOTENCE ET COMMUTATEURS DANS UN GROUPE DE LIE. Soit I un
groupe. La suite centrale I'® dérivée de T est définie par ¥ = T
et la relation de récurrence I'**V = [T, T™] ou le crochet désigne le
commutateur des sous-groupes concernés de I'. Le groupe I' est nilpotent
de degré d si la suite centrale dérivée I'™ devient triviale a partir de
k = d. On a le lemme suivant résultant d’une récurrence sur d:

1.1.1. LeMME. Pour que I soit nilpotent de degré d, il faut et il
suffit que pour un systeme générateur % de I on ait

[YO:[Yl:[".[Yd—la’Yd];"] = e: V’YOa-"a ’Ydezo

Autrement dit, la nilpotence d’un groupe se lit sur I'un quelconque de ses
systémes générateurs. Considérons maintenant un groupe de Lie G. L’appli-
cation commutateur: (x,y)eG x Gr—[x,y]€G a en [I’¢lément neutre
(e, ) € G x G ses deux applications partielles x e G [x,e] et y e G [e, y]
constantes égales a e. Par conséquent, le développement de Taylor de [.,.]
en (e, e) na que des termes ou X, y interviennent simultanément. D’ou la
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1.1.2. PROPRIETE DE CONTRACTION DES COMMUTATEURS. Pour toute
constante ¢, 0 < ¢ < 1, il existe un voisinage compact D de e€ G et
des coordonnées locales centrées en 0 (coordonnées de e) telles que Ton ait

Vx,yeD, Doyl <cllx|.lyl

on ||.| désigne la norme euclidienne sur lespace des coordonnées.

Tl est clair que on peut supposer en plus [D, D] = D. On dit alors
que D est un domaine de contraction des commutateurs. Le lemme suivant énonce
dans [Ra] et [W1] est attribué a Zassenhaus:

1.1.3. LeMME. Tout sous-groupe discret T de G ayant un systéme
générateur X < D est nilpotent.

Ce lemme résulte directement de ce qui précede. Il nous semble contenir
la clé de toute tentative de généralisation du premier théoreme de Bieberbach.

1.2. LE THEOREME DE BIEBERBACH DANS Aff (R”). Nantis de ces préli-
minaires, nous allons nous intéresser au cas ou G = Aff (R"). On notera
L: Aff R") — GL(R") le morphisme qui & une transformation affine Ax + b

associe sa partie linéaire A. Soit I' un sous-groupe de Aff (R") et L(I)°
la composante connexe neutre de 'adhérence de I(I'). On notera

L),y = LT) LI’
ce que l'on pourrait appeler «la partie non discrete de L(I')» et
[,=TInL YLI),,) le sous-groupe de I' correspondant. Remarquons
qu’a priori, la discrétion de I' n’implique pas celle de L(I').

Un résultat de L. Auslander [Au] (cf. [R], theorem 8&.24), utilis¢ dans
I'étude des groupes affines cristallographiques ([FG], [GK] cf. 4.1), permet
d’affirmer que si I' est discret dans Aff (R") alors I(I'),; (et donc I',,)
est resoluble. Nous allons démontrer le théoréme plus précis suivant qui
semble €tre la bonne géneralisation de Bieberbach dans cette direction:

1.2.1. THEOREME. Si I' est un sous-groupe discret dans Aff (R") alors
I',s est nilpotent (de type fini daprés 2.1.4). Si de plus T est cristallo-

graphique (i.e. M = R"/T" est une variété compacte) alors T,; est unipotent
(i.e. L(I'),; est unipotent).

Avant d’aborder la démonstration de ce théoréme, rappelons un résultat
sur les représentations affines nilpotentes. On voit d’abord Aff (R") comme
sous-groupe algebrique via le plongement habituel Aff (R") - GL(R"™!) qui a
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: . : A b
la transformation affine Ax + b associe la matrice (O 1)eGL(R"“).

Soit N un sous-groupe nilpotent de Aff (R") et N’ son adhérence dans
Aff (R") pour la topologie de Zariski. La composante neutre N est un groupe
de Lie nilpotent connexe d’indice fini dans N'. Le groupe N, = N n N
est aussi d’indice fini dans N et on a (cf theorem 1.7 de [FGH]):

1.2.2. PROPOSITION. Il existe un unique sous-espace affine U invariant
par N, et maximal parmi les sous-espaces sur lesquels N, est unipotent.
Ce sous-espace (I« axe» de N) est invariant par le normalisateur de N.

