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L'Enseignement Mathématique, t. 35 (1989), p. 245-262

GÉNÉRALISATIONS DU PREMIER THÉORÈME DE BIEBERBACH

SUR LES GROUPES CRISTALLOGRAPHIQUES

par Yves Carrière et Françoise Dal'bo

Introduction

On dira qu'un groupe a virtuellement la propriété P s'il contient un

sous-groupe d'indice fini vérifiant P. Le premier théorème de Bieberbach [Bi]
concerne la classification « virtuelle » des sous-groupes discrets du groupe
d'isométries E(n) de l'espace euclidien En.

Théorème de Bieberbach ([Wl]). Un sous-groupe discret T de E(n)

est virtuellement abélien. Si de plus, T est cristaliographique (i.e. si E"/Y
est compact), alors T est virtuellement constitué de translations.

C'est en fait ce dernier cas qui était traité par Bieberbach. L'énoncé

géométrique correspondant étant que toute variété riemannienne plate

compacte est à revêtement fini près un tore plat (i.e. le quotient de En

par un groupe Z" de translations). Le cas général traité par Wolf permet, lui,
d'affirmer qu'une variété riemannienne plate supposée seulement complète

est à revêtement fini près topologiquement un cylindre.
Le but de ce texte est de fournir une introduction à ce que nous

estimons être des généralisations plus ou moins lointaines de ce théorème.

Dès le § 1, nous démontrons un théorème de Bieberbach (1.2.1) pour les

sous-groupes discrets du groupe affine Aff (Rn) qui améliore un résultat

provenant du travail d'Auslander [Au] utile dans l'étude des variétés affines

complètes. La démonstration est, comme celle de Buser [Bu], inspirée par
les variétés presque plates [Grol] mais elle a l'avantage d'être un peu plus
conceptuelle et de fournir, de ce fait, directement le cas général. Le § 2 est

destiné à introduire les notions de moyennabilité et de croissance polynomiale
ainsi que leur lien avec les propriétés algébriques de résolubilité et de

nilpotence. Nous rappelons rapidement les travaux de Milnor [M 1-2],
Wolf [W2], Tits [T], etc., permettant d'analyser les propriétés algébriques
des sous-groupes discrets des groupes de Lie moyennables et de retrouver
ainsi le théorème de Bieberbach. Les § 1 et § 2 sont utilisés au § 3 pour
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donner une preuve simplifiée d'un résultat de Goldman et Kamishima [GK]
qui, joint à [C2] fournit le théorème de Bieberbach lorentzien: une variété
lorentzienne plate compacte est à revêtement fini près une solvariété (i.e. le

quotient d'un groupe de Lie résoluble par un réseau). Un preprint récent
de Grunewald et Margulis [GM] précise la nature des réseaux concernés

prolongeant ainsi le travail de Fried [Fr2] en dimension 4. Le § 4 est

un survol rapide de quelques autres généralisations.

Convention : Le terme « groupe de Lie » est pour nous synonyme de

« groupe de Lie connexe ».

Nous tenons à remercier A. Haefliger et P. de la Harpe pour les critiques
et les commentaires qu'ils ont ajoutés à ce texte.

1. Dans Aff{W)

Nous allons donner une preuve et une généralisation du théorème de

Bieberbach qui est élémentaire si le lecteur sait qu'un groupe linéaire

nilpotent admet une décomposition de Jordan (cf. 1.2). L'idée naturelle de

généralisation ici est de remplacer E(n) 0(n) R" par le groupe de toutes
les transformations affines Aff (R") — GL(R") ix R". La perte de compacité
du quotient dans le produit semi-direct se retrouve dans la conclusion plus
faible (mais à notre avis optimale) du théorème obtenu (1.2.1).

1.1. Nilpotence et commutateurs dans un groupe de Lie. Soit T un

groupe. La suite centrale T(fc) dérivée de Y est définie par r(0) Y

et la relation de récurrence Y(k + 1) [r, T(/c)] où le crochet désigne le

commutateur des sous-groupes concernés de Y. Le groupe Y est nilpotent
de degré d si la suite centrale dérivée Y{k) devient triviale à partir de

k d. On a le lemme suivant résultant d'une récurrence sur d :

1.1.1. Lemme. Pour que Y soit nilpotent de degré d, il faut et il
suffit que pour un système générateur Y, de Y on ait

[Yo.LYiT—[Yi-i.Yd]—] e, Vyo,..., ydeE.

Autrement dit, la nilpotence d'un groupe se lit sur l'un quelconque de ses

systèmes générateurs. Considérons maintenant un groupe de Lie G. L'application

commutateur : (x, y) e G x G i— [x, y] e G a en l'élément neutre

(e, e) e G x G ses deux applications partielles x e G i— [x, e] et y e G [e, y]
constantes égales à e. Par conséquent, le développement de Taylor de [.,.]
en (e, e) n'a que des termes où x, y interviennent simultanément. D'où la
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1.1.2. Propriété de contraction des commutateurs. Pour toute

constante c, 0 < c < 1, il existe un voisinage compact D de e e G et

des coordonnées locales centrées en 0 (coordonnées de e) telles que Ion ait

Vx,yeD, || [x, y] || < c || x [J* | y ||

où II Il désigne la norme euclidienne sur Vespace des coordonnées.

Il est clair que l'on peut supposer en plus [D, D] c= D. On dit alors

que D est un domaine de contraction des commutateurs. Le lemme suivant énoncé

dans [Ra] et [Wl] est attribué à Zassenhaus:

1.1.3. Lemme. Tout sous-groupe discret Y de G ayant un système

générateur X c= D est nilpotent.

Ce lemme résulte directement de ce qui précède. Il nous semble contenir

la clé de toute tentative de généralisation du premier théorème de Bieberbach.

