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AN IMPLICIT FUNCTION THEOREM L4

If o e H*(Q) is valued in R"®*1V/2] let us consider it as a function valued
in R""*3/2 by adding n components ¢; = 0 for 1 <j < n, and define
Y(u)e as a continuous extension to R" of the function
1 =1

(16) v= — EA(u) ¢
where A(u) is the n(n+3)/2 square matrix the rows of which are du for
1 <j<nand 9;0u for 1 <j <k < n; thanks to our choice of u,, the
matrix A(u,) is invertible on Q, and so is A(u) for any u close enough
to uy. Since A(u)~' is an algebraic function of derivatives of u up to
order 2, estimates such as (3) are again classical.

Finally, we have to prove that this operator | inverts ¢’ (formula (2)).
Applying A(u) to the function v in (16), one gets

1

<6,-u,v>=—§<pj=0 1<j<n
1 .
<ajakuav>:_§q)jk I<j<k<n.

The x, derivative of the first equation gives {0;0,u, v) + {du, dv) = 0,
and one gets also <0;0u, vy + {0y, d,v) = 0 so that the second equation
and (15) give ¢'(u)v = @ in Q.

Thus all the assumptions of the theorem are fulfilled, and it follows that
we can get a solution if d(uy) is sufficiently small in some H(Q) norm;

but according to (14), d(u,) = g° — ¢, and the result is that (13) can be
solved for any metric g close enough to ¢° as required.

APPENDIX :

CONSTRUCTION OF THE SMOOTHING OPERATORS IN SOBOLEV SPACES

Let us recall that v € HY(R") means v € &'(R") and

[v]? = (2n)"”f(1+l<§|2)slﬁ(i) |2dE < oo

Let x:R" — [0, 1] be a C* function taking the value 1 in a neighborhood
of 0 and vanishing for || > \/§ For ve H°(R") and 0 > 1 one sets
/\ A
Sev(S) = X(E/6)(E) .

Then, if s > ¢

>

(1+18P) | S8 |2 2O+ IE/01%) ™" | 1(&/0) 1 2L+ 81> | dE) |2

<
< 0L+ [EPY | () | 2
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since |x] <1 and |&/0| < \/5 for (£/6) e supp y; this gives the first
estimate (4) with C, , = 2°7°.
Similarly, for s < t,

(L+IE17) [ 9E) — @(&)IZ = |1 — x(&/0) |21 +EPy | dE) 1%

a Taylor formula gives |1 — x(&§/0)] < C,|&/0|* with C, = sup | x® |/k!
for any keN since yx(0) = 1 and %Y0) = 0 for j > 0, so that for
t=s+k

(1+EPY 1 48) — S0®) 12 CZIE/O12C7AL+EPy | uE) |

<
< CZ 026791+ [E)D) | HE) | 2

whence the second estimate (4) with C,, = C,_; = sup | x* 9 |/(t—s)!
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