Démonstration. Un sous-groupe de Aff (R") peut étre vu comme sous-
groupe de GL(R"*1!) stabilisant la forme linéaire donnée par la derniére
coordonnée x,, ;. Considérons donc le sous-groupe de Lie connexe nilpotent
N, dans GL(R""1). D’aprés ([Bo], theorem 10.6), N{, admet une décompo-
sition de Jordan, R"*! se décompose donc en somme directe d’un sous-espace
unipotent stable maximal V; et d’un autre sous-espace invariant V,. Le
fait que N, provienne de Aff (R") assure que V; n’est pas trivial. Nécessai-
rement V', ne coupe pas l'espace affine x,,; = 1 car sinon l'action de
N, en restriction a lintersection fournirait un espace unipotent, ce qui
contredirait la maximalité de V;. On en déduit que U = V; N (x,.,=1)
est non vide. Le normalisateur de N normalise aussi N et donc
stabilise U. [

Dans le cas ou I' est dans E(n), c’est-a-dire ou IL(I') = O(n), alors

L(I") est compact et donc n’a qu'un nombre fini de composantes connexes.
Par conséquent, ;L(—F)O est d’indice fini dans ﬁ, ce qui prouve que
I, a un indice fini dans T'. D’apres 1.2.1, T',, est nilpotént. L’énoncé de
Bieberbach suit alors du lemme suivant appliqué a N = I',;:

1.2.3. LeEMME. Tout sous-groupe nilpotent N de E(n) contient un
sous-groupe d’indice fini N, abélien. Si de plus N est un groupe cristallo-
graphique, alors N, est engendré par n translations linéairement indé-
pendantes.

Démonstration. Reprenons la conclusion de la proposition précédente
dans le cas ou N < E(n). L’action de N, sur axe U est par translations
pures, donc abélienne. Celle dans la direction normale a U (i.e. dans V,)
est linéaire, triangulable et orthogonale donc diagonalisable (complexe). Ceci
garantit déja que N, est abélien. On remarque de plus que si U est de
dimension < n, la fonction continue sur R" donnée par la distance
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(euclidienne) au sous-espace invariant U fournit une fonction invariante
par N, et sans maximum local. Dans le cas ou N est cristallographique,
N, lest aussi, et donc, le fait que U = R" (ie. No est un groupe de
translations pures) est assuré par la compacité de la variété M = R"/Ny.
Pour finir, toujours dans ce cas, le méme raisonnement appliqué a la fonction
distance au sous-espace vectoriel V engendré par les vecteurs de translation
de N, montre que V = R". [

1.3. DEMONSTRATION DU THEOREME. Elle se réduit essentiellement au
lemme suivant qui tient a I'existence des dilatations que sont les homothéties
en géométrie affine:

1.3.1. LemMme. Si I' est un sous-groupe discret de Aff (R"), tout sous-
groupe de type fini de T',; est nilpotent.

Démonstration. Fixons pour commencer un domaine de contraction des
commutateurs D du groupe de Lie G = Aff (R”) (cf. 1.1.2). Pour qu’un ¢élément
Ax + b de Aff(R") soit dans D, il suffit d’avoir AeD, < GL(R") et
beD, =« R*" ou D, et D, sont respectivement des voisinages de I'identite
et de zéro, choisis suffisamment petits et a leur tour fixés pour la suite.

Le groupe L(I),, = L) mﬁO, par sa définition méme, admet des
systemes générateurs aussi proches de l'identité que I'on veut. Ainsi, on est
assuré que tout sous-groupe de type fini de I',,; est inclus dans un sous-groupe
dont les générateurs A;x + by, .., Ax + by, ont leurs parties linéaires
A;,i =1,.,sdans D, .

Il suffit donc de prouver qu’un tel groupe est forcément nilpotent.
Pour ceci, écrivons son conjugué par 'homothétie de rapport A:

<A1X + }\«bl, s, ASX + )Lbs> (= %Fmﬂ\._l

et choisissons A assez petit de fagon que Ab; € D, pouri = 1, ..., s. Ce groupe,
continiment isomorphe au précédent, est lui aussi discret et de plus posseéde
un systeme générateur dans le domaine de contraction des commutateurs D
fixe au début de la preuve. D’aprés le lemme 1.1.3, il est nilpotent. []J

On conclut que I',; est nilpotent grace au petit lemme suivant:

1.3.2. LEMME. Un sous-groupe discret G de GL(C™ localement

nilpotent (i.e. tous les sous-groupes de type fini de G sont nilpotents)
est nilpotent.
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Démonstration. D’apres ([KM], exercice 21.1.6), un groupe de matrices
localement résoluble est résoluble (cf. aussi [Ra], § 8). Le groupe G est donc
résoluble. Grace au théoréme 2.1.4, énoncé au § suivant, G étant discret
dans un groupe de Lie, il est polycyclique (i.e. tous ses sous-groupes sont
de type fini). Par conséquent, G est de type fini, il est donc nilpotent. []