1.2. Le théorème de Bieberbach dans Äff (Rn). Nantis de ces

préliminaires, nous allons nous intéresser au cas où G Äff (R"). On notera

L : Äff (R") -> GL(R") le morphisme qui à une transformation affine Ax -h b

associe sa partie linéaire A. Soit Y un sous-groupe de Aff (Rn) et L(r)°
la composante connexe neutre de l'adhérence de L(Y). On notera

L(Y)nd L(Y)nMY)°

ce que l'on pourrait appeler « la partie non discrète de L(Y) » et

Ynd Y n L~1(L(Y)nd) le sous-groupe de Y correspondant. Remarquons
qu'a priori, la discrétion de Y n'implique pas celle de L(Y).

Un résultat de L. Auslander [Au] (cf. [R], theorem 8.24), utilisé dans

l'étude des groupes affines cristallographiques ([FG], [GK] cf. 4.1), permet
d'affirmer que si Y est discret dans Aff (R") alors L(Y)nd (et donc r„d)
est résoluble. Nous allons démontrer le théorème plus précis suivant qui
semble être la bonne généralisation de Bieberbach dans cette direction:

1.2.1. Théorème. Si Y est un sous-groupe discret dans Aff (Rn) alors
Ynd est nilpotent (de type fini d'après 2.1.4). Si de plus Y est cristallo-
graphique (i.e. M Rn/Y est une variété compacte) alors Tnd est unipotent
(i.e. L(Y)nd est unipotent).

Avant d'aborder la démonstration de ce théorème, rappelons un résultat
sur les représentations affines nilpotentes. On voit d'abord Aff (R") comme
sous-groupe algébrique via le plongement habituel Aff (R") -> GL(Rn + 1) qui à
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la transformation affine Ax + b associe la matrice

Soit N un sous-groupe nilpotent de Aff (R") et N' son adhérence dans

Aff(Rn) pour la topologie de Zariski. La composante neutre N'0 est un groupe
de Lie nilpotent connexe d'indice fini dans N'. Le groupe N0 N n N'0
est aussi d'indice fini dans N et on a (cf. theorem 1.7 de [FGH]):

1.2.2. Proposition. Il existe un unique sous-espace affine U invariant

par N0 et maximal parmi les sous-espaces sur lesquels N0 est unipotent.
Ce sous-espace (F«axe» de N) est invariant par le normalisateur de N.

Démonstration. Un sous-groupe de Aff (Rn) peut être vu comme sous-

groupe de GL(R"+1) stabilisant la forme linéaire donnée par la dernière
coordonnée xn+1. Considérons donc le sous-groupe de Lie connexe nilpotent
N o dans GL(R" + 1). D'après ([Bo], theorem 10.6), N'0 admet une décomposition

de Jordan, R" + 1
se décompose donc en somme directe d'un sous-espace

unipotent stable maximal VY et d'un autre sous-espace invariant V2. Le
fait que N'0 provienne de Aff (R") assure que V1 n'est pas trivial. Nécessairement

V2 ne coupe pas l'espace affine xn + 1
1 car sinon l'action de

N'o en restriction à l'intersection fournirait un espace unipotent, ce qui
contredirait la maximalité de V1. On en déduit que U V1 n(x„ + 1 l)
est non vide. Le normalisateur de N normalise aussi N'0 et donc
stabilise U.

Dans le cas où F est dans E(n\ c'est-à-dire où L(r) c= 0(n\ alors

L(r) est compact et donc n'a qu'un nombre fini de composantes connexes.

Par conséquent, L(r)° est d'indice fini dans LÇT), ce qui prouve que
Tnd a un indice fini dans T. D'après 1.2.1, Tnd est nilpotent. L'énoncé de

Bieberbach suit alors du lemme suivant appliqué à N r„d:

1.2.3. Lemme. Tout sous-groupe nilpotent N de E(n) contient un

sous-groupe d'indice fini N0 abélien. Si de plus N est un groupe cristallo-

graphique, alors N0 est engendré par n translations linéairement

indépendantes.

Démonstration. Reprenons la conclusion de la proposition précédente
dans le cas où N <= E(n). L'action de N0 sur l'axe U est par translations

pures, donc abélienne. Celle dans la direction normale à U (i.e. dans V2)

est linéaire, triangulable et orthogonale donc diagonalisable (complexe). Ceci

garantit déjà que N0 est abélien. On remarque de plus que si U est de

dimension < n, la fonction continue sur R" donnée par la distance
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(euclidienne) au sous-espace invariant U fournit une fonction invariante

par N0 et sans maximum local. Dans le cas où N est cristallographique,

N0 l'est aussi, et donc, le fait que U Rn (i.e. N0 est un groupe de

translations pures) est assuré par la compacité de la variété M W/N0.
Pour finir, toujours dans ce cas, le même raisonnement appliqué à la fonction

distance au sous-espace vectoriel V engendré par les vecteurs de translation

de N0 montre que V R".

1.3. Démonstration du théorème. Elle se réduit essentiellement au

lemme suivant qui tient à l'existence des dilatations que sont les homothéties

en géométrie affine:

1.3.1. Lemme. Si F est un sous-groupe discret de Aff (R"), tout sous-

groupe de type fini de Fnd est nilpotent.

Démonstration. Fixons pour commencer un domaine de contraction des

commutateurs D du groupe de Lie G Aff (Rn) (cf. 1.1.2). Pour qu'un élément

Ax + b de AffÇR") soit dans D, il suffit d'avoir AeD1 œ GL(R") et

b e D2 c: R" où D1 et D2 sont respectivement des voisinages de l'identité
et de zéro, choisis suffisamment petits et à leur tour fixés pour la suite.

