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3. Applications

L'intérêt des problèmes de pavage dépasse très largement le cadre de la

géométrie plane. C'est par exemple des travaux de logique mathématique qui,
en 1961, ont conduit H. Wang à poser un problème du type de ceux
discutés au § 2 :

On demande si la première question du § 2 est décidable, dans le sens

technique de ce terme utilisé par Robinson. En d'autres termes on demande

s'il existe un programme d'ordinateur qui, étant donné une famille Pl,..., Pk

de polygones plans, indique si oui ou non cette famille pave le plan.
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La notion de « programme » est à prendre ici dans un sens très général
et théorique, en référence à un ordinateur sans aucune limitation de mémoire

ou de rapidité. (Pour une introduction mathématique à ces problèmes
d'indécidabilité, voir par exemple le remarquable article de Davis. :)

Le problème de Wang s'est révélé être équivalent à celui de l'existence
d'une famille Px,..., Pk permettant de paver le plan, mais forcément de

manière non périodique.
Et la réponse est donc négative : il existe des familles permettant de paver

le plan, mais de manière forcément non périodique ; de sorte que le problème
de savoir, en général, si une famille pave est a priori insoluble par ordinateur

(travaux de Berger et Robinson déjà cités).

De même, la question de savoir si une famille de polyominos (voir la fin
du § 1) pave le plan est indécidable, c'est-à-dire insoluble par ordinateur
(Golomb).

Mais c'est au domaine bien différent de la physique des métaux que le

sujet de cette note doit une actualité inattendue, et illustre ainsi les rebondissements

caractéristiques de la recherche abstraite. Une goutte d'aluminium et
de manganèse en proportions convenables se refroidit très brusquement en

tombant sur un disque de cuivre à basse température et en rotation rapide.
(La rotation a pour effet d'étaler la goutte, et le cuivre, bon conducteur de

la chaleur, de la refroidir.) On peut observer le matériau résultant avec un
dispositif à rayons X ou un microscope électronique. Et l'un des dogmes les

mieux établis de toute la cristallographie s'écroule: le dogme veut qu'une
symétrie de rotation des figures observées corresponde toujours à une

rotation de

1/2 tour, ou 1/3 tour, ou 1/4 tour, ou 1/6 tour

Or l'expérience avec l'alliage Al-Mn obtenu montre une symétrie de

1/5 tour!!!

(Schechtman et al, 1984). On a observé depuis d'autres alliages Ni-Cr avec

des symétries de 1/12 tour.
La géométrie de l'arrangement des atomes dans ces alliages hérétiques

n'est pas encore connue. Mais l'hypothèse la plus plausible semble être celle

*) La question originale de Wang est moins ambitieuse, car les briques modèles
P1,..., Pk sont astreintes à être de forme très particulière : des carrés, tous de même
taille, avec diverses saillies et encoches (ou couleurs) sur les côtés. De plus, on
impose aux sommets des « carrés » des pavages de constituer un quadrillage régulier
du plan. Berger, puis Robinson, montrent que cette question originale est indécidable.
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d'un arrangement quasi-périodique dont certaines sections planes reproduisent
des pavages de Penrose tels que les deux suivants, repris de Duneau et

Katz, 1985. Ce sont des pavages distincts de ceux décrits plus haut, avec

respectivement 2 et 3 modèles de briques, où certaines juxtapositions sont
exclues par des règles semblables à « les sommets du type T ne se sont pas
accolés à des sommets du type H ». Mais ce sont surtout des pavages qui
possèdent les propriétés (i) à (iii) énoncées à la fin du § 2.

A. Une section du pavage de dimension trois
orthogonale à un axe d'ordre cinq : pavage de
Penrose généralisé.

B. Une section du pavage de dimension trois
orthogonale à un axe d'ordre trois.

Le lecteur peut observer que la première figure possède des symétries
pentagonales locales, dont l'abondance est manifeste à l'œil nu.

*
* *

L étude des pavages est donc d'intérêt physique aussi bien que géométrique,

logique ou calculatoire. Il serait bien appauvrissant d'en négliger un
quelconque aspect.
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Je remercie mes collègues J. P. Eckmann, T. Yust et G. Wanner (Genève),
ainsi que N. A'Campo (Bâle) et F. Rothen (Lausanne), pour d'utiles conversations

pendant la préparation de ce texte.
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