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AN ELEMENTARY ACCOUNT OF SELBERG’S LEMMA

by Roger C. ALPERIN

A basic result in the theory of linear groups which is of great utility
in algebra and topology is known as “Selberg’s Lemma”. This lemma is
both a generalization of earlier results of Minkowski on congruence subgroups
of GL(Z) and also of Burnside’s Theorem (Corollary 3 below) which
suggested the famous Burnside Problem [H].

SELBERG’S LEMMA. A finitely generated group of matrices over a field
of characteristic zero has a torsion free subgroup of finite index.

In fact, Selberg’s Lemma follows easily from the theorem below where
we let A be the finitely generated ring containing all the entries of the n
by n matrices of the given finitely generated group. We present an
“elementary” proof of this theorem using basic results from field theory and
algebraic number theory. With deeper results from ring theory the theorem
can be extended further [W].

For convenience we include a discussion of the important notion of
residual finiteness. Roughly speaking, a group is residually finite if there are
lots of finite quotients; more precisely, we say a group G is residually
finite if for each element g # 1 there is a finite homomorphic image H,
so that the image of g in H, is not the identity.

THEOREM. The group of matrices G = GL,(A), for a finitely generated
integral domain A, is residually finite. If A is of characteristic zero
then G contains a normal subgroup of finite index which is torsion free.
If A is of finite characteristic then G contains a normal subgroup of
finite index in which every element of finite order is unipotent.

Proof. The quotient field of A is a finitely generated field F which is a
finite algebraic extension of degree k over the purely transcendental field
K = P(xy, X5, .., X,) where P is the prime field, Q or F,. By expressing
the finite set of generators of A4 in terms of the basis for F over K we
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see that the coefficients involve certain “denominators” which are elements
in a finitely generated ring B. In the characteristic zero case we may take
B = Z[1/s] [xy, x5, ... Xm, 1/f] for suitable integer s and polynomial f,
while in the characteristic g case, B = F [x, X5, ... X,,, 1/f].

Now if V' is an n-dimensional vector space over F we can use the natural
representation

Endp(V) — Endg(V)

to get another representation of our group; by considering V = F" we
obtain an injective homomorphism

thus p(G) is a group of N(=nk) by N matrices with entries in the purely
transcendental field K. Furthermore, the homomorphism p represents the
group GL,(A) as a subgroup of GLy(B). Thus, in order to prove this
theorem we shall demonstrate it for G = GLy(B).

We first show that G is residually finite. For a non-identity element ¢
of GLy(B) there is a non-zero entry w(x;, X,, .., X,,, 1/f) in the matrix
g — 1. In the characteristic zero case choose a prime p not dividing s
so that mod p not all the coefficients of w are 0. Now choose a sufficiently
large integer v so that u = f*w is a polynomial in x,, X,, ..., X,,; choose a
substitution of elements a,, a,, .., a,, from the algebraic closure of the finite
field F,,r = p or g (finite characteristic) so that u(a,, a,, ..., a,) # 0 and thus
w(ay, ay, .., am, 1/f(ay, a5, .., a,)) # 0. Thus the kernel b of the homo-
morphism

n:B — FJla,,a,, .. a,)
is a maximal ideal of finite index; consequently, the induced homomorphism
IT: GLy(B) — GL(B/b)

has finite image and Il(g) # 1.

We proceed with the rest of the proof by separating the cases of zero
characteristic and finite characteristic. In both cases we show first that the
torsion has bounded exponent.

Characteristic zero. Consider an element g of finite order o in G;
g satisfies the polynomial x* — 1 for some integer o # 1. It follows that the
minimal polynomial of g has distinct roots since the field has characteristic
zero; furthermore, the eigenvalues are roots of unity. Since the coefficients
of the characteristic polynomial of g are the symmetric functions in its roots
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(of unity) these coefficients are algebraic integers in K = QX1 , Xg s ey Xpy)-
Consequently, the trace of an element of finite order in G is an integer
and moreover its absolute value is less than or equal to N; thus, there
are only a finite number of traces of these elements of finite order. Denote
this set of traces as T. (In fact, if p® is the highest power of p dividing o
then @(p°) < N, where @ is Euler’s totient function.)