Remarquons que le lemme 1.2.3 permet d’affirmer alors que I',, est
abélien dans le cas classique (i.e. I' = E(n)). Pour terminer la preuve de 1.2.1
dans le cas général, il reste a montrer 'unipotence de I',, lorsque I" est
un groupe cristallographique (i.e. R"/I" est une variété compacte). Dans ce cas,
on considere le sous-espace affine maximal U sur lequel Paction de TI',,
est unipotente (cf. 1.2.2). Cet espace est invariant par I'. On considére alors
la variét¢ U/I’ qui a méme type d’homotopie que la n-variété compacte
R"/T'. Ceci force U a étre de dimension n et donc I',;, 4 étre unipotent
(argument cohomologique de [FGH] p. 496 que I'on retrouvera en 3.3.1). [

2. DANS D’AUTRES GROUPES DE LIE

L’objet de ce § est de décrire une autre approche moins élémentaire
du premier théoréme de Bieberbach mettant en jeu les notions de moyennabilité
et de croissance qui lui sont aujourd’hui indissociablement liées. L’idée de
départ maintenant est de considérer E(n) comme faisant partie de la classe 2
des groupes de Lie a croissance polynomiale, elle-méme incluse dans celle .#
des moyennables. Le résultat s’énonce simplement de la fagon suivante
(2.1.4, 223): st I' est un sous-groupe discret dans un groupe de Lie
G € A (resp. G € P) alors I est virtuellement polycyclique (resp. virtuellement
nilpotent de type fini). Par ailleurs, les classes .# et 2 sont caractérisées
ainsi (2.1.3, 2.2.4): Ge M (resp. Ge &) équivaut a G = K X R ou K est
compact et R est résoluble (resp. résoluble avec une algebre de Lie triangulaire
avec des éléments diagonaux imaginaires purs). Ces énoncés vont nous étre
utiles au § 3. Nous verrons au § 4 comment ils peuvent encore étre généralisés.

2.1. MOYENNABILITE ET RESOLUBILITE. Soit G un groupe topologique
localement compact muni de sa oc-algebre borélienne %. Une moyenne sur
I’espace mesurable (G, %) est une mesure de probabilite, nulle sur les
négligeables (pour une mesure de Haar de G) et seulement supposée finiment
additive. On dit que le groupe G est moyennable s’il admet une moyenne
invariante a gauche. Il est facile de vérifier alors qu’elle peut étre choisie
biinvariante (cf. [Gre] p. 29). Par exemple, 'unique mesure de Haar d’un
groupe compact K qui soit de probabilité fournit une moyenne biinvariante
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sur K (dans ce cas, elle est en plus c-additive). Le lecteur pourra prouver,
4 titre d’exercice, la proposition naturelle suivante (cf. [Gre] p. 30 ou
[Z1] p. 61):

2.1.1. ProposITION. Tout sous-groupe fermé H d’un groupe localement
compact moyennable G est moyennable (pour la topologie induite par G
sur H).

Si Pon ne précise pas de topologie pour un groupe G et que l'on dit
que G est moyennable, cela sous-entend quil 'est en tant que groupe topo-
logique discret. Un groupe qui est moyennable dans ce sens l'est forcément
pour toute autre structure de groupe localement compact et, d’apres la
proposition précédente, tous ses sous-groupes sont moyennables.

Le groupe libre a deux générateurs L(a, b) n’est pas moyennable, ce qui fait
que le groupe O(3) qui le contient n’est pas moyennable en tant que groupe
discret bien qu’il le soit en tant que groupe de Lie puisque compact
(voir ci-dessus). Ceci est l'origine du célebre « paradoxe » de Hausdorff-
Banach-Tarski (cf. [Gre] ou [HS]).

Un groupe virtuellement résoluble est moyennable (méme références).
Dans [D], Day a posé la question suivante (parfois appelée improprement
« conjecture de von Neumann »): y a-t-il équivalence entre la moyennabilité
et la non-existence de sous-groupes libres a deux générateurs ? La réponse
est non dans le cas général d’aprés Ol'shanski [O]. Cependant, le théoréme
suivant donne une réponse positive dans le cas particulier des sous-groupes
du groupe linéaire. Le lecteur trouvera un excellent exposé introductif de ce
résultat dans [H]:

2.1.2.  TureoreME (Tits [T]). Soit G un sous-groupe de GL(C"). I est
équivalent de dire que:

(1) G est moyennable.
(i) G est virtuellement résoluble.
(i) G ne contient aucun groupe libre d deux générateurs.
Nous avons vu que les groupes de Lie résolubles et les compacts sont

moyennables (en tant que groupes de Lie). En fait, ces deux classes de
groupes de Lie suffisent d construire tous les moyennables (cf. [Z1], p. 62):

2.1.3. THeOREME (Furstenberg [Fu]). Les groupes de Lie moyennables
sont exactement les produits semi-directs de la forme K X R avec K
compact et R résoluble.

