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224 X. SAINT RAYMOND

Application to the local isometric embedding
OF A RlEMANNIAN MANIFOLD

(following Hörmander [3], Section 2).

Let M be a compact C00 manifold of dimension n and g a smooth
Riemannian metric on M. In local coordinates, we are thus given a positive
definite quadratic form

9 — X 9jkdXjdxk
j,k

The celebrated theorem of Nash [7], which is at the origin of the method,
states that for some (large) integer N, there is an isometric embedding
m : M -> R^, that is an injective map satisfying the system of equations

(13) <dju, dku> gjk 1 ^ j, k ^ n

where dj stands for d/dxj and < for the Euclidean scalar product in
RN ; thus, any compact Riemannian manifold can be thought as a submanifold
of a Euclidean space.

In the proof of this Nash theorem, one first establishes that the set of
metrics g such that the problem can be solved is a dense convex cone in
the set of all C°° metrics on M, and this leads to the following reduced

problem (see Hörmander [3] Section 2): show that the equation (13) can
be solved for every metric in some neighborhood of a fixed metric g°.

To illustrate the method described above, let us show how one can use

our theorem to prove this last property locally (and this will give a local
isometric embedding u: M -> RN).

Let Q {xeR";|x| < 1} and choose, near some point x0 e M, local
coordinates such that Q describes a neighborhood of x0 ; we take a

C qUq : R" -> R"(" + 3)/2 equal to

((^Ol ^ j^n 5 (Xj/2)i j^n, (Xj Xk)i ^ j<k^n)

in a neighborhood of Q ; this u0 is an isometric embedding for the

corresponding metric g° in Q, namely the metric g J 1 + | x |
2 and gjk x}xk

if j / k. Finally, for a metric g close to g°, we consider the restriction
<\>(u) to Q of the function

(14) ((dju>dkuy~~9jk)l^j^k^n

which is a function in Hœ(Q) valued in R"(n + 1)/2 for any u e ff°°(R") valued

in R"(" + 3)/2. Classically, estimates such as (1) hold for s > (n + 2)/2.

The derivative of 4> with respect to u is defined by

(15) c|y(u)v «dju, dkv} + (dku, djv})1
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If cis valued in R"(" + 1)/25 let us consider it as a function valued

in R"(" + 3)/2 by adding n components (pj 0 for 1 ^ j ^ n, and define

\|/(w)(p as a continuous extension to R" of the function

(16) v - ^A(u) >

where A(u) is the n(n + 3)/2 square matrix the rows of which are djU for
1 ^ j ^ n and djdku for 1 ^ j ^ k ^ n; thanks to our choice of u0, the

matrix A(u0) is invertible on fl, and so is A(u) for any u close enough
to u0. Since A(w)_1 is an algebraic function of derivatives of u up to
order 2, estimates such as (3) are again classical.

Finally, we have to prove that this operator \|/ inverts (j)' (formula (2)).

Applying A(u) to the function v in (16), one gets

<djU, v} - ^ <pj 0 1 < j ^ n

<djdku, p> - ^ cpj7c 1 ^ j ^ k ^ n

The derivative of the first equation gives {djdku,v} + {djU, dkv} 0,

and one gets also <djdku, u> + (dku, djv} 0 so that the second equation
and (15) give <\>'(u)v cp in £1

Thus all the assumptions of the theorem are fulfilled, and it follows that
we can get a solution if 4>(u0) is sufficiently small in some HS(Q) norm;
but according to (14), 4>(m0) g° - g, and the result is that (13) can be
solved for any metric g close enough to g°, as required.

Appendix :

Construction of the Smoothing Operators in Sobolev Spaces

Let us recall that v e H%R") means v e 6^'(Rn) and

M 2 (2tu)-" a+i^i2ri^)i2^ < oo.

Let X' [0, 1] be a C°° function taking the value 1 in a neighborhood
of 0 and vanishing for | % \^ ß,.For v e HC0(R") and 6 > 1 one sets

$k%) xwtfa
Then, if s ^ t,

(i+III2)* I v© 12 < e^-^i + i^/ei2)5-' I xfé/e) 12(i + |^|2)' | |2

< (20)2ts"t)(l + |£,|2}c I v(E,) 12
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