Le groupe L(F)nd L(F) n L(F) °, par sa définition même, admet des

systèmes générateurs aussi proches de l'identité que l'on veut. Ainsi, on est

assuré que tout sous-groupe de type fini de Tnd est inclus dans un sous-groupe
dont les générateurs Axx + b1,..., Asx -h bs ont leurs parties linéaires

At, i 1,..., s dans D1.
Il suffit donc de prouver qu'un tel groupe est forcément nilpotent.

Pour ceci, écrivons son conjugué par l'homothétie de rapport X :

<Apc + Xb1,...,Asx A Xbs> a

et choisissons X assez petit de façon que Xbt e D2 pour i 1,..., s. Ce groupe,
continûment isomorphe au précédent, est lui aussi discret et de plus possède
un système générateur dans le domaine de contraction des commutateurs D
fixé au début de la preuve. D'après le lemme 1.1.3, il est nilpotent.

On conclut que T„d est nilpotent grâce au petit lemme suivant :

1.3.2. Lemme. Un sous-groupe discret G de GL(Cm) localement
nilpotent (i.e. tous les sous-groupes de type fini de G sont nilpotents)
est nilpotent.
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Démonstration. D'après ([KM], exercice 21.1.6), un groupe de matrices
localement résoluble est résoluble (cf. aussi [Ra], § 8). Le groupe G est donc
résoluble. Grâce au théorème 2.1.4, énoncé au § suivant, G étant discret
dans un groupe de Lie, il est polycyclique (i.e. tous ses sous-groupes sont
de type fini). Par conséquent, G est de type fini, il est donc nilpotent.

Remarquons que le lemme 1.2.3 permet d'affirmer alors que Fnd est

abélien dans le cas classique (i.e. T a E(n)). Pour terminer la preuve de 1.2.1

dans le cas général, il reste à montrer l'unipotence de Fnd lorsque T est

un groupe cristallographique (i.e. Rn/F est une variété compacte). Dans ce cas,

on considère le sous-espace affine maximal U sur lequel l'action de Fnd

est unipotente (cf. 1.2.2). Cet espace est invariant par F. On considère alors
la variété U/F qui a même type d'homotopie que la n-variété compacte
R"/r. Ceci force U à être de dimension n et donc Fnd à être unipotent
(argument cohomologique de [FGH] p. 496 que l'on retrouvera en 3.3.1).

2. Dans d'autres groupes de Lie

L'objet de ce § est de décrire une autre approche moins élémentaire
du premier théorème de Bieberbach mettant enjeu les notions de moyennabilité
et de croissance qui lui sont aujourd'hui indissociablement liées. L'idée de

départ maintenant est de considérer E(n) comme faisant partie de la classe 0*

des groupes de Lie à croissance polynomiale, elle-même incluse dans celle Jt
des moyennables. Le résultat s'énonce simplement de la façon suivante

(2.1.4, 2.2.3): si F est un sous-groupe discret dans un groupe de Lie
G g Ji (resp. Ge^) alors F est virtuellement polycyclique (resp. virtuellement

nilpotent de type fini). Par ailleurs, les classes Ji et 0 sont caractérisées

ainsi (2.1.3, 2.2.4): G e Ji (resp. Gef) équivaut à G K ix R où K est

compact et R est résoluble (resp. résoluble avec une algèbre de Lie triangulaire
avec des éléments diagonaux imaginaires purs). Ces énoncés vont nous être

utiles au § 3. Nous verrons au § 4 comment ils peuvent encore être généralisés.

2.1. Moyennabilité et résolubilité. Soit G un groupe topologique
localement compact muni de sa a-algèbre borélienne 01. Une moyenne sur
l'espace mesurable (G, 0) est une mesure de probabilité, nulle sur les

négligeables (pour une mesure de Haar de G) et seulement supposée finiment
additive. On dit que le groupe G est moyennable s'il admet une moyenne
invariante à gauche. Il est facile de vérifier alors qu'elle peut être choisie

biinvariante (cf. [Gre] p. 29). Par exemple, l'unique mesure de Haar d'un

groupe compact K qui soit de probabilité fournit une moyenne biinvariante
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sur K (dans ce cas, elle est en plus a-additive). Le lecteur pourra prouver,
à titre d'exercice, la proposition naturelle suivante (cf. [Gre] p. 30 ou

[ZI] p. 61):

2.1.1. Proposition. Tout sous-groupe fermé H d'un groupe localement

compact moyennable G est moyennable (pour la topologie induite par G

sur H).
Si l'on ne précise pas de topologie pour un groupe G et que Ton dit

que G est moyennable, cela sous-entend qu'il l'est en tant que groupe
topologique discret. Un groupe qui est moyennable dans ce sens l'est forcément

pour toute autre structure de groupe localement compact et, d'après la

proposition précédente, tous ses sous-groupes sont moyennables.
Le groupe libre à deux générateurs L(a, b) n'est pas moyennable, ce qui fait

que le groupe 0(3) qui le contient n'est pas moyennable en tant que groupe
discret bien qu'il le soit en tant que groupe de Lie puisque compact
(voir ci-dessus). Ceci est l'origine du célèbre « paradoxe » de Hausdorff-
Banach-Tarski (cf. [Gre] ou [HS]).

Un groupe virtuellement résoluble est moyennable (même références).

Dans [D], Day a posé la question suivante (parfois appelée improprement
« conjecture de von Neumann ») : y a-t-il équivalence entre la moyennabilité
et la non-existence de sous-groupes libres à deux générateurs La réponse
est non dans le cas général d'après Ol'shanski [O]. Cependant, le théorème
suivant donne une réponse positive dans le cas particulier des sous-groupes
du groupe linéaire. Le lecteur trouvera un excellent exposé introductif de ce

résultat dans [H] :

2.1.2. Théorème (Tits [T]). Soit G un sous-groupe de GL(C"). Il est

équivalent de dire que :

(i) G est moyennable.