Venons-en aux sous-groupes discrets des groupes de Lie. Rappelons
qu’un groupe est polycyclique s’il peut étre obtenu a partir d'un nombre fini
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d’extensions de groupes cycliques (finis ou infinis). On peut montrer (cf. [Ra])
qu’un groupe G est polycyclique <> G est résoluble et a tous ses sous-groupes
de type fini.

2.1.4. THEOREME. Soit I un sous-groupe discret d’'un groupe de Lie G.
(i) [ résoluble < I polycyclique.

() Si G est un groupe de Lie moyennable alors T est virtuellement
polycyclique.

Démonstration. (1) Voir [Ra], proposition 3.8.

(i) [ est fermé dans G groupe de Lie moyennable, donc I' est
moyennable en tant que groupe discret d’aprés 2.1.1. On applique alors
212, O

Le point (ii) suffirait 2 montrer qu’un sous-groupe discret de E(n) est
virtuellement polycyclique puisque E(n) = O(n) X R" est un groupe de Lie
moyennable (cf. 2.1.3). Signalons pour finir que d’aprés [M3], tout groupe
polycyclique I' peut étre réalis€ comme sous-groupe discret de Aff (R”)
pour un n assez grand et méme de fagon a ce que R"/I" soit une variété.

2.2. CROISSANCE POLYNOMIALE ET NILPOTENCE. Si la notion de moyen-
nabilit¢ a un sens pour n’importe quel groupe topologique, celle de
croissance concerne uniquement les groupes topologiques de type compact,
c’est-a-dire ceux qui possedent un systeme générateur compact. Il s’agit la
d’'une simple extension de la classe des groupes de type fini ou, en présence
d’'une structure topologique, les ensembles finis ont été remplacés par les
compacts. Tout groupe de Lie est de type compact.

Définissons maintenant la notion de croissance pour un groupe topo-
logique de type compact G. Soit ¥ un systeme générateur de G compact
et symétrique. On définit sur G la distance invariante a gauche d(x, y)
= le nombre d’¢léments minimum de X permettant d’écrire x~'y. Soit p
une mesure de Haar (unique a constante multiplicative pres) et B(e, L)
la boule de centre e et de rayon L pour la métrique d. Le type de croissance
de la fonction f(L) = w(B(e, L)) ne dépend pas du choix du systéme géné-
rateur X choisi: c’est le type de croissance de G.

La notion de croissance a été introduite pour les groupes discrets de
type fini en vue de I’¢tude du groupe fondamental de certaines variétés
riemanniennes. L’observation initiale €tait la suivante: si M est une variété
riemannienne compacte, le type de croissance de m,(M) est le méme que
celui, controlable par I’analyse, du volume des boules du revétement




GROUPES CRISTALLOGRAPHIQUES 253

universel riemannien M (cf. [M1], [W2]). Dés le début sest posée la
question de I’équivalence entre croissance polynomiale et virtuelle nilpotence.
Les premiéres étapes en vue de la réponse affirmative donnée par Gromov
(cf. 4.3) sont les suivantes:

22.1. THEOREME. Un groupe de type fini T d croissance polynomiale
est virtuellement nilpotent dans les cas suivants:

(i) T est virtuellement résoluble (Milnor-Wolf [M2], [W2]).
(i) T est un sous-groupe d’un groupe de Lie (Tits [T).

1l est facile de voir, grice 4 la condition de Fglner ([F¢] cf. [Gre]),
quun groupe topologique a croissance polynomiale est forcément moyen-

nable. Par ailleurs, on a la proposition suivante provenant directement des
définitions:

2.2.2. PROPOSITION. Tout sous-groupe discret de type fini d'un groupe
topologique d croissance polynomiale est a croissance polynomiale.

En groupant ceci avec ce qui précéde, on obtient la genéralisation
suivante de Bieberbach:

2.2.3. THEOREME. Un sous-groupe discret d’'un groupe de Lie a croissance
polynomiale est virtuellement nilpotent de type fini.

