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A SIMPLE NASH-MOSER IMPLICIT FUNCTION THEOREM

by Xavier SAINT RAYMOND

This paper is devoted to the so-called “Nash-Moser implicit function
theorem”, a very powerful method which during the last decades helped to
resolve several difficult problems of solvability for nonlinear partial differential
equations (see e.g. Nash [7], Sergeraert [10], Zehnder [11], Hormander [2]...
and others!); unfortunately, the proofs that are commonly available
(Moser [6], Schwartz [8], Sergeraert [10], Zehnder [11], Hormander [2, 3, 4],
Hamilton [1]) are very long and technical, and rather frightening for the
uninitiated reader.

To correct this impediment, we present here a simple statement and a
simple proof of this type of result, but it should be considered merely as
an introduction to the subject. Indeed, the result is neither new nor optimal,
and the interested reader would benefit by studying more elaborate versions
such as that of Hormander [2, 3, 4]. However, owing to this simple goal,
we have been able to write a proof which avoids the use of too many
parameters (usually found in such a proof) and shows more clearly the key
ideas.

Let us first informally present the problem. One wants to solve an
equation

Fw) = f

where F involves the variables x, the unknown function u(x) and its
derivatives up to the order m. If one can construct a solution u, of
F(ug) = fo for an f, close to f, the problem can be rewritten as an
implicit function problem by considering &(u, f) = F(u) — f which vanishes
at (ug, fo)- It is then sufficient to prove that the equation (v, g) = 0
defines v as a function of g in a neighborhood of (u,, f,) large enough
to contain f.

To prove implicit function theorems in infinite dimensional spaces (as
spaces of functions usually are), one commonly uses iterative schemes. The

simplest one is known as Picard’s iterative scheme: \ being a right inverse
of (0¢/ou) (uy, fy,), one sets

U = _\l"d)(ukaf)a uk+1:uk+vk.
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To prove the convergence of such a scheme, one needs estimates for the
sequence v, ; but if one can estimate s derivatives of v, (symbolically denoted
by |v,|s), one gets estimates for only s — m derivatives of &(uyq, f)
since ¢ involves the derivatives of u,,; up to the order m; thus the
convergence will hold by induction only if the right inverse satisfies an
estimate

[VW(@) s < Cl|s-n

which is true only for a very special type of equations, namely the elliptic
equations.

However, it 1s known that other types of equations are also solvable (for
example hyperbolic equations), and for these, the previous scheme would give
a recurrence estimate of the form

1

| U1 |s < 5|vk|s+d

with a positive shift d in the number of derivatives that are controlled,
so that this scheme is not convergent. To overcome this difficulty, Nash [7]
proposed another scheme involving smoothing operators so that | v, |, could
be estimated inductively for a fixed s; since this improvement came at the
cost of introducing large constants, it was also required to find a scheme
with much faster convergence. We won’t describe here Nash’s scheme nor its
improvements by Hormander [2, 3, 4], but only notice that such complicated
‘schemes are needed if one is interested in optimal results with respect to the
regularity of the solution: without their help, the function f on the right
side must be very smooth in order to obtain some smoothness of the
solution u.

In the theorem stated below, we will establish a C* existence theorem
so that the number of derivatives that are used (provided that it is finite)
does not matter. For this reason, we are going to use the much simpler
scheme proposed by Moser [5] which consists alternately in using Newton’s
scheme and Nash’s smoothing operators: y(u) being a right inverse of
(0d/0u) (u, f) and S, being a sequence of smoothing operators closer and
closer to the identity, one sets

v = — W) Plug, ), g = w + Spvy.

The key to get the estimates for v, is to have at one’s disposal estimates
of linear growth type (see estimate (3) below), which are called “tame estimates”
in Hamilton [1]; such estimates are now classical for ¢ itself or for its



AN IMPLICIT FUNCTION THEOREM 219

derivatives, but the main problem in the applications of this Nash-Moser
method is to prove them also for the right inverse y; here, we will assume
that these estimates hold (cf. (1) and (3)). In the proof we will also use
the simple interpolation formula of Sergeraert [9] who introduced it to prove
that Moser’s scheme could lead to C* results as well.

After the proof of the theorem, we propose a short description of the
classical application of this type of result to the problem of isometric
embedding of Riemannian manifolds, but this is given merely as an illustration
of the method, and we refer to Hormander [3], Sections 2 and 5, for
the details.

To complete this lengthy introduction, we confess that the result stated
here is probably the worst that can be found in the literature on the
subject with respect to the number of derivatives that are used. One reason
is that we have taken all the shifts in the number of derivatives equal to
the maximum, d, to avoid the multiplicity of parameters. In specific
applications however, it is obvious that this can be much improved.
Throughout the paper, we consider the expression ¢(u, f) for various u,
but always the same f e C® so that it can be written ¢(u) as well;
finally, we recall that the function u defined in the open subset Q of R”
belongs to the Sobolev space H¥(Q) if all its derivatives up to order s
are square integrable over Q (see also the definition with the Fourier transform
in the appendix when Q = R"). We can now state the result.