(ii) G est virtuellement résoluble.

(iii) G ne contient aucun groupe libre à deux générateurs.

Nous avons vu que les groupes de Lie résolubles et les compacts sont
moyennables (en tant que groupes de Lie). En fait, ces deux classes de

groupes de Lie suffisent à construire tous les moyennables (cf. [ZI], p. 62):

2.1.3. Théorème (Furstenberg [Fu]). Les groupes de Lie moyennables
sont exactement les produits semi-directs de la forme K \X R avec K
compact et R résoluble.

Venons-en aux sous-groupes discrets des groupes de Lie. Rappelons
qu'un groupe est polycyclique s'il peut être obtenu à partir d'un nombre fini
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d'extensions de groupes cycliques (finis ou infinis). On peut montrer (cf. [Ra])
qu'un groupe G est polycyclique o G est résoluble et a tous ses sous-groupes
de type fini.

2.1.4. Théorème. Soit T un sous-groupe discret d'un groupe de Lie G.

(i) T résoluble <^> F polycyclique.

(ii) Si G est un groupe de Lie moyennable alors F est virtuellement

polycyclique.

Démonstration, (i) Voir [Ra], proposition 3.8.

(ii) T est fermé dans G groupe de Lie moyennable, donc F est

moyennable en tant que groupe discret d'après 2.1.1. On applique alors
2.1.2.

Le point (ii) suffirait à montrer qu'un sous-groupe discret de E(n) est

virtuellement polycyclique puisque E(n) 0(n) ix R" est un groupe de Lie
moyennable (cf. 2.1.3). Signalons pour finir que d'après [M3], tout groupe
polycyclique F peut être réalisé comme sous-groupe discret de Aff (Rn)

pour un n assez grand et même de façon à ce que R"/r soit une variété.

2.2. Croissance polynomiale et nilpotence. Si la notion de moyen-
nabilité a un sens pour n'importe quel groupe topologique, celle de

croissance concerne uniquement les groupes topologiques de type compact,
c'est-à-dire ceux qui possèdent un système générateur compact. Il s'agit là
d'une simple extension de la classe des groupes de type fini où, en présence
d'une structure topologique, les ensembles finis ont été remplacés par les

compacts. Tout groupe de Lie est de type compact.
Définissons maintenant la notion de croissance pour un groupe

topologique de type compact G. Soit Z un système générateur de G compact
et symétrique. On définit sur G la distance invariante à gauche d(x, y)

le nombre d'éléments minimum de Z permettant d'écrire x~1y. Soit p
une mesure de Haar (unique à constante multiplicative près) et B(e, L)
la boule de centre e et de rayon L pour la métrique d. Le type de croissance

de la fonction /(L) \x(B(e, L)) ne dépend pas du choix du système
générateur Z choisi : c'est le type de croissance de G.

La notion de croissance a été introduite pour les groupes discrets de

type fini en vue de l'étude du groupe fondamental de certaines variétés

riemanniennes. L'observation initiale était la suivante: si M est une variété

riemannienne compacte, le type de croissance de n^M) est le même que
celui, contrôlable par l'analyse, du volume des boules du revêtement
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universel riemannien M (cf. [Ml], [W2]). Dès le début s est posée la

question de l'équivalence entre croissance polynomiale et virtuelle nilpotence.

Les premières étapes en vue de la réponse affirmative donnée par Gromov

(cf. 4.3) sont les suivantes:

2.2.1. Théorème. Un groupe de type fini T à croissance polynomiale

est virtuellement nilpotent dans les cas suivants :

(i) T est virtuellement résoluble (Milnor-Wolf [M2], [W2]).

(ii) T est un sous-groupe d'un groupe de Lie (Tits [T]).

Il est facile de voir, grâce à la condition de Feiner ([F0] cf. [Gre]),

qu'un groupe topologique à croissance polynomiale est forcément moyen-
nable. Par ailleurs, on a la proposition suivante provenant directement des

définitions :

2.2.2. Proposition. Tout sous-groupe discret de type fini d'un groupe

topologique à croissance polynomiale est à croissance polynomiale.

En groupant ceci avec ce qui précède, on obtient la généralisation

suivante de Bieberbach :

2.2.3. Théorème. Un sous-groupe discret d'un groupe de Lie à croissance

polynomiale est virtuellement nilpotent de type fini.

Le groupe E(n) 0(n) IX R" étant à croissance polynomiale, on retrouve
ainsi l'énoncé classique de Bieberbach en appliquant ce résultat et le petit
lemme 1.2.3. Les groupes de Lie à croissance polynomiale sont classifiés

par le :

2.2.4. Théorème (Guivarc'h [Gui] ou Jenkins [J]). Les groupes de Lie
à croissance polynomiale sont exactement les produits semi-directs de la forme
K IX R avec K compact et R un groupe de Lie résoluble ayant une

algèbre de Lie triangulaire avec des éléments diagonaux imaginaires purs.

Par exemple, un groupe de Lie linéaire orthopotent (cf. [Frl]) c'est-à-dire

un groupe de matrices triangulaires par blocs avec des blocs diagonaux
dans le groupe orthogonal est à croissance polynomiale.

3. Le théorème de Bieberbach lorentzien

Le théorème de Bieberbach classique est énoncé pour des sous-

groupes cristallographiques de 0(n) X R". Remplaçons maintenant O(n)
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par 0(n—1,1), le groupe des matrices préservant la forme de Lorentz
q(x) x\ 4- + *>l-1 — x2, et considérons les sous-groupes cristallo-
graphiques de E(n— 1, 1) 0(n— 1, 1) IX Rn, le groupe des isométries lorent-
ziennes. Une variété lorentzienne plate est une variété de la relativité restreinte
c'est-à-dire telle que les changements de carte peuvent être pris dans

E(n—1,1). Un résultat récent [C2], donnant l'équivalent de Hopf-Rinow
pour les variétés lorentziennes plates compactes, nous assure que ces variétés

sont le quotient de R" par T, un sous-groupe cristallographique de E(n— 1, 1).