Le groupe E(n) = O(n) X R” étant a croissance polynomiale, on retrouve
ainsi I’énoncé classique de Bieberbach en appliquant ce résultat et le petit
lemme 1.2.3. Les groupes de Lie a croissance polynomiale sont classifiés
par le:

2.2.4. TuHEOREME (Guivarc’h [Gui] ou Jenkins [J]). Les groupes de Lie
a croissance polynomiale sont exactement les produits semi-directs de la forme
KX R avec K compact et R un groupe de Lie résoluble ayant une
algebre de Lie triangulaire avec des éléments diagonaux imaginaires purs.

Par exemple, un groupe de Lie lin¢aire orthopotent (cf. [Frl]) c’est-a-dire
un groupe de matrices triangulaires par blocs avec des blocs diagonaux
dans le groupe orthogonal est a croissance polynomiale.

3. LE THEOREME DE BIEBERBACH LORENTZIEN

Le théoréeme de Bieberbach classique est énoncé pour des sous-
groupes cristallographiques de O(n) X R". Remplagons maintenant O(n)
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par O(n—1,1), le groupe des matrices préservant la forme de Lorentz
g(x) = x? + .. + x2_, — x2, et considérons les sous-groupes cristallo-
graphiques de E(n—1, 1) = O(n—1, 1) X R”", le groupe des isométries lorent-
ziennes. Une variété lorentzienne plate est une variété de la relativité restreinte
cest-a-dire telle que les changements de carte peuvent étre pris dans
E(n—1,1). Un résultat récent [C2], donnant I’équivalent de Hopf-Rinow
pour les varietés lorentziennes plates compactes, nous assure que ces variétés
sont le quotient de R” par I', un sous-groupe cristallographique de E(n—1, 1).
Dans [GK], Goldman et Kamishima ont montré qu’un tel sous-groupe est
virtuellement polycyclique (cf. 2.1.4), ceci leur permet d’affirmer grice a des
travaux anterieurs ([Au], [FG]) que les variétés obtenues sont des solvariétés.

Par conséquent, on peut énoncer le théoréme suivant:

THEOREME. Une variété lorentzienne plate compacte est d un revétement
fini pres une solvariété (i.e. le quotient dun groupe de Lie résoluble par
un réseau ).

Le but de ce § est d’exposer la preuve de Goldman et Kamishima un
peu simplifiée grace a 1.2.1. Avant de commencer, nous traiterons un exemple
en dimension 3.

3.1. La VARIETE AFFINE T3. On notera

A

u=(1,0,0),v=(0,10),w=(0,01) et 4= (0

0y |

1) ou AeSLZ?.
La matrice A détermine un automorphisme de T? = R?/Z? et permet de
construire la variété affine compacte T3 = R x T?/(t, z) ~ (t+1, Az). Cette
variété s’écrit encore T3 = R’/T, ou I' est le sous-groupe engendré par les
translations t,, T, et par 1, ° A. Soient Ay et A, les valeurs propres de A4
calculées dans C.

On vérifie que si &, et A, ¢R, A, = h, = €2™/9(g=3,40u6). La
matrice A est alors semblable & une rotation d’ordre 3, 4 ou 6. La variété
T3 est donc une variété riemannienne plate. De plus, le groupe I
possédant 3 translations linéairement indépendantes t,, T, et t,,, T est
a un revétement fini pres un tore, ce qui est conforme au théoréme de
Bieberbach.

: (1 m
Si A, = A,, A s’écrit dans une certaine base entiere (0 1) meZ, T3

est alors soit un tore, soit le quotient du groupe de Heisenberg par un
réseau (i.e. T est une nilvariété).
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Enfin, si A, et A, sont réelles distinctes, on choisit une base de vecteurs

0 1/A
préserve alors la forme de Lorentz ¢'(X) = X;X,, ou X, et X, sont les
coordonnées de X dans cette base. Par conséquent, A est une isométrie
lorentzienne de R® (pour la forme de Lorentz X X, + t?), la variété T}
est donc une variété lorentzienne plate; la partie linéaire de I étant
abélienne, I est résoluble. On constate de plus que pour A, > 0, la variéte
de départ T3 s%écrit G/T', ou G désigne un groupe de Lie diffeomorphe
a R® dont la loi est définie par:

: A 0 :
propres dans laquelle 4 est représentée par la matrice < ' > qui

(ta X, .Y) (t/a xla yl) = (t+ tla (X, y) +At (X/, y,))

et ou I', est le sous-groupe de G constitué des éléments 4 coordonnées
entiéres. Remarquons que G s’identifie a E(1, 1), il ne dépend donc pas
de A. Le groupe I', étant un réseau et G étant un groupe de Lie résoluble,
T3 est une solvariété.

