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INVOLUTIONS IN SURFACE MAPPING CLASS GROUPS

by John McCaRrRTHY and Athanase PAPADOPOULOS

1. INTRODUCTION

Let F be a compact orientable surface with negative Euler characteristic.
A mapping class is an isotopy class of orientation-preserving homeomorphisms
of F. Mapping classes form a group under composition, the mapping class
group, M(F). An element of order two of the mapping class group will be
called an involution. In this article, we prove two theorems about products
of involutions.

The first theorem is group-theoretical. We assume that the surface F
is closed and we study the subgroup of M(F) which is generated by
involutions. In particular, for closed surfaces of genus greater than or equal
to three, we prove that the mapping class group is generated by involutions.

The second theorem is geometric. There is a classification, into 3 types,
of mapping classes, which is due to Thurston. This theorem is about the
type of the product of two involutions. As is natural in this setting, the
theorem and its proof are in terms of the action of the mapping class
group on Teichmiller space and its Thurston boundary.

The second theorem 1s analogous in nature to the following elementary
facts about the product of order-two elements of a discrete group of
1sometries of hyperbolic 2 or 3-space:

(1) the product is an elliptic isometry if and only if the two order-2 iso-
metries have a common fixed-point in hyperbolic space.

(11) if the two order-2 isometries have no common fixed point in hyperbolic
space and have a common fixed point on the boundary at infinity, their
product is a parabolic isometry.

(1) 1f the two isometries do not have any common fixed point, neither

in hyperbolic space nor on the boundary at infinity, their product is of
hyperbolic type.

In section 2, we prove the group theoretical result. Then, in section 3,
we give an outline of some of the background material on Thurston’s
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classification. For a complete exposition of Thurston’s theory, we refer the
reader to [4], and for more information on Teichmiiller space, to [1].
" Finally, in section 4, we prove the theorem on the type of the product of
two involutions.

The problem of studying the types of products of involutions in the
mapping class group was suggested to the second author by Frangois Lau-
denbach. The theorem on the subgroup generated by involutions arose out
of an attempt to obtain more precise information about the mapping classes
which occur as products of two involutions.

The first author acknowledges partial support from Universit¢é Rene
Descartes (Strasbourg), and the second author acknowledges support from
CNRS (France) and Universidad Nacional Autonoma de México.

2. THE SUBGROUP GENERATED BY INVOLUTIONS

Let M(F,) denote the mapping class group of a closed orientable surface
F, of genus g > 2. Let I(F,) denote the subgroup of M(F,) which is
generated by involutions. We wish to describe I(F,) as a subgroup of
M(F,). Clearly I(F,) is a normal subgroup of M(F,). Hence, we shall give
our description in terms of the quotient, M(F,)/I(F,).

We begin by recalling some algebraic facts about M(F,). For a general
introduction to the algebraic structure of M(F,), we refer the reader to [2].

It is a classical fact that M(F,) is generated by Dehn twists about
nonseparating simple closed curves on M. In fact, M(F,) is generated by a
finite number of such twists. The minimum number of twists which is
required to generate M(F,) was given by Humpbhries [5].

|
v ‘ el 2y

FIGURE 1.
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TueoreM (Humphries). M(F,) is generated by the Dehn twists about the
curves Qy, .., d,, and b of figure 1.

Let us denote the Dehn twist about a curve, a, by t,. (We remind the
reader that the sense, right or left, of a Dehn twist is not dependent upon
an orientation of the curve a, but rather upon the orientation of the surface;
t, denotes a right Dehn twist with respect to the given orientation on F.)
Given any element of M(F,), h, we have the following identity:

(1) htah—l - th(a) .

It follows that any two Dehn twists about nonseparating simple closed
curves on F are conjugate in M(F,). As a consequence, H,(M(F ;) is cyclic.
The order of H,(M(F,)) was computed by Powell [8]:

(2) Hl(M(FZ)) = Zio>
(3) H(M(F,) =1, if ¢g=3.