Dans [GK], Goldman et Kamishima ont montré qu'un tel sous-groupe est

virtuellement polycyclique (cf. 2.1.4), ceci leur permet d'affirmer grâce à des

travaux antérieurs ([Au], [FG]) que les variétés obtenues sont des solvariétés.

Par conséquent, on peut énoncer le théorème suivant :

Théorème. Une variété lorentzienne plate compacte est à un revêtement

fini près une solvariété (i.e. le quotient d'un groupe de Lie résoluble par
un réseau).

Le but de ce § est d'exposer la preuve de Goldman et Kamishima un

peu simplifiée grâce à 1.2.1. Avant de commencer, nous traiterons un exemple

en dimension 3.

3.1. La variété affine T^. On notera

La matrice A détermine un automorphisme de T2 R2/Z2 et permet de

construire la variété affine compacte T\ R x T2fit, z) ~ (£+1, Az). Cette

variété s'écrit encore R3/T, où T est le sous-groupe engendré par les

translations xu, tv et par tw ° A. Soient et X2 les valeurs propres de A
calculées dans C.

On vérifie que si X1 et E1 X2 e2lnplq (q 3,4 ou 6). La
matrice A est alors semblable à une rotation d'ordre 3, 4 ou 6. La variété

est donc une variété riemannienne plate. De plus, le groupe T

possédant 3 translations linéairement indépendantes tm, tv et Tqw, Tj est

à un revêtement fini près un tore, ce qui est conforme au théorème de

Bieberbach.

est alors soit un tore, soit le quotient du groupe de Heisenberg par un
réseau (i.e. T \ est une nilvariété).

u (1, 0, 0), v (0, 1, 0), w (0, 0, 1) et A

Si L2, A s'écrit dans une certaine base entière
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Enfin, si X1 et X2 sont réelles distinctes, on choisit une base de vecteurs

préserve alors la forme de Lorentz qf(X) X1X2, où X1 et X2 sont les

coordonnées de X dans cette base. Par conséquent, A est une isométrie

lorentzienne de R3 (pour la forme de Lorentz X1X2 -f t2), la variété

est donc une variété lorentzienne plate ; la partie linéaire de F étant

abélienne, F est résoluble. On constate de plus que pour X1 > 0, la variété

de départ s'écrit G/FA où G désigne un groupe de Lie difféomorphe
à R3 dont la loi est définie par :

et où est le sous-groupe de G constitué des éléments à coordonnées

entières. Remarquons que G s'identifie à E( 1, 1), il ne dépend donc pas

de A. Le groupe FA étant un réseau et G étant un groupe de Lie résoluble,

T A est une solvariété.

D'après [FG], il s'avère que toutes les variétés affines complètes

compactes de dimension 3 sont en fait topologiquement équivalentes aux

exemples que nous venons de traiter.

3.2. Le groupe de Lorentz 0(n— 1, 1). Rappelons en quoi la géométrie

hyperbolique est liée à la géométrie lorentzienne. Dans R", muni de la forme
de Lorentz q(x) x\ + + x3_i — x2, on considère H"-1, la nappe
supérieure de l'hyperboloïde q~1(— 1). La restriction de q aux espaces

tangents de H"-1 lui donne une structure de variété riemannienne à courbure

constante égale à —1 (i.e. de variété hyperbolique). La projection
stéréographique de H""1 sur l'hyperplan xn 0 par rapport au point
(0,..., 0, —1) permet de visualiser H"-1 comme le disque de Poincaré Dn_1,
muni de la métrique transportée. Le groupe 0(n— 1, 1) agit sur les directions
du cône de lumière g_1(0) identifiées par la projection stéréographique à

S"-2 ÙD"_1, la sphère à l'infini.

3.2.1. Propriétés, a) Le groupe 0(n—1,1) agit sur S"~2 par
transformations conformes.

b) La projection stéréographique de S"-2 sur R"~2 est elle aussi
conforme.

Au cours de la preuve, nous utiliserons le lemme suivant sur la nature
des sous-groupes unipotents de 0(n— 1, 1):

propres dans laquelle

(t, x, y) (t1,x',y')(t + f, (x, y) + A'(x', y'))
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3.2.2. Lemme. Soit G un sous-groupe unipotent non trivial de

0(n—1,1), son normalisateur N(G) est inclus dans un groupe de Lie
moyennable.

Démonstration. Soit W le plus grand espace de vecteurs fixes sous
l'action de G, par hypothèse dim W ^ 1. Si q\w était non dégénérée,
l'action unipotente de G sur W1 fournirait un espace vectoriel non trivial
fixe par G ; le sous-espace W ne serait donc pas maximal. Ainsi, q \ w
est dégénérée et en fait dimker(g|^) 1. On vérifie que N(G) laisse

ker (q \ w) invariant, c'est-à-dire fixe une direction du cône de lumière
correspondant à un point de S"-2. Par projection stéréographique sur Rn_2 de

S"-2 privée de ce point, on obtient d'après 3.2.1 que N{G) est inclus dans

le groupe des transformations conformes de R"~2, c'est-à-dire dans

R*0(n — 2) ix R" 2, qui est un groupe de Lie moyennable (cf. §2).