D’aprés [FG], il s’avére que toutes les variétés affines complétes
compactes de dimension 3 sont en fait topologiquement équivalentes aux
exemples que nous venons de traiter.

3.2. LE GROUPE DE LORENTZ O(n—1, 1). Rappelons en quoi la géométrie
hyperbolique est liée a la géométrie lorentzienne. Dans R”, muni de la forme
de Lorentz ¢(x) = x% + .. + x2_, — x2, on considére H"™!, la nappe
supérieure de Ihyperboloide ¢~ '(—1). La restriction de g aux espaces
tangents de H" ! lui donne une structure de variété riemannienne a cour-
bure constante égale a —1 (i.e. de variété hyperbolique). La projection
stéréographique de H"™! sur P'hyperplan x, = 0 par rapport au point
(0, .., 0, —1) permet de visualiser H" ! comme le disque de Poincaré D" 1,
muni de la métrique transportée. Le groupe O(n—1, 1) agit sur les directions
du cone de lumiére g~ '(0) identifiées par la projection stéréographique a
S"~2 = gD""!, la sphére a I'infini.

3.2.1. PROPRIETES. a) Le groupe O(n—1,1) agit sur S"~? par trans-
formations conformes.

b) La projection stéréographique de S""% sur R" 2 est elle aussi
conforme.

Au cours de la preuve, nous utiliserons le lemme suivant sur la nature
des sous-groupes unipotents de O(n—1, 1):
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32.2. LEMME. Soit G un sous-groupe unipotent non trivial de
O(n—1,1), son normalisateur N(G) est inclus dans un groupe de Lie
moyennable.

Démonstration. Soit W le plus grand espace de vecteurs fixes sous
Iaction de G, par hypothése dim W > 1. Si ¢|, était non dégénérée,
action unipotente de G sur W+ fournirait un espace vectoriel non trivial
fixe par G; le sous-espace W ne serait donc pas maximal. Ainsi, q|
est dégenérée et en fait dimker(q|y) = 1. On vérifie que N(G) laisse
ker (g | w) invariant, c’est-a-dire fixe une direction du cone de lumiére corres-
pondant a un point de S"2. Par projection stéréographique sur R""2 de
S"~2 privée de ce point, on obtient d’aprés 3.2.1 que N(G) est inclus dans
le groupe des transformations conformes de R"™2 C(’est-a-dire dans
R*O(n—2) X R""? qui est un groupe de Lie moyennable (cf. §2). [

3.3. DEMONSTRATION DU THEOREME. D’aprés [C2], une variété lorent-
zienne plate compacte M est le quotient de R" par un sous-groupe
cristallographique I' de E(n—1,1). Le théoréme se réduit a démontrer
que I est virtuellement polycyclique. En effet, d’apres ([FG], corollary 1.5),
il existe alors un groupe de Lie résoluble G < E(n—1, 1) agissant librement
et transitivement sur R”, tel que I'y = I' n G est d’indice fini dans T.
Ceci assure que M a un revétement fini difftfomorphe a G/T',,.

3.3.0. Remarque. Pour démontrer que I' est virtuellement polycyclique,
puisque I' est discret, il suffit d’aprés 2.1.4 de montrer que I' ou méme
L(I') est virtuellement résoluble ou encore que IL(I') et donc I' est dans
un groupe de Lie moyennable.

a) Casou L(I') est discret.

Soit V le -sous-espace vectoriel engendré par les translations de I
On vérifie que V est laisse stable par L(I'). Le lemme suivant assure que V
n’est pas trivial:

3.3.1. LemMme. Si L) est discret, L|p nest pas injective.

Démonstration. Raisonnons par Pabsurde et supposons que I' soit iso-
morphe a L(I'). Le groupe I' est sans torsion, en effet lexistence d’un
élément y # id d’ordre fini fournirait une orbite finie dont le barycentre
serait fixe par y ce qui contredirait I'action libre de I'. Par conséquent,
L) est un groupe discret sans torsion, ceci permet de construire la
(n—1)-variété LN\H""! qui est, comme R"I, un espace d’Eilenberg-
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Mac Lane associé a I. Ces deux variétés devraient donc avoir méme
cohomologie ce qui n’est pas le cas puisque la seconde est compacte de
dimension n. La compacité de R/ intervient ici de fagon essentielle
(comparer avec [Ma] cf. 4.1). [

Nous traiterons deux cas selon la dégénérescence de la restriction de g
aV:

o (|, estdégénérée.

Dans ce cas, ker(g|y) est une direction du cone de lumicre laissée

stable par I(I'). On conclut comme en 3.2.2 que L(I') est dans le groupe de
Lie moyennable R*O(n—1, 1) X R"™2, ce qui est suffisant d’apres 3.3.0.

e g|, estnon dégénérée.