Due to the peculiar nature of genus 2, we shall need more precise
information concerning involutions in M(F,). It is a consequence of a theorem
of Nielsen (cf. [7]) that every involution in M(F,) is represented by an
involution of F,. Hence, we need only describe involutions of F, .

There are two obvious such involutions. First, there is the hyperelliptic
involution, i, with six fixed points which is depicted in figure 2 as a rotation
by 180 degrees about the horizontal axis.

FIGURE 2.

Let us denote the Dehn twist along a; by t,. From equation (1), we

see that i commutes with ¢, t,,t5,t, and ¢,. Hence, i is a central element
of M(F,).
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The following identity was established by Birman [2]:
(4) l = t1t2t3t4t§t4t3t2t1 .

Secondly, there is the involution, s, with two fixed points, obtained by a
rotation about the vertical axis as in figure 3.

J
il
|

We shall also need to express s as a product of Dehn twists. We thank
Roger Tchangang Tambekou for explaining the technique used below for
finding such an expression.

LemMa 1. We have
S = t3t2t4t3t2t4tltbt2t4t3t2t4t1tb .

Proof. Since s commutes with i, it induces a map, s, on the quotient
orbifold of F, by the action of i, N. N is a sphere with six distinguished
points of index 2, as in figure 4.

The map, s, 1s again a rotation. In particular, it fixes the point P
which is indicated in figure 4. Hence, we can isotope s' in a neighborhood
of the disk D (again indicated in figure 4). This isotopy lifts, in an obvious
way, to M,. Hence, we may assume that s' fixes the disc D pointwise.
Therefore, we may consider s’ as a map of a six-punctured disc fixing the
boundary. In other words, s’ is a braid. It is easy to see that the corres-
ponding geometric braid is that depicted in figure 5.
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FIGURE 4.

Hence, in terms of the standard braid generators, we have

(5) S = §35,54535,545155525453525451S5 .

As explained in [3], the braid generators s,,s,, S3,5, and ss lift to
ti,ty,t3,t, and t, respectively. Hence, we see that h is a lift of s. It

FIGURE 5.
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follows that s is equal to h or hoi. Since i acts on H,(F,,Z) as —Id,
we may decide which of the two inequalities holds by considering the action
of s and of h on H,(F,,Z). We leave it to the reader to verify that s
and h have the same action on H(F,, Z). This completes the proof of
lemma 1.

We shall now show that every involution of F, is equivalent to either i
or s.

LEMMA 2. There are exactly two conjugacy classes of involutions in
M(F,), the classes of i and of s.

Proof. By equation (1) above, st;s™! = t,.

Hence, s is not in the center of M(F,). Since i is central, i and s
represent distinct conjugacy classes in M(F,).

It remains to see that all involutions in M(F,) are conjugate to either i
or S.

Hence, suppose t is an involution in M(F,). Let t also denote a
representative involution of F,. Of course, the orbit space of F, under the
action of gp(t), N, is the base space of a branched covering with total space
F, . Hence, by the Riemann-Hurewicz formula, we have the following identity:

(6) 2AX(N)—b)) = X(F;) — b
where X denotes Euler characteristic,
b = number of branch points in N,
and b’ = number of branch points in F, .

Since this is a two-fold branched cover, we know that b" is equal to b.
Hence, if we denote the genus of N by g, we obtain the formula:

(7) 6 =49 + b
From this, we obtain precisely two solutions:
(8) (g=0, b=06) or g=1,b=2).

Now, we know that the branched cover is a regular branched cover.
Hence, it is determined by a representation of m,(N\o) onto Z,, where
is the set of branch points.

By the definition of a branch point, we know that the representation
must be nontrivial on loops encircling a branch point.

Suppose that g is zero. Since m,(N\o) is generated by such loops, there
is only one such representation. Hence, t must be topologically conjugate to i.

BN
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Now suppose that g is one. N\c is a twice-punctured torus. The
representation of the group m;(N\o) onto Z, factors through H,(N\o, Z,)
which is a free Z,-module with basis (x, y, z) given by the loops depicted
in figure 6.

FIGURE 6.