3.3. Démonstration du théorème. D'après [C2], une variété lorent-
zienne plate compacte M est le quotient de R" par un sous-groupe
cristallographique T de E(n—1,1). Le théorème se réduit à démontrer

que r est virtuellement polycyclique. En effet, d'après ([FG], corollary 1.5),

il existe alors un groupe de Lie résoluble G c= E(n— 1, 1) agissant librement
et transitivement sur R", tel que ro F n G est d'indice fini dans T.

Ceci assure que M a un revêtement fini difféomorphe à G/F0.

3.3.0. Remarque. Pour démontrer que F est virtuellement polycyclique,
puisque F est discret, il suffit d'après 2.1.4 de montrer que F ou même

L(F) est virtuellement résoluble ou encore que L(r) et donc F est dans

un groupe de Lie moyennable.

a) Cas où L(F) est discret.

Soit V le sous-espace vectoriel engendré par les translations de F.

On vérifie que V est laissé stable par L(r). Le lemme suivant assure que V
n'est pas trivial :

3.3.1. Lemme. Si L(F) est discret, L\r n'est pas injective.

Démonstration. Raisonnons par l'absurde et supposons que F soit
isomorphe à L(r). Le groupe F est sans torsion, en effet l'existence d'un
élément y / id d'ordre fini fournirait une orbite finie dont le barycentre
serait fixe par y ce qui contredirait l'action libre de F. Par conséquent,

L(r) est un groupe discret sans torsion, ceci permet de construire la

(n — l)-variété L(r)\FT-1 qui est, comme Rn/F, un espace d'Eilenberg-
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Mac Lane associé à F. Ces deux variétés devraient donc avoir même

cohomologie ce qui n'est pas le cas puisque la seconde est compacte de

dimension n. La compacité de R"/r intervient ici de façon essentielle

(comparer avec [Ma] cf. 4.1).

Nous traiterons deux cas selon la dégénérescence de la restriction de q

à F :

• q\v est dégénérée.

Dans ce cas, ker(g|F) est une direction du cône de lumière laissée

stable par L(F). On conclut comme en 3.2.2 que L(r) est dans le groupe de

Lie moyennable R*0(n — 1, 1) IX Rn~2, ce qui est suffisant d'après 3.3.0.

• q | v est non dégénérée.

Comme L(F) préserve F, il préserve donc aussi F1, ainsi L(r) c= O(F)

a 0(F1) où 0(F) (resp. 0(F1)) est le groupe orthogonal de g \ y (resp. q | V1).

Il suit que T c £(F) x J^F1) où E(V) (resp. E^V1)) est le groupe engendré

par 0(F) (resp. 0(F1)) et par les translations de F (resp. F1). Considérons

la projection E(V) x F(FX) -> f^F1). Par construction, F est engendré par
le groupe ro ker(L|r) des translations de T qui agit trivialement sur
F1. Par conséquent, T0 est un sous-groupe normal de ker (p | r) T1.

3.3.2. Lemme. Le groupe rl/ro est fini.

Démonstration. Notons k la dimension de F. Le quotient de F par le

groupe de translations T0 ~ Zk est un tore Tk. Par sa définition même,

Fx n'agit que sur le facteur F pour donner une variété de dimension k

qui est aussi le quotient de Tk par le groupe I^/To.

Il est facile de constater que ceci implique que F est virtuellement
polycyclique si et seulement si p(F) l'est. Pour conclure la preuve du
théorème dans le cas a), il reste donc à montrer le

3.3.3. Lemme. Le groupe p(F) est virtuellement polycyclique.

Démonstration. Comme l'action de F sur le produit Tk x F1 est

proprement discontinue (parce que donnant une variété au quotient) et que le

premier facteur est compact, il est clair que l'action sur le deuxième facteur
est à son tour proprement discontinue. Or cette action s'identifie à celle
de p(F) sur F1. On vérifie par ailleurs que le quotient V1/p(F) est compact.
Pour être sûr que ce quotient est une variété, il est connu qu'il suffit
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de vérifier alors que p(T) n'a pas de torsion. Mais d'après le lemme de

Selberg [Al], p(T) est virtuellement sans torsion, ce qui assure que V1/p(T)
est à un revêtement fini près une variété compacte.

En restriction à V1, q est aussi non dégénérée. Si q\VL est lorentzienne,
ayant dim V1 < n, on conclut que p(T) est virtuellement polycyclique grâce

au théorème de Bieberbach lorentzien en dimension < n supposé déjà
démontré (récurrence sur n). Si q \V1 est définie positive, on sait par le

théorème de Bieberbach classique que p(T) est virtuellement Zn~k.

b) Cas où L(T) n'est pas discret.

On a alors que L(T)nd L(T) n L(T)° est non trivial et d'après 1.2.1,

L(r)nd est unipotent. Comme L(r) normalise L(r)„d, on déduit de 3.2.2 que
L(r) est dans un groupe de Lie moyennable ce qui, d'après 3.3.0, est

suffisant pour conclure.

L'exemple se généralise à toutes les dimensions. Il s'avère d'après
Fried [Fr2] que les variétés lorentziennes plates compactes de dimension 4

sont à revêtement fini près des Un résultat récent de Grunewald et

Margulis [GM], généralisant celui de Fried, assure qu'en dimension n ces

variétés sont à revêtement fini près soit un T\ (AeSL(Zn~1) et lorentzienne),
soit une nilvariété de degré de nilpotence ^ 3.

4. Quelques autres généralisations

Nous allons pour finir passer en revue rapidement les autres
généralisations que nous connaissons des résultats décrits dans ce qui précède.

4.1. Groupes affines cristallographiques. Rappelons que ce sont les

sous-groupes discrets F de Aff (Rn) dont le quotient R"/F est une variété

(ou même une « orbifold ») compacte. Le théorème 1.2.1 décrit en partie
leur structure.

Conjecture d'Auslander (1964). Un groupe affine cristallographique est

virtuellement polycyclique.

