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276 J. MCCARTHY AND A. PAPADOPOULOS

classification. For a complete exposition of Thurston’s theory, we refer the
reader to [4], and for more information on Teichmiiller space, to [1].
" Finally, in section 4, we prove the theorem on the type of the product of
two involutions.

The problem of studying the types of products of involutions in the
mapping class group was suggested to the second author by Frangois Lau-
denbach. The theorem on the subgroup generated by involutions arose out
of an attempt to obtain more precise information about the mapping classes
which occur as products of two involutions.

The first author acknowledges partial support from Universit¢é Rene
Descartes (Strasbourg), and the second author acknowledges support from
CNRS (France) and Universidad Nacional Autonoma de México.

2. THE SUBGROUP GENERATED BY INVOLUTIONS

Let M(F,) denote the mapping class group of a closed orientable surface
F, of genus g > 2. Let I(F,) denote the subgroup of M(F,) which is
generated by involutions. We wish to describe I(F,) as a subgroup of
M(F,). Clearly I(F,) is a normal subgroup of M(F,). Hence, we shall give
our description in terms of the quotient, M(F,)/I(F,).

We begin by recalling some algebraic facts about M(F,). For a general
introduction to the algebraic structure of M(F,), we refer the reader to [2].

It is a classical fact that M(F,) is generated by Dehn twists about
nonseparating simple closed curves on M. In fact, M(F,) is generated by a
finite number of such twists. The minimum number of twists which is
required to generate M(F,) was given by Humpbhries [5].

|
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FIGURE 1.
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TueoreM (Humphries). M(F,) is generated by the Dehn twists about the
curves Qy, .., d,, and b of figure 1.

Let us denote the Dehn twist about a curve, a, by t,. (We remind the
reader that the sense, right or left, of a Dehn twist is not dependent upon
an orientation of the curve a, but rather upon the orientation of the surface;
t, denotes a right Dehn twist with respect to the given orientation on F.)
Given any element of M(F,), h, we have the following identity:

(1) htah—l - th(a) .

It follows that any two Dehn twists about nonseparating simple closed
curves on F are conjugate in M(F,). As a consequence, H,(M(F ;) is cyclic.
The order of H,(M(F,)) was computed by Powell [8]:

(2) Hl(M(FZ)) = Zio>
(3) H(M(F,) =1, if ¢g=3.

Due to the peculiar nature of genus 2, we shall need more precise
information concerning involutions in M(F,). It is a consequence of a theorem
of Nielsen (cf. [7]) that every involution in M(F,) is represented by an
involution of F,. Hence, we need only describe involutions of F, .

There are two obvious such involutions. First, there is the hyperelliptic
involution, i, with six fixed points which is depicted in figure 2 as a rotation
by 180 degrees about the horizontal axis.

FIGURE 2.

Let us denote the Dehn twist along a; by t,. From equation (1), we

see that i commutes with ¢, t,,t5,t, and ¢,. Hence, i is a central element
of M(F,).
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The following identity was established by Birman [2]:
(4) l = t1t2t3t4t§t4t3t2t1 .

Secondly, there is the involution, s, with two fixed points, obtained by a
rotation about the vertical axis as in figure 3.

J
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We shall also need to express s as a product of Dehn twists. We thank
Roger Tchangang Tambekou for explaining the technique used below for
finding such an expression.

LemMa 1. We have
S = t3t2t4t3t2t4tltbt2t4t3t2t4t1tb .

Proof. Since s commutes with i, it induces a map, s, on the quotient
orbifold of F, by the action of i, N. N is a sphere with six distinguished
points of index 2, as in figure 4.

The map, s, 1s again a rotation. In particular, it fixes the point P
which is indicated in figure 4. Hence, we can isotope s' in a neighborhood
of the disk D (again indicated in figure 4). This isotopy lifts, in an obvious
way, to M,. Hence, we may assume that s' fixes the disc D pointwise.
Therefore, we may consider s’ as a map of a six-punctured disc fixing the
boundary. In other words, s’ is a braid. It is easy to see that the corres-
ponding geometric braid is that depicted in figure 5.
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FIGURE 4.

Hence, in terms of the standard braid generators, we have

(5) S = §35,54535,545155525453525451S5 .

As explained in [3], the braid generators s,,s,, S3,5, and ss lift to
ti,ty,t3,t, and t, respectively. Hence, we see that h is a lift of s. It

FIGURE 5.
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follows that s is equal to h or hoi. Since i acts on H,(F,,Z) as —Id,
we may decide which of the two inequalities holds by considering the action
of s and of h on H,(F,,Z). We leave it to the reader to verify that s
and h have the same action on H(F,, Z). This completes the proof of
lemma 1.

We shall now show that every involution of F, is equivalent to either i
or s.

LEMMA 2. There are exactly two conjugacy classes of involutions in
M(F,), the classes of i and of s.

Proof. By equation (1) above, st;s™! = t,.

Hence, s is not in the center of M(F,). Since i is central, i and s
represent distinct conjugacy classes in M(F,).

It remains to see that all involutions in M(F,) are conjugate to either i
or S.