THEOREM. Let ¢: H*(R") —» H*(Q) where Q is an open subset of
R"; one denotes by ||, the norm in HR") and by | |, the norm
in  HYQ). One assumes that there exist uy,e H®(R"), an integer d > 0,

a real number & and constants C,,C, and (C,);s, such that for any
u, v, we H*(R"),

VS > d9 H d)(U) ”s < Cs(1+luls+d)
(1) U —uglz < 8= I ' W |0 < Cy o]
o "(w) (v, w) || 2 < Colvlzalwlag.

(when one deals with (nonlinear) partial differential equations of order m,
. . n
these estimates classically hold for d > m + 5 ). Moreover, one assumes that

Jor every ue H®R") such that |u — uy|s; < 8, there exists an operator
Y(u): H*(Q) — H*(R") satisfying for any ¢ e H>*(Q),

(2) P = ¢ in Q, and
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(3) Vs 2 d, [ Ve |; < Clllollsratluls+al@ll2a)

(the so-called “tame estimate”). Then, if | &(ug) || .4 Is sufficiently small
(with respect to some upper bound of 1/8,|uy|p and (C,),<p where
D = 16d* + 43d + 24 - sic!), there exists a function ue H®(R") such that
du) =0 in Q.

Remark. This theorem is stated with the Sobolev spaces H®(Q)
= ()szoH%(Q) and H*(R") to be used in local solvability problems for
nonlinear partial differential equations, but one can replace these spaces by
gradations of Banach spaces B, and B, respectively with norms | |, and
| Il¢ if there exist some smoothing operators (Sg)e-: B, — B, satisfying
foreveryve B,,0 > landsandt > 0

" {|Sev|s<cs,tes*f|v|tifs>t;

v — Sev | S C O v, if s <t

(the construction of such smoothing operators in the case of Sobolev spaces
is given in the appendix); we will also assume that |v|, < |v |, whenever
s < t. Actually, we will only use the operators S, where the sequence of
real numbers 0, is defined in the following way: 6, > 2 to be chosen,
then 0,,, = 07/*; here are the properties of this sequence that we will use

0, = 0¢,,, and
{90 >2= ) 0;°<085"';
j=0
indeed, (5/4) > 1 + (j/4) implies 0; = 05’ > 057U then Yis0 057
<0,31-053"1 <0, since 052 <1 — 05%* when 0, > 2.
The solution u of the theorem will be obtained as the limit of the
sequence u, that is constructed in the following lemma.

(5)

LemMA 1. With the same assumptions as in the theorem and with the
smoothing operators S, of the remark, the sequences

U = — Yl )P(uy) , U1 = U T Sekvk

are well defined for sufficiently large 0, if || dug) | 2 < 05%, more
precisely, there exist constants (U,),=, and V (independent of k) such
that for k = 0,

(i) |, — uol3a <0 and | Ouy) 24 < 65 %;
(10 ) | g | 3443 < Vek—s;

(1ii )y Vi > d, (I + gt 1li420) < Utel%d(1+|uk|z+2d)
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Proof. Since the property (i) implies that the sequences u;, and v,
are well defined (the operator f(u) exists by assumption if |u — uy |3, < 9),
it is sufficient to prove (i), (ii) and (iii), and this is going to be done by
induction. The property (i), 1s true by assumption.

Proof of (ii). The tame estimate (3) gives for every t > d

(6) v ], < Ct(ll¢(“k)“t+d+Iuk't+dH¢(uk)HZd) .

For t = d and using (i), one gets
(7) | vk la < Ca(l+ug—uolaq+1tol2a) | Gltg) |l 20 < VOGI:4

where Vi, = C, (143 |ugl,s). The estimate (ii) will be obtained by inter-
polation between (7) and an estimate

(8) lvplr < Vlezlcv

for a large T. To prove (8), we can use the first assumption (1) to
estimate ¢(u,) in (6); this gives

v ], < Ct(ct+d(1 el 4 20) Tl 4 aCaa (1 + [ — uol 54+ |“o|3d))
<

(9)
Ct(ct+d+ Cra(1+0+ lu0|3d)) (14 Jugl; + 24) -

We now fix the values N = 4(2d+1) and T = 3d + 3 + (2d+3) (N +3).
The estimate
(10) (1+|“j|T+2d) < (1+|u0|T+2d)e§v

obviously holds for j = 0; moreover, if it holds for some j < k, we get
from (iii); and (5)
(Tt 1l 74 24) < UTefd(l+|U0|T+zd)ej}(2d+l)
= (UTej— 1) 1+ luOIT+2d)9;“-£LZf+ Y
so that (10) holds by induction for j < k if one takes 0o = Uy. Thus one

gets (8) by replacing |u|r.,; in (9) by the estimate (10) for j = k
note that V', depends only on | u, | ;4 ,, and the constants C.

