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INVOLUTIONS IN SURFACE MAPPING CLASS GROUPS

by John McCarthy and Athanase Papadopoulos

1. Introduction

Let F be a compact orientable surface with negative Euler characteristic.

A mapping class is an isotopy class of orientation-preserving homeomorphisms

of F. Mapping classes form a group under composition, the mapping class

group, M(F). An element of order two of the mapping class group will be

called an involution. In this article, we prove two theorems about products
of involutions.

The first theorem is group-theoretical. We assume that the surface F
is closed and we study the subgroup of M(F) which is generated by
involutions. In particular, for closed surfaces of genus greater than or equal
to three, we prove that the mapping class group is generated by involutions.

The second theorem is geometric. There is a classification, into 3 types,
of mapping classes, which is due to Thurston. This theorem is about the

type of the product of two involutions. As is natural in this setting, the
theorem and its proof are in terms of the action of the mapping class

group on Teichmüller space and its Thurston boundary.
The second theorem is analogous in nature to the following elementary

facts about the product of order-two elements of a discrete group of
isometries of hyperbolic 2 or 3-space :

(i) the product is an elliptic isometry if and only if the two order-2
isometries have a common fixed-point in hyperbolic space.

(ii) if the two order-2 isometries have no common fixed point in hyperbolic
space and have a common fixed point on the boundary at infinity, their
product is a parabolic isometry.

(iii) if the two isometries do not have any common fixed point, neither
in hyperbolic space nor on the boundary at infinity, their product is of
hyperbolic type.

In section 2, we prove the group theoretical result. Then, in section 3,

we give an outline of some of the background material on Thurston's



276 J. MCCARTHY AND A. PAPADOPOULOS

classification. For a complete exposition of Thurston's theory, we refer the

reader to [4], and for more information on Teichmüller space, to [1].
Finally, in section 4, we prove the theorem on the type of the product of
two involutions.

The problem of studying the types of products of involutions in the

mapping class group was suggested to the second author by François
Laudenbach. The theorem on the subgroup generated by involutions arose out
of an attempt to obtain more precise information about the mapping classes

which occur as products of two involutions.
The first author acknowledges partial support from Université René

Descartes (Strasbourg), and the second author acknowledges support from
CNRS (France) and Universidad Nacional Autônoma de México.

2. The subgroup generated by involutions

Let M(Fg) denote the mapping class group of a closed orientable surface

Fg of genus g ^ 2. Let I(Fg) denote the subgroup of M(Fg) which is

generated by involutions. We wish to describe I(Fg) as a subgroup of

M(Fg). Clearly I{Fg) is a normal subgroup of M(Fg). Hence, we shall give

our description in terms of the quotient, M(Fg)/I(Fg).
We begin by recalling some algebraic facts about M(Fg). For a general

introduction to the algebraic structure of M(Fg), we refer the reader to [2].
It is a classical fact that M(Fg) is generated by Dehn twists about

nonseparating simple closed curves on M. In fact, M(Fg) is generated by a

finite number of such twists. The minimum number of twists which is

required to generate M(Fg) was given by Humphries [5].

Figure 1.
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