Hence, there are four possible representations, given the previous
restrictions:

9) 1) (x,3,2) — (0,0,1)

(
(1) (x,v,z) — (1,0,1)
(1i1) (x,y,z) — (0,1, 1)
(iv) (x,y,z) —» (1,1,1).
It suffices to show that these representations are topologically equivalent.
There is an homeomorphism, f, as depicted in figure 7, which acts as
follows:

(10) fi(x,y,2) —» (x,y+z2).

FIGURE 7.
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Hence, (i) and (iii) are equivalent representations, and (i) and (iv) are
equivalent representations. In a similar manner, by “pulling x over the
puncture z”, we see that (i) and (ii) are equivalent. Hence, all four repre-
sentations are topologically equivalent.

It follows, as in the genus zero case, that t must be topologically
conjugate to s. This completes the proof of lemma 2.
Let p be the abelianization map given by Powell’s result:

(11) p:M(F,) — Z,
ty, — 1, d nonseparating .
From equation (4) and lemme 1, it follows that
(12) pi) =1, p(s) =5.

From lemma 2, it follows that p(I(F,)) is the subgroup of Z,, which is
generated by Z;.

‘r S
FIGURE 8.

For surfaces of even genus, s will continue to denote an involution
with two fixed points as in figure 8. For surfaces of odd genus, s will
denote an involution with four fixed points as in figure 9.
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~

s

FIGURE 9.

We are now prepared to give the promised description of I(F,).

THEOREM 1.

(a) I(F,) is normally generated by s for all g = 2.

(b) M(F,)/I(F;) = Zs.

(c) M(F,)/I(F,) =1, forall g¢g=> 3.

Proof. Let ¢ denote the curve depicted in figure 8 or in figure 9,
depending upon the genus, g. Let £ be the normal closure of s. We begin
by showing that M(F,)/Z is cyclic.

Let t; denote as before the Dehn twist along the curve g;.

By equation (1), we conclude that:

(13) tctfl = (Stlshl)tfl = S(tlstl_l) ,

and this is an element of X.
For any j with 3 <j < 29, we may construct a homeomorphism, h,
which takes (a;, ¢) to (a,, a;). By applying equation (1), we conclude that:

(14) ti;teX forall 3<j<2g.
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By the same reasoning, we deduce that:
(15) tileX,
(16) tyleX.

Hence, Humphries’ generators are all conjugate modulo X. This implies
that M(F,)/Z is cyclic.

If the genus is greater than 2, equation (3) implies that X = M(F,).
Since X is contained in I(F,), we see that ¥ = I(F,) = M(F,). Hence,
theorem 1 is true for genus greater than two.

Now suppose that the genus is two. By equation (12), we conclude that i
belongs to X. By lemma 2, it follows that £ = I(F,). On the other hand,
by equation (12), we conclude that

M(F,)/E = Z. .

This establishes theorem 1 for genus two.
This completes the proof of theorem 1.

3. THURSTON’S CLASSIFICATION OF MAPPING CLASSES

The Teichmiiller space of F, denoted by T, is the space of hyperbolic
metrics on F up to isometry. It has a natural topology and is homeo-
morphic to an open ball of dimension 6g— 6+ 2b, where g is the genus of F
and b the number of its boundary components.

Thurston’s boundary of T 1s the space of projective classes of measured
foliations on F.

A measured foliation is a foliation with isolated singularities of a special
type (p-prong singularities, where p is any integer > 2, see figure 10),
with a measure on transverse segments which is a Lebesgue-measure, and
which is invariant by isotopy of the segment keeping each point on the
same leaf.

There’s an equivalence relation between measured foliations, generated by
isotopy and the operation of collapsing a leaf connecting two singular
points. MF denotes the space of equivalence classes.

There’s a natural action on MF by the positive reals; PMF is the
quotient projective space. PMF 1s homeomorphic to a sphere of dimension |
6g—7+2b which constitutes, by Thurston’s work, a natural boundary for
Teichmiiller space. M(F), The mapping class group of F, acts continuously
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N

Figure 10.

on the closed ball T u PMF, and Thurston’s classification of the elements
of M(F) can be formulated in terms of this action.