With 6, = 0293 the interpolation formula can now be written as

| Ol 3a+3 < | 86, 0k | 30103 + |1 — St Uk | 30+ 3

NnN2d+3 n —
< C3d+3,d9k | vp |4 + C3d+3,Tel?d+3 Tlvk,T
< C3d+3,dVOek—3 + C3d+3,TV19k_3

because of (7), (8) and our choice of T, and this is (11),, .
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Proof of (iii). It follows essentially from the estimate (9) above, if one
observes that | u,, |, +.4 can be estimated in terms of | v, |, because of the
relations (4): indeed, since ;. ; = u, + S, Uk,

| U1 ler2a ST leroa + 1 S0 Ok li2a < Tl 20 + Ct+2d,161%d | vk |,
whence (iii) with constants U, depending only on | u, | 5, and the constants C
by using (9).

Proof of (i). Since u, — u, = qu Se, v;, (ii); for j < k allows us to write

Ve [0, 1], | uy + tSq, vy — ug |34 < Z | So, 0134 < Caq, 34 Y. | v | 34

J<k i<k

< Cy4,34V Z 9;3-

i<k
By (5), ijo 0;7° < 05" so that we have for 6, > Csy 3,V/8
(11) Vi e [0, 1], [ u, + tSe, Uy — Ug |34 < &

for t = 1, this gives | u, ., — ug |34 < 0 (first part of (1), 4 ).
To get an estimate for &(u,, ), we write the following Taylor formula

1

Plug+1) = Oluy) + O'(ug)So, v + J (1 —1)d"(uy +1Sg, Vi) (Se, Vi, So, Vi )AL ;
0

since v, = — (g )d(uy), (2) gives d(u,) = d'(u,) (—v,) in Q, whence
Oug+1) = @; + @, with
Q1 = O'(uy) (Sp, ve—1y) and @, = Jl (1—1)"(uy+1So, vi) (Se, Vx> So, U )dt .
0

Thanks to (11), we can use (1) to estimate ¢, and ¢,: with (4) and (i1),
one gets

| @1 || 20 < Cy Sek U — Uy lag < C1C3d, 3d+36k_3 | Uk | 30+3
< C1C3d,3d+3Vek_6

| 02120 < Col So vl 3 < C2C3,3a | 0] 30 < CyC34,3,V70,°
whence
H ¢(uk+ 1) H 2d < C09k_6 — (Coek_ 1)6k—+41

(cf. (5)) where C, depends only on ¥ and the constants C; for 6, > C,,
we thus get (i), . The proof of the lemma is complete.
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The estimates (i) and (ii) in lemma 1 give the existence of a solution
u € H3¥73(R") of the equation ¢(u) = 0. But actually, the proof of property (ii)
can be modified to prove an estimate for | v, |, for every s > d.

LEMMA 2. There exist constants (V)s»4 Such that the sequence v,
of lemma 1 satisfies for every k>0 and s> d

lvk|s < Vsek_3

Proof. Keeping the value N = 4(2d+1), we get from (iii) and (5) that
(1+|uk+1lt+2d)9k_+N1 < Utelgd(1+luklt+2d)ek—+N1 = (Utek_l) (1+|”klt+2d)9k_N5

for any fixed ¢, 6, > U, for sufficiently large k since 0, tends to infinity,
so that the sequence (1+|u,4,4)0, " is bounded; substituting this into (9),
we get an estimate

(12) | vl < WOF

where N = 4(2d+1) does not depend on t. Now, for any s > d we
can rewrite our interpolation formula with ¢t = s + (s—d) (N+3) and
ék — e%/(rd)

< lsékvkls + lvk - Sékvk|s

< Cs,dei*d | v la + Co, 0% "1 v |,

< Cs,dV09k_3 + Cs,rI/Vtek—3

where we have used (7) and (12).

Ivkls

Proof of the theorem. Let u, and v, be as above. From lemma 2 we have
l Sej vj |s < Cs,s ' vj |s < Cs,sI/se'—3

for any j > 0 and s > d, so that the sequence u, = u, + Z <6,V 18

convergent in every H¥R") (z S 09 i < oo by (5). Moreover the limit
u € H*(R") of the sequence u, satlsﬁes

I o) Il 20 < || duy) || 20 + |l J d),(“k‘*‘t(u‘“uk)) (u—u)dt || 54
0

< ) |20 + Cy lu — Ui | 34
for any k, so that ¢p(u) = 0 by taking the limit for k =
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APPLICATION TO THE LOCAL ISOMETRIC EMBEDDING
OF A RIEMANNIAN MANIFOLD

(following Hormander [3], Section 2).

