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3. APPLICATIONS

L’intérét des probléemes de pavage dépasse tres largement le cadre de la
géométric plane. C’est par exemple des travaux de logique mathématique qui,
en 1961, ont conduit H. Wang a poser un probleme du type de ceux
discutés au § 2:

On demande si la premicre question du § 2 est décidable, dans le sens
technique de ce terme utilisé par Robinson. En d’autres termes on demande
s’il existe un programme d’ordinateur qui, étant donné une famille P, ..., P,
de polygones plans, indique si our ou non cette famille pave le plan.



240 P. DE LA HARPE

La notion de « programme » est a prendre ici dans un sens trés général
et théorique, en référence a un ordinateur sans aucune limitation de mémoire
ou de rapidité. (Pour une introduction mathématique a ces problémes
d’indécidabilité, voir par exemple le remarquable article de Davis. 1)

Le probleme de Wang s’est révélé étre équivalent a celui de l’existence
d’'une famille P,, .., P, permettant de paver le plan, mais forcément de
maniere non périodique.

Et la réponse est donc négative: il existe des familles permettant de paver
le plan, mais de maniere forcément non périodique; de sorte que le probléme
de savoir, en général, si une famille pave est a priori insoluble par ordinateur
(travaux de Berger et Robinson déja cités).

De méme, la question de savoir si une famille de polyominos (voir la fin
du §1) pave le plan est indécidable, c’est-a-dire insoluble par ordinateur
(Golomb).

Mais c’est au domaine bien différent de la physique des métaux que le
sujet de cette note doit une actualité inattendue, et illustre ainsi les rebondis-
sements caractéristiques de la recherche abstraite. Une goutte d’aluminium et
de manganese en proportions convenables se refroidit tres brusquement en
tombant sur un disque de cuivre a basse température et en rotation rapide.
(La rotation a pour effet d’étaler la goutte, et le cuivre, bon conducteur de
la chaleur, de la refroidir.) On peut observer le matériau résultant avec un
dispositif a rayons X ou un microscope €lectronique. Et 'un des dogmes les
mieux établis de toute la cristallographie s’écroule: le dogme veut qu’une
symétrie de rotation des figures observées corresponde toujours a une
rotation de

1/2 tour, ou 1/3 tour, ou 1/4 tour, ou 1/6 tour.
Or 'expérience avec I'alliage Al-Mn obtenu montre une symétrie de

1/5 tour !!!

(Schechtman et al., 1984). On a observé depuis d’autres alliages Ni-Cr avec
des symétries de 1/12 tour.

La géométric de larrangement des atomes dans ces alliages hérétiques
n’est pas encore connue. Mais ’hypothese la plus plausible semble étre celle

1) La question originale de Wang est moins ambitieuse, car les briques modéles
P,,.., P, sont astreintes a étre de forme trés particulicre: des carrés, tous de méme
taille, avec diverses saillies et encoches (ou couleurs) sur les cdtes. De plus, on
impose aux sommets des « carrés » des pavages de constituer un quadrillage régulier
du plan. Berger, puis Robinson, montrent que cette question originale est indécidable.
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d’un arrangement quasi-périodique dont certaines sections planes reproduisent
des pavages de Penrose tels que les deux suivants, repris de Duneau et
Katz, 1985. Ce sont des pavages distincts de ceux décrits plus haut, avec
respectivement 2 et 3 modeles de briques, ou certaines juxtapositions sont
exclues par des régles semblables a4 «les sommets du type T ne se sont pas
accolés a des sommets du type H ». Mais ce sont surtout des pavages qui
possedent les propriétés (i) a (iii) énoncées a la fin du § 2.
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A. Une section du pavage de dimension trois
orthogonale a un axe d’ordre cinqg: pavage de
Penrose généralisé.
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B. Une section du pavage de dimension trois
orthogonale a un axe d’ordre trois.

Le lecteur peut observer que la premiére figure posséde des symétries
pentagonales locales, dont 'abondance est manifeste a I’ceil nu.

*

*

*

L’étude des pavages est donc d’intérét physique aussi bien que géomé-
trique, logique ou calculatoire. Il serait bien appauvrissant d’en négliger un

quelconque aspect.
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Je remercie mes collegues J. P. Eckmann, T. Vust et G. Wanner (Genéve),
ainsi que N. A’Campo (Béle) et F. Rothen (Lausanne), pour d’utiles conver-
sations pendant la préparation de ce texte.
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