If an element of M(F) has a fixed point in T, then it is of finite
order, i.e. there is an integer n such that the n-th iterate of that element is
the class of the identity. In fact, there is a representative of this element
which is globally periodic of order n, and which is an isometry of the
hyperbolic metric corresponding to that fixed point in T.

If an element of M(F) does not have a fixed point in T, then by the
Brouwer fixed-point theorem it has a fixed point in PMF.

There are two cases: either this point is the equivalence class of a
foliation which has no closed cycles of leaves, and then this element 1s of
pseudo-Anosov type, and can be represented by a homeomorphism of the
surface which preserves a pair of measured foliations, acting as an expansion
with respect to the transverse measure of one of them, and a contraction
with respect to the other, or the fixed point in PMF is the class of a
foliation which has a cycle of leaves; in this case the map is said to be
reducible. There’s an isotopy class of a (nonnecessarily connected) simple
closed curve on M which i1s preserved by this mapping class, and the
mapping class naturally splits into components.

We refer to [1] or [4] for the details of this classification.
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4. PRODUCTS OF INVOLUTIONS

Let s; and s, be two involutions. We are interested in the type of the
element s; os,. This type will be seen to depend upon the intersection of
the two sets Fix(s;) and Fix(s,), where Fix(s;) denotes the fixed point set of
s; in the closed ball T U PMF.

THEOREM 2.

(1) s, o5, is of finite order if and only if Fix(s;) and Fix(s,) have a
common point in T.

(i) Suppose that s, s, is not of finite order. If Fix(s;) n Fix(s,) # @,
then s, o5, is reducible.

(i11) s; oS, is pseudo-Anosov if and only if Fix(s,) and Fix(s,) have
empty intersection.

Proof. (1) If s; and s, have a common fixed point in T, then s; o5,
also fixes this point and is therefore of finite order (cf. [4]).

For the converse, suppose that s;os, 1s of finite order. Then by
([2], remarque p. 67), there is a point m in Teichmiiller space such that m
is fixed by s; ¢ s,.

The mapping classes s; and s, being involutions, we have s,(m) = s,(m).

Now Teichmiiller space has a metric, the Teichmiiller metric (cf. [1]),
for which the mapping class group acts by isometries. By Teichmiiller’s
theorem, any two points in T can be joined by a unique geodesic. Each of
the mapping classes s; and s, interchanges the points m and s,(m). Therefore,
s; and s, fix the point which i1s at equal distance from m and s,(m),
on the Teichmiiller geodesic joining these points.

(11) Let F be a common fixed point of s; and s, in PMF. There exist
two positive real numbers x; and x, such that if f is an element of MF
in the class F, then s,(f) = x;. f and s,(f) = x,. f.

As s, and s, are of finite order, we have x; and x, = 1,50 s; © $,(f) = f.
By ([2], exposé¢ 9, §III et IV), either s, os, is of finite order or it is
reducible.

(ii1) Suppose that Fix(s;) n Fix(s,) is empty. By (i), s; ¢ s, is not of finite
order. Suppose that it is reducible, and let C be the element of MF
corresponding to the class of the reducing curve. We have s,(C) = s,(C).
Let C, denote the equivalence class s;(C).
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Let C and C, be two simple closed curves on F representing respectively
the classes C and C,, in such a way that C and C, are in a position of
minimum-intersection number.

Consider a neighborhood of the union of C and C,; obtained by taking
the union of a thin tubular neighborhood of each of these curves, and let
C, denote the collection of those boundary curves of this neighborhood which
are not null-homotopic.

Suppose first of all that C, is not empty. Then we have 5,(C,) = C,
and s,(C,) = C,. (To see this, one can represent s; (respectively s,) by an
isometry of some hyperbolic metric, and then consider the geodesics g and
g, in the classes of C and C,. The isometry preserves the geodesics union
g U g, and therefore it preserves an imbedded e-neighborhood of that subset,
and the boundary of the neighborhood). In this case, s; and s, have a
common fixed point in PMF.