Comme L(T') préserve V, il préserve donc aussi V*, ainsi L(I') = O(V)
x O(VY) ou O(V) (resp. O(V1)) est le groupe orthogonal de g | (resp. gy .).
Il suit que I’ = E(V) x E(V*) ou E(V) (resp. E(V7)) est le groupe engendré
par O(V) (resp. O(V*1)) et par les translations de V (resp. V). Considérons
la projection E(V) x E(V?) et E(V*1). Par construction, V est engendré par
le groupe I'y = ker(L|p) des translations de T" qui agit trivialement sur
V+. Par conséquent, I'y est un sous-groupe normal de ker(p|p) = I';.

3.3.2. Lemme. Le groupe ©';/T’, est fini.

Démonstration. Notons k la dimension de V. Le quotient de V par le
groupe de translations I'j ~ Z* est un tore T*. Par sa définition méme,
I'y n’agit que sur le facteur V' pour donner une varieté de dimension k
qui est aussi le quotient de T* par le groupe I';/T,. [

Il est facile de constater que ceci implique que I' est virtuellement
polycyclique si et seulement si p(I') T'est. Pour conclure la preuve du
théoréeme dans le cas a), 1l reste donc a montrer le

3.3.3. LEMME. Le groupe p(I') est virtuellement polycyclique.

Démonstration. Comme P'action de I" sur le produit T* x V* est pro-
prement discontinue (parce que donnant une variété au quotient) et que le
premier facteur est compact, il est clair que I'action sur le deuxiéme facteur
est a son tour proprement discontinue. Or cette action s’identifie a celle
de p(I') sur V. On vérifie par ailleurs que le quotient ¥*/p(I) est compact.
Pour &tre sGr que ce quotient est une variété, il est connu quil suffit
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de vérifier alors que p(I') n’a pas de torsion. Mais d’apres le lemme de
Selberg [Al], p(T') est virtuellement sans torsion, ce qui assure que V*/p(I)
est a4 un revétement fini prés une variété compacte.

En restriction & V*, g est aussi non dégénérée. Si ¢|,, est lorentzienne,
ayant dim V* < n, on conclut que p(I') est virtuellement polycyclique grace
au théoréeme de Bieberbach lorentzien en dimension < n supposé déja
démontré (récurrence sur n). Si g|,, est définie positive, on sait par le
théoréme de Bieberbach classique que p(I') est virtuellement Z"~% [

b) Casou L(I') west pas discret.

On a alors que L(I'),;, = L(I') n L(T')° est non trivial et d’aprés 1.2.1,
L(I'),4 est unipotent. Comme I(I') normalise L(I'),,, on déduit de 3.2.2 que
L(I') est dans un groupe de Lie moyennable ce qui, d’aprés 3.3.0, est
suffisant pour conclure. []

L’exemple T3 se généralise a toutes les dimensions. Il s’avére d’aprés
Fried [Fr2] que les variétés lorentziennes plates compactes de dimension 4
sont a revétement fini prés des T%. Un résultat récent de Grunewald et
Margulis [GM], généralisant celui de Fried, assure qu’en dimension n ces
variétés sont a revétement fini prés soit un T% (4eSIL(Z"~ ') et lorentzienne),
soit une nilvariété de degré de nilpotence < 3.

4. QUELQUES AUTRES GENERALISATIONS

Nous allons pour finir passer en revue rapidement les autres généra-
lisations que nous connaissons des résultats décrits dans ce qui précede.

4.1. (GROUPES AFFINES CRISTALLOGRAPHIQUES. Rappelons que ce sont les
sous-groupes discrets I' de Aff (R") dont le quotient R"/I" est une variété
(ou méme une « orbifold ») compacte. Le théoréme 1.2.1 décrit en partie
leur structure.

CONJECTURE D’AUSLANDER (1964). Un groupe affine cristallographique est
virtuellement polycyclique.

Tout le probleme d’aprés 2.1.4 (i) est de montrer quun tel groupe est
virtuellement résoluble. Auslander a publié une preuve dont il a reconnu
ensuite qu’elle contenait une erreur irréparable. Aujourd’hui, on peut résumer
les principaux cas ou cette conjecture a €t¢ démontrée: en dimension < 3
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(Fried-Goldman [FG]), dans le cas lorentzien (Goldman-Kamishima [GK]
cof. §3) et la généralisation par Grunewald-Margulis [GM] au cas ou la
partie linéaire L(I') est dans un groupe algébrique G de rang réel 1.
Récemment, Tomanov [To] a traité le cas plus général ou le rang reel
semisimple de G est 1. Il annonce dans cet article une modification de sa
démonstration lui permettant d’obtenir la conjecture d’Auslander en dimen-
sions 4 et 5. Notons aussi que cette conjecture se résout facilement dans
le cas de la dimension complexe 2 (cf. [S] ou [FS]) et celui ou L(I') est
orthopotent ([Fr1] cf. fin du § 2).