Tout le problème d'après 2.1.4 (i) est de montrer qu'un tel groupe est

virtuellement résoluble. Auslander a publié une preuve dont il a reconnu
ensuite qu'elle contenait une erreur irréparable. Aujourd'hui, on peut résumer

les principaux cas où cette conjecture a été démontrée: en dimension ^ 3
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(Fried-Goldman [FG]), dans le cas lorentzien (Goldman-Kamishima [GK]
cf. § 3) et la généralisation par Grunewald-Margulis [GM] au cas où la

partie linéaire L(r) est dans un groupe algébrique G de rang réel 1.

Récemment, Tomanov [To] a traité le cas plus général où le rang réel

semisimple de G est 1. Il annonce dans cet article une modification de sa

démonstration lui permettant d'obtenir la conjecture d'Auslander en dimensions

4 et 5. Notons aussi que cette conjecture se résout facilement dans

le cas de la dimension complexe 2 (cf. [S] ou [FS]) et celui où L(T) est

orthopotent ([Frl] cf. fin du § 2).

Si l'on s'intéresse à cette conjecture, il faut prendre garde à l'exemple

surprenant trouvé par Margulis [Ma] d'un groupe libre à deux générateurs

T c= E(2, 1) tel que le quotient R3/T est une variété (non compacte).

4.2. Variétés presque plates. Il s'agit d'une autre généralisation du

théorème de Bieberbach où l'on impose à une variété compacte M d'avoir
des métriques riemanniennes aussi plates que l'on veut. Plus précisément,

Gromov donne la définition suivante: une variété compacte M est presque
plate s'il existe sur M une suite gn de métriques riemanniennes pour laquelle
le produit K(gn)d2(M, gn) de la courbure sectionelle par le carré du diamètre
tend vers 0.

Théorème (Gromov [Grol], [BK] ou [Ru]). A revêtement fini près
une variété presque plate M est une nilvariété (i.e. le quotient d'un groupe
de Lie nilpotent par un sous-groupe discret).

En particulier, nfiM) est alors virtuellement nilpotent. On peut se

demander s'il y a un énoncé analogue dans le cas lorentzien.

4.3. Caractérisation des groupes à croissance polynomiale.
L'énoncé de Tits (cf. 2.2.1) pour les sous-groupes des groupes de Lie a été

généralisé par Gromov aux cas de tous les groupes de type fini.

Théorème (Gromov [Gro2]). Un groupe de type fini est à croissance
polynomiale si et seulement s'il est virtuellement nilpotent.

La démonstration de Gromov consiste après un délicat passage à la limite
dans les espaces métriques pointés munis de la distance de Hausdorff à

se ramener, via un résultat de Montgomery-Zippin à l'énoncé de Tits.
Ce théorème de Gromov a été généralisé par Losert [L] aux groupes
topologiques à génération compacte.
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4.4. Relations d'équivalences moyennables et croissance locale.
On peut chercher à généraliser les résultats du § 2 en considérant au lieu
du cas discret comme dans 2.1.4 et 2.2.3 le cas opposé d'un sous-groupe
dénombrable dense F d'un groupe de Lie G. Les orbites de l'action de F

par translations à gauche sur G définissent alors une relation d'équivalence
0t mesurable (i.e. son graphe est mesurable) et ergodique (à cause de la
densité de F). On peut définir la notion de relation d'équivalence mesurable
01 moyennable. Cette définition généralise la notion de moyennabilité d'un

groupe (cf. [Z2] ou [CG] pour des définitions précises). Dans ce contexte,
on a la généralisation suivante de 2.1.2 (cf. [CG] pour une démonstration
en dimension 3) :

4.4.1. Théorème (Zimmer [Z2]). Soit F un sous-groupe dénombrable

et dense d'un groupe de Lie G. La relation dééquivalence 01 F\G est

moyennable si et seulement si G est résoluble.

Dans le même contexte et en supposant de plus que F est de type fini,
on peut donner une définition relative de croissance de F à l'intérieur de G

appelée dans [Cl] la croissance locale de F dans G. On fixe un système

générateur X de F, une métrique sur G et pour chaque R > 0 on compte
le nombre de mots fR(L) écrits avec moins de L lettres de Z et qui
« vivent à tout moment de leur écriture » dans la boule de rayon R de G

centrée en l'élément neutre. Le type de croissance locale (qui ne dépend ni
du choix de Z, ni du choix d'une métrique sur G) est la donnée des types
de croissance des fR(L) en L, VR > 0. Le résultat suivant généralise 2.2.3 :

4.4.2. Théorème [Cl]. Soit F de type fini et dense dans un groupe
de Lie G. La croissance locale de F dans G est polynomiale si et

seulement si G est nilpotent.

La preuve de ce résultat nécessite le théorème précédent ainsi qu'un usage
intensif de la propriété de contraction des commutateurs 1.1.2. A ce titre,
il s'agit bien d'une généralisation du théorème de Bieberbach. Il est d'ailleurs

possible à partir de cet énoncé de montrer une version plus faible du

théorème 1,2.1, à savoir la nilpotence de L(F)nd.



GROUPES CRISTALLOGRAPHIQUES 261

RÉFÉRENCES

[Al] Alperin, R. C. An elementary account of Selberg's lemma. L'Enseignement
Math. 33 (1987), 269-273.

[Au] Auslander, L. On radicals of discrete subgroups of Lie groups. Amer.

J.Math. 85 (1963), 145-150.

[Bi] Bieberbach, L. Über die Bewegungsgruppen der Euklidische Räume I. Math.
Ann. 70 (1911), 297-336.

[Bo] Borel, A. Linear algebraic groups. W. A. Benjamin, New York, 1969.