Suppose now that C, is empty. We have s; o 5,(C) = C and s, © 5,(C;)
= C,, and C and C, have the property that for any element F in MEF,
we have either i(F, C) # 0 or i(F, C;) # 0.

By assumption, s, o s, is reducible. Let n be an integer s.t. the map
(s{ s,)" preserves each component of the surface F cut along the reducing
curve.

The mapping class (s, o s,)" cannot have any pseudo-Anosov component,
since if 1t had one, and if F" denotes the class of the unstable foliation
of that component, we have either i(F", C) # 0 or i(F", C,;) # 0. By the
dynamics of a pseudo-Anosov (component) map on measured foliations space,
the two classes of curves cannot be fixed by s, cs,. Therefore, s; s,
cannot have pseudo-Anosov components.

So (s; o s,)" has only finite order components.

By the same argument, (s; o s,)" cannot have a non-trivial Dehn twist
along a component of its reducing curve.

Therefore, s, o s, has only periodic components with no non-trivial Dehn
twists along the reducing curve, so it is globally periodic, i.e. of finite order,
a contradiction.

We conclude that s, o s, is pseudo-Anosov. This proves theorem 2.

5. REMARKS AND EXAMPLES

1. We can easily classify now the structure of the group generated by two
involutions:
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Given the two involutions s; and s, of M(F), the subgroup G they
generate 1s an order-2 extension of the cyclic subgroup generated by
S; o S,. The elements of G that are not in that subgroup are all conjugate
to s; or s,. If s; and s, have a common fixed point in T, the subgroup
that they generate is finite. Otherwise, it is isomorphic to the infinite
dihedral group Z, * Z,.

2. In closing, we wish to point out that all three cases of Theorem 2
do in fact occur in every genus: To see that s, s, can be of finite order
we can take s; to be an horizontal rotation as in figure 2 and s, to be a vertical
rotation as in figure 3. Since these rotations commute, s, © s, is an involution.
(This example obviously generalizes to genus greater than two.)

To see that s, os, can be reducible of infinite order, we can take s,
to be a vertical rotation as in figure 3 and let 5, = s, 0, ot, }. Now s,
1s an involution by equation (1):

(17) (52)> = syotyotytosjotyotyt = tyotytotyot, b = 1.

Moreover, s; o5, = t; ot, ' — 1 which is a reducible map of infinite order.
(Again, this example obviously generalizes to higher genera.)

To see that s; os, can be pseudo-Anosov we can make a similar
construction. Let s; be an involution. Suppose that A is a family of disjoint
nontrivial simple closed curves. Let B = s,(4). Now suppose that 4 and B
fill up F. Let t, be the product of the Dehn twists about the components
of A and ty be the corresponding product associated to B. Let s, = s,
ot,otgt. As in the reducible case just described, s, is an involution.
Furthermore, s; 0S5, = t,otg', which is a pseudo-Anosov map by an
algorithm of Long’s [6] generalizing Thurston’s algorithm described in [4].
An example of this construction of case (iii) of Theorem 2 is depicted in
figure 11, where s; is again the vertical rotation. (Again, this example easily
generalizes.)

Alternatively, one can give a nonconstructive argument as follows. Let s;

be a vertical rotation as in figure 3. Since s{(a;) = b, we know that s,
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B={b ,b ,b }
1 2 3

FIGURE 11.

is not in Fix(s;). On the other hand, Fix(s;) is clearly a closed set.
Hence, we may find an open neighborhood of a; in T U PMF, U, such that U
avoids Fix(s;). Now, we may find a pseudo-Anosov, f, both of whose fixed
points lie in U. (For example, this can be acheived by conjugating any
given pseudo-Anosov by a sufficiently high power of ¢, .) Since Fix(s,)
is a compact set which avoids the repelling fixed point of f, it follows from
the well known behavior of pseudo-Anosov maps on T u PMF that
f"(Fix(s,)) is contained in U for sufficiently large n. Choose n subject to this
condition and let s, = f"os, o f~" Finally, since Fix(s,) is equal to
f(Fix(s, )), it follows from Theorem 2 that s, o s, is pseudo-Anosov.
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