Si 'on s’intéresse a cette conjecture, il faut prendre garde a I'exemple
surprenant trouvé par Margulis [Ma] d’un groupe libre a deux générateurs
I' = EQ2,1) tel que le quotient R*/T" est une variété (non compacte).

4.2. VARIETES PRESQUE PLATES. Il s’agit d’une autre généralisation du
théoréme de Bieberbach ou 'on impose a une variété compacte M d’avoir
des métriques riemanniennes aussi plates que 'on veut. Plus précisément,
Gromov donne la définition suivante: une variété compacte M est presque
plate s’1l existe sur M une suite g, de métriques riemanniennes pour laquelle
le produit K(g,)d*(M, g,) de la courbure sectionelle par le carré du diamétre
tend vers 0.

THEOREME (Gromov [Grol], [BK] ou [Ru]). A revétement fini prés
une variété presque plate M est une nilvariété (i.e. le quotient d'un groupe
de Lie nilpotent par un sous-groupe discret ).

En particulier, m,(M) est alors virtuellement nilpotent. On peut se
demander s’1l y a un énoncé analogue dans le cas lorentzien.

4.3. CARACTERISATION DES GROUPES A CROISSANCE POLYNOMIALE.
L’énoncé de Tits (cf. 2.2.1) pour les sous-groupes des groupes de Lie a été
généralisé par Gromov aux cas de tous les groupes de type fini.

THEOREME (Gromov [Gro2]). Un groupe de type fini est a croissance
polynomiale si et seulement s’il est virtuellement nilpotent.

La démonstration de Gromov consiste aprés un délicat passage a la limite
dans les espaces métriques pointés munis de la distance de Hausdorff a
se ramener, via un resultat de Montgomery-Zippin 4 I’énoncé de Tits.
Ce théoreme de Gromov a été généralisé par Losert [L] aux groupes
topologiques a génération compacte.
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44. RELATIONS D’EQUIVALENCES MOYENNABLES ET CROISSANCE LOCALE.
On peut chercher a généraliser les résultats du §2 en considérant au lieu
du cas discret comme dans 2.1.4 et 2.2.3 le cas opposé d’un sous-groupe
dénombrable dense I' d’'un groupe de Lie G. Les orbites de l'action de I
par translations a gauche sur G définissent alors une relation d’équivalence
R mesurable (i.e. son graphe est mesurable) et ergodique (a cause de la
densité de I'). On peut définir la notion de relation d’équivalence mesurable
% moyennable. Cette définition généralise la notion de moyennabilité d’un
groupe (cf. [Z2] ou [CG] pour des définitions précises). Dans ce contexte,
on a la généralisation suivante de 2.1.2 (cf. [CG] pour une démonstration
en dimension 3):

44.1. THEOREME (Zimmer [Z2]). Soit T' un sous-groupe dénombrable
et dense d'un groupe de Lie G. La relation déquivalence % = I'\G est
moyennable si et seulement si G est résoluble.

Dans le méme contexte et en supposant de plus que I' est de type fini,
on peut donner une définition relative de croissance de I' & l'intérieur de G
appelée dans [Cl] la croissance locale de I" dans G. On fixe un systeme
générateur ¥ de I', une métrique sur G et pour chaque R > 0 on compte
le nombre de mots fi(L) écrits avec moins de L lettres de X et qui
«vivent a tout moment de leur écriture » dans la boule de rayon R de G
centrée en I’élément neutre. Le type de croissance locale (qui ne dépend ni
du choix de X, ni du choix d’'une métrique sur G) est la donnée des types
de croissance des fi(L) en L, VR > 0. Le résultat suivant généralise 2.2.3:

442. THEOREME [C1]. Soit T de type fini et dense dans un groupe
de Lie G. La croissance locale de T dans G est polynomiale si et
seulement si G est nilpotent.

La preuve de ce résultat nécessite le théoreme précédent ainsi qu’un usage
intensif de la propriété de contraction des commutateurs 1.1.2. A ce fitre,
il s’agit bien d’une généralisation du théoreme de Bieberbach. Il est d’ailleurs
possible a partir de cet énoncé de montrer une version plus faible du
théoréme 1.2.1, a savoir la nilpotence de I(I),,.
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