[Bu] Buser, P. A geometric proof of Bieberbach's theorems on crystallographic
groups. L'Enseignement Mathématique 31 (1985), 137-145.

[BK] Buser, P. and H. Karcher. Gromov's almost flat manifolds. Astérisque 81, 1981.

[CG] Carrière, Y. et E. Ghys. Relations d'équivalence moyennables sur les groupes
de Lie. CRAS Paris 300 (1985), 677-680.

[Cl] Carrière, Y. Feuilletages riemanniens à croissance polynomiale. Comment.
Math. Helv. 63 (1988), 1-20.

[C2] Autour de la conjecture de L. Markus sur les variétés affines. Inven-
tiones Mathematicae 95 (1989), 615-628.

[D] Day, M. Amenable semigroups, III. J. Math. 1 (1957), 509-544.

[Frl] Fried, D. Distality, completeness and affine structures. J. Diff. Geom. 24

(1986), 265-273.

[Fr2] Flat Spacetimes. J. Diff. Geom. 26 (1987), 385-396.

[FG] Fried, D. and W. Goldman. Three-dimensional affine crystallographic groups.
Adv. in Math. 47 (1983), 1-49.

[FGH] Fried, D., W. Goldman and M. Hirsch. Affine manifolds with nilpotent holo-
nomy. Comment. Math. Helv. 56 (1981), 487-523.

[FS] Fillmore, J. P. and J. Scheuneman. Fundamental groups of compact complete
locally affine complex surfaces. Pacific J. Math. 44 (1973), 487-496.

[Fu] Furstenberg, H. A Poisson formula for semisimple Lie groups. Annals of
Math. 77 (1963), 335-383.

[F0] F0lner, E. On groups with full Banach mean value. Math. Scand. 3 (1955),
243-254.

[GK] Goldman, W. and Y. Kamishima. The fondamental group of a compact flat
Lorentz space form is virtually polycyclic. J. Diff. Geom. 19 (1984),
233-240.

[GM] Grunewald, F. and G. Margulis. Transitive and quasitransitive affine
actions preserving a generalized Lorentz structure. Preprint Max Plank
Institut, Bonn, à paraître, 1988.

[Gre] Greenleaf, F. P. Invariant means on topological groups. Van Nostrand, 1965.
[Grol] Gromov, M. Almost flat manifolds. J. Diff. Geom. 13 (1980), 231-242.
[Gro2] Groups of polynomial growth and expending maps. Publ. IHES 53

(1981), 53-78.

[Gui] Guivarc'h, Y. Croissance polynomiale des groupes et périodes des fonctions
harmoniques. Bull. Soc. Math. France 101 (1973), 333-379.

[H] de la Harpe, P. Free groups in linear groups. L'Enseignement Math. 29
(1983), 129-144.

[HS] de la Harpe, P. et G. Skandalis. Un résultat de Tarski sur les actions
moyennables de groupes et les partitions paradoxales. L'Enseignement
Math. 32 (1986), 121-138.



262 Y. CARRIÈRE ET F. DAL'BO

[J] Jenkins, J. W. Growth of connected locally compact groups. J. Funct.
Analysis 12 (1973), 113-127.

[KM] Kargapolov, M. and I. Merzliakov. Fundamentals of the theory ofgroups ou
Eléments de la théorie des groupes. Graduate text in math 62, Springer
Verlag ou Edition Mir, Moscou, 1979, 1985.

[L] Losert, V. On the structure of groups of polynomial growth. Math. Z. 195

(1987), 109-117.

[Ma] Margulis, G. A. Complete affine locally flat manifolds with a free fundamental
group. J. Soviet Math. 36 (1987), 129-139.

[Ml] Milnor, J. A note on curvature and fundamental group. J. Diff. Geom. 2

(1968), 1-7.

[M2] Growth of finitely generated solvable groups. J. Diff. Geom. 2 (1968),
447-449.

[M3] On fundamental groups of complete affinely flat manifolds. Adv. in
Math. 25 (1977), 178-187.

[O] Ol'shanskii, A. Y. On the question of existence of an invariant mean on a

group. Russian Math. Surveys 35, 4 (1980), 180-181.

[Ra] Raghunathan, M. S. Discrete subgroups of Lie groups. Ergebnisse der Mathe¬
matik 68, Springer, 1972.

[Ru] Ruh, E. Almost flat manifolds. J. Diff. Geom. 17 (1982), 1-14.

[S] Suwa, T. Compact quotient spaces of C2 by affine transformation groups.
J. Diff. Geom. 10 (1975), 239-252.

[Ti] Tits, J. Free subgroups in linear groups. J. Algebra 20 (1972), 250-270.

[To] Tomanov, G. The fundamental group of a generalized Lorentz space form is

virtually solvable. A paraître, 1989.

[Wl] Wolf, J. Spaces of constant curvature. Publish or Perish, Wilmington, 1984.

[W2] Growth of finitely generated solvable groups and curvature of Rieman-
nian manifolds. J. Diff. Geom. 2 (1968), 421-446.

[ZI] Zimmer, R. J. Ergodic theory and semisimple groups. Birkhäuser, 1984.

[Z2] Amenable actions and dense subgroups of Lie groups. J. Funct.
Analysis 12 (1987), 58-64.

(Reçu le 3 juillet 1989)

Yves Carrière
Françoise Dal'bo

Institut Fourier
BP 74
F-38402 Saint Martin d'Hères Cedex
(France)


	GÉNÉRALISATIONS DU PREMIER THÉORÈME DE BIEBERBACH SUR LES GROUPES CRISTALLOGRAPHIQUES
	Introduction
	1. Dans $Aff(R^n)$
	2. Dans d'autres groupes de Lie
	3. Le théorème de Bieberbach Lorentzien
	4. Quelques autres généralisations
	...