Let M be a compact C* manifold of dimension n and g a smooth
Riemannian metric on M. In local coordinates, we are thus given a positive
definite quadratic form

g = Zk gjkdxjdxk 5
J>

The celebrated theorem of Nash [7], which is at the origin of the method,
states that for some (large) integer N, there is an isometric embedding
u: M — R, that is an injective map satisfying the system of equations

(13) O, Ouy =g 1 <jk<n

where 0; stands for J/0x; and { , ) for the Euclidean scalar product in
RY; thus, any compact Riemannian manifold can be thought as a submanifold
of a Euclidean space.

In the proof of this Nash theorem, one first establishes that the set of
metrics g such that the problem can be solved is a dense convex cone in
the set of all C* metrics on M, and this leads to the following reduced
problem (see Hormander [3] Section 2): show that the equation (13) can
be solved for every metric in some neighborhood of a fixed metric ¢°

To illustrate the method described above, let us show how one can use
our theorem to prove this last property locally (and this will give a local
isometric embedding u: M — RY).

Let Q = {xeR";| x| < 1} and choose, near some point x, € M, local
coordinates such that Q describes a neighborhood of x,; we take a

Ouo: R — R *3/2 equal to

((xj)lsj‘sm (X?/2)1 <j<n> (xj xk)1<j<ksn)

in a neighborhood of Q; this u, is an isometric embedding for the corres-
ponding metric ¢° in Q, namely the metric g9; = 1 + | x|? and gy = x;x,
if j # k. Finally, for a metric g close to g°, we consider the restriction
d(u) to Q of the function

(14) (<aj“, aku>‘“gjk)1<jsksn

which is a function in H*(Q) valued in R™*1Y/2 for any u e H®(R") valued
in R"»*3)2_(Classically, estimates such as (1) hold for s > (n+2)/2.
The derivative of ¢ with respect to u is defined by

(15) ' = (KOu, 00 + {04, 0;0)1 <j<k<n -
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If o e H*(Q) is valued in R"®*1V/2] let us consider it as a function valued
in R""*3/2 by adding n components ¢; = 0 for 1 <j < n, and define
Y(u)e as a continuous extension to R" of the function
1 =1

(16) v= — EA(u) ¢
where A(u) is the n(n+3)/2 square matrix the rows of which are du for
1 <j<nand 9;0u for 1 <j <k < n; thanks to our choice of u,, the
matrix A(u,) is invertible on Q, and so is A(u) for any u close enough
to uy. Since A(u)~' is an algebraic function of derivatives of u up to
order 2, estimates such as (3) are again classical.

Finally, we have to prove that this operator | inverts ¢’ (formula (2)).
Applying A(u) to the function v in (16), one gets

1

<6,-u,v>=—§<pj=0 1<j<n
1 .
<ajakuav>:_§q)jk I<j<k<n.

The x, derivative of the first equation gives {0;0,u, v) + {du, dv) = 0,
and one gets also <0;0u, vy + {0y, d,v) = 0 so that the second equation
and (15) give ¢'(u)v = @ in Q.

Thus all the assumptions of the theorem are fulfilled, and it follows that
we can get a solution if d(uy) is sufficiently small in some H(Q) norm;

but according to (14), d(u,) = g° — ¢, and the result is that (13) can be
solved for any metric g close enough to ¢° as required.

APPENDIX :

CONSTRUCTION OF THE SMOOTHING OPERATORS IN SOBOLEV SPACES

Let us recall that v € HY(R") means v € &'(R") and

[v]? = (2n)"”f(1+l<§|2)slﬁ(i) |2dE < oo

Let x:R" — [0, 1] be a C* function taking the value 1 in a neighborhood
of 0 and vanishing for || > \/§ For ve H°(R") and 0 > 1 one sets
/\ A
Sev(S) = X(E/6)(E) .

Then, if s > ¢

>

(1+18P) | S8 |2 2O+ IE/01%) ™" | 1(&/0) 1 2L+ 81> | dE) |2

<
< 0L+ [EPY | () | 2
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since |x] <1 and |&/0| < \/5 for (£/6) e supp y; this gives the first
estimate (4) with C, , = 2°7°.
Similarly, for s < t,

(L+IE17) [ 9E) — @(&)IZ = |1 — x(&/0) |21 +EPy | dE) 1%

a Taylor formula gives |1 — x(&§/0)] < C,|&/0|* with C, = sup | x® |/k!
for any keN since yx(0) = 1 and %Y0) = 0 for j > 0, so that for
t=s+k

(1+EPY 1 48) — S0®) 12 CZIE/O12C7AL+EPy | uE) |

<
< CZ 026791+ [E)D) | HE) | 2

whence the second estimate (4) with C,, = C,_; = sup | x* 9 |/(t—s)!
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