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224 X. SAINT RAYMOND

APPLICATION TO THE LOCAL ISOMETRIC EMBEDDING
OF A RIEMANNIAN MANIFOLD

(following Hormander [3], Section 2).

Let M be a compact C* manifold of dimension n and g a smooth
Riemannian metric on M. In local coordinates, we are thus given a positive
definite quadratic form

g = Zk gjkdxjdxk 5
J>

The celebrated theorem of Nash [7], which is at the origin of the method,
states that for some (large) integer N, there is an isometric embedding
u: M — R, that is an injective map satisfying the system of equations

(13) O, Ouy =g 1 <jk<n

where 0; stands for J/0x; and { , ) for the Euclidean scalar product in
RY; thus, any compact Riemannian manifold can be thought as a submanifold
of a Euclidean space.

In the proof of this Nash theorem, one first establishes that the set of
metrics g such that the problem can be solved is a dense convex cone in
the set of all C* metrics on M, and this leads to the following reduced
problem (see Hormander [3] Section 2): show that the equation (13) can
be solved for every metric in some neighborhood of a fixed metric ¢°

To illustrate the method described above, let us show how one can use
our theorem to prove this last property locally (and this will give a local
isometric embedding u: M — RY).

Let Q = {xeR";| x| < 1} and choose, near some point x, € M, local
coordinates such that Q describes a neighborhood of x,; we take a

Ouo: R — R *3/2 equal to

((xj)lsj‘sm (X?/2)1 <j<n> (xj xk)1<j<ksn)

in a neighborhood of Q; this u, is an isometric embedding for the corres-
ponding metric ¢° in Q, namely the metric g9; = 1 + | x|? and gy = x;x,
if j # k. Finally, for a metric g close to g°, we consider the restriction
d(u) to Q of the function

(14) (<aj“, aku>‘“gjk)1<jsksn

which is a function in H*(Q) valued in R™*1Y/2 for any u e H®(R") valued
in R"»*3)2_(Classically, estimates such as (1) hold for s > (n+2)/2.
The derivative of ¢ with respect to u is defined by

(15) ' = (KOu, 00 + {04, 0;0)1 <j<k<n -
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If o e H*(Q) is valued in R"®*1V/2] let us consider it as a function valued
in R""*3/2 by adding n components ¢; = 0 for 1 <j < n, and define
Y(u)e as a continuous extension to R" of the function
1 =1

(16) v= — EA(u) ¢
where A(u) is the n(n+3)/2 square matrix the rows of which are du for
1 <j<nand 9;0u for 1 <j <k < n; thanks to our choice of u,, the
matrix A(u,) is invertible on Q, and so is A(u) for any u close enough
to uy. Since A(u)~' is an algebraic function of derivatives of u up to
order 2, estimates such as (3) are again classical.

Finally, we have to prove that this operator | inverts ¢’ (formula (2)).
Applying A(u) to the function v in (16), one gets

1

<6,-u,v>=—§<pj=0 1<j<n
1 .
<ajakuav>:_§q)jk I<j<k<n.

The x, derivative of the first equation gives {0;0,u, v) + {du, dv) = 0,
and one gets also <0;0u, vy + {0y, d,v) = 0 so that the second equation
and (15) give ¢'(u)v = @ in Q.

Thus all the assumptions of the theorem are fulfilled, and it follows that
we can get a solution if d(uy) is sufficiently small in some H(Q) norm;

but according to (14), d(u,) = g° — ¢, and the result is that (13) can be
solved for any metric g close enough to ¢° as required.

APPENDIX :

CONSTRUCTION OF THE SMOOTHING OPERATORS IN SOBOLEV SPACES

Let us recall that v € HY(R") means v € &'(R") and

[v]? = (2n)"”f(1+l<§|2)slﬁ(i) |2dE < oo

Let x:R" — [0, 1] be a C* function taking the value 1 in a neighborhood
of 0 and vanishing for || > \/§ For ve H°(R") and 0 > 1 one sets
/\ A
Sev(S) = X(E/6)(E) .

Then, if s > ¢

>

(1+18P) | S8 |2 2O+ IE/01%) ™" | 1(&/0) 1 2L+ 81> | dE) |2

<
< 0L+ [EPY | () | 2
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