Hence, suppose t is an involution in M(F,). Let t also denote a
representative involution of F,. Of course, the orbit space of F, under the
action of gp(t), N, is the base space of a branched covering with total space
F, . Hence, by the Riemann-Hurewicz formula, we have the following identity:

(6) 2AX(N)—b)) = X(F;) — b
where X denotes Euler characteristic,
b = number of branch points in N,
and b’ = number of branch points in F, .

Since this is a two-fold branched cover, we know that b" is equal to b.
Hence, if we denote the genus of N by g, we obtain the formula:

(7) 6 =49 + b
From this, we obtain precisely two solutions:
(8) (g=0, b=06) or g=1,b=2).

Now, we know that the branched cover is a regular branched cover.
Hence, it is determined by a representation of m,(N\o) onto Z,, where
is the set of branch points.

By the definition of a branch point, we know that the representation
must be nontrivial on loops encircling a branch point.

Suppose that g is zero. Since m,(N\o) is generated by such loops, there
is only one such representation. Hence, t must be topologically conjugate to i.

BN
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Now suppose that g is one. N\c is a twice-punctured torus. The
representation of the group m;(N\o) onto Z, factors through H,(N\o, Z,)
which is a free Z,-module with basis (x, y, z) given by the loops depicted
in figure 6.

FIGURE 6.

Hence, there are four possible representations, given the previous
restrictions:

9) 1) (x,3,2) — (0,0,1)

(
(1) (x,v,z) — (1,0,1)
(1i1) (x,y,z) — (0,1, 1)
(iv) (x,y,z) —» (1,1,1).
It suffices to show that these representations are topologically equivalent.
There is an homeomorphism, f, as depicted in figure 7, which acts as
follows:

(10) fi(x,y,2) —» (x,y+z2).

FIGURE 7.
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Hence, (i) and (iii) are equivalent representations, and (i) and (iv) are
equivalent representations. In a similar manner, by “pulling x over the
puncture z”, we see that (i) and (ii) are equivalent. Hence, all four repre-
sentations are topologically equivalent.

It follows, as in the genus zero case, that t must be topologically
conjugate to s. This completes the proof of lemma 2.
Let p be the abelianization map given by Powell’s result:

(11) p:M(F,) — Z,
ty, — 1, d nonseparating .
From equation (4) and lemme 1, it follows that
(12) pi) =1, p(s) =5.

From lemma 2, it follows that p(I(F,)) is the subgroup of Z,, which is
generated by Z;.

‘r S
FIGURE 8.

For surfaces of even genus, s will continue to denote an involution
with two fixed points as in figure 8. For surfaces of odd genus, s will
denote an involution with four fixed points as in figure 9.
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FIGURE 9.

We are now prepared to give the promised description of I(F,).

THEOREM 1.

(a) I(F,) is normally generated by s for all g = 2.

(b) M(F,)/I(F;) = Zs.

(c) M(F,)/I(F,) =1, forall g¢g=> 3.

Proof. Let ¢ denote the curve depicted in figure 8 or in figure 9,
depending upon the genus, g. Let £ be the normal closure of s. We begin
by showing that M(F,)/Z is cyclic.

Let t; denote as before the Dehn twist along the curve g;.

By equation (1), we conclude that:

(13) tctfl = (Stlshl)tfl = S(tlstl_l) ,

and this is an element of X.
For any j with 3 <j < 29, we may construct a homeomorphism, h,
which takes (a;, ¢) to (a,, a;). By applying equation (1), we conclude that:

(14) ti;teX forall 3<j<2g.
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By the same reasoning, we deduce that:
(15) tileX,
(16) tyleX.

Hence, Humphries’ generators are all conjugate modulo X. This implies
that M(F,)/Z is cyclic.

If the genus is greater than 2, equation (3) implies that X = M(F,).
Since X is contained in I(F,), we see that ¥ = I(F,) = M(F,). Hence,
theorem 1 is true for genus greater than two.

Now suppose that the genus is two. By equation (12), we conclude that i
belongs to X. By lemma 2, it follows that £ = I(F,). On the other hand,
by equation (12), we conclude that

M(F,)/E = Z. .

This establishes theorem 1 for genus two.
This completes the proof of theorem 1.

3. THURSTON’S CLASSIFICATION OF MAPPING CLASSES

The Teichmiiller space of F, denoted by T, is the space of hyperbolic
metrics on F up to isometry. It has a natural topology and is homeo-
morphic to an open ball of dimension 6g— 6+ 2b, where g is the genus of F
and b the number of its boundary components.

Thurston’s boundary of T 1s the space of projective classes of measured
foliations on F.

A measured foliation is a foliation with isolated singularities of a special
type (p-prong singularities, where p is any integer > 2, see figure 10),
with a measure on transverse segments which is a Lebesgue-measure, and
which is invariant by isotopy of the segment keeping each point on the
same leaf.

There’s an equivalence relation between measured foliations, generated by
isotopy and the operation of collapsing a leaf connecting two singular
points. MF denotes the space of equivalence classes.

There’s a natural action on MF by the positive reals; PMF is the
quotient projective space. PMF 1s homeomorphic to a sphere of dimension |
6g—7+2b which constitutes, by Thurston’s work, a natural boundary for
Teichmiiller space. M(F), The mapping class group of F, acts continuously
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