Consider a prime number p which does not divide the integer s, the
coefficients of the polynomial f and the non-zero integers t — N for any ¢
in T: there are an infinite number of such primes. Let Q, denote the
algebraic closure of the field with p elements. Consider a homomorphism
c: A — Q, obtained by extending the natural reduction mod p on Z[1/s]
by sending x; to a; in Q, where f(a;,a,, .., a,) # 0. This is possible since
Q, is an infinite field. It follows from this construction that o(4)
= F,(a;, a,, .., a,) is a finite field; thus kernel (c) = a is a maximal 1ideal
of finite index in A.

The natural homomorphism X: GLy(A) —» GLy(A/a) has kernel G(a), the
congruence subgroup of level a, which is of finite index. The trace of any
element of G(a) is equal to N mod a. Consider now the subgroup
Gy, = G n G(a); it is of finite index in G. Furthermore, any element g
of G, of finite order has trace (g) = t, for t in T, and also since g is in
the congruence subgroup of level a, trace (9 = N mod a. Thus t — N
is an integer which reduces mod a to O and thus p divides t — N;
hence, it follows from our choice of p that t = N. Since the minimal
polynomial of g has distinct roots it follows that g is diagonalizable, and
finally, since its trace is N, g = 1. Thus G, is a torsion free subgroup of
finite index in G and the characteristic zero part of the theorem is proved.

Finite characteristic. Any eigenvalue A of an element of finite order in
GLy(B) is algebraic of degree less than or equal to N over the prime field F,
and thus A lies in the finite field with r = ¢" elements; consequently
A~ = 1. Hence, there is a bound on the order of the torsion elements of G.
For convenience we now adjoin all the (r—1)st roots of unity to F,
to obtain a larger ring C = F,[x, X;, ..., X,,, I/f]. In this way we have
represented G = GLy(B) as a subgroup of GLy(C) so that the eigenvalues of
all elements of finite order in G are in F,.

Let ¢ be any maximal ideal of C of finite index; such an ideal is
obtained as the kernel of a homomorphism which specializes x; to a;
in Q, so that f(ay, a,, .., a,) # 0. Now, the characteristic polynomial of an
element of finite order in G(c) = ker(GLy(C)—GLy(C/c)) is (x—1)¥ mod c;
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therefore since any eigenvalue A of an element of finite order in G(c)
satisfies this characteristic polynomial, (A—1)¥ is in c¢. Since this ideal is
maximal it follows that A — 1 is in ¢. However, A is algebraic and hence
also A — 1; therefore A — 1 is in F, n ¢ which is 0. Therefore all the
eigenvalues of an element of finite order in G(c) are 1 and this means that
any element of finite order in G(c¢) is unipotent. Hence, the subgroup
Gy = G n G(c) satisfies the conclusion of the theorem.

COROLLARY 1. A finitely generated group G of matrices over a field F
is residually finite. If F is of characteristic zero then G contains a normal
subgroup of finite index which is torsion free. If F is of finite characteristic
then G contains a normal subgroup of finite index in which every element
of finite order is unipotent.

The proof of this corollary follows immediately from the theorem and the
remarks preceeding it.

COROLLARY 2. The torsion subgroups of a finitely generated linear group G
are finite; moreover, in characteristic zero, these finite groups have bounded
order.

Proof. We may assume that the group G is a finitely generated subgroup
of GL,(A) where A is a finitely generated domain. Choose the normal
subgroup M of finite index in GL,(A) so that it satisfies the conclusion of
the theorem. Let My, = G n M, and G, = G/M,. Suppose that H is a
torsion subgroup of of G. In characteristic zero, we see that H n M = (1)
so #|H| < #|Gy|. In finite characteristic H n M 1is contained in a
finitely generated group of unipotent matrices. This finitely generated
unipotent subgroup is solvable (also nilpotent) and torsion; consequently,
by an easy induction on the solvable length, we see that it’s finite. Hence,
also, the torsion subgroups are finite.

Note. It follows easily, by similar reasoning, that the finite subgroups
of GL,(A) have bounded order in case A has characteristic zero.

CorOLLARY 3 (Burnside’s Theorem). A finitely generated torsion group of
matrices over a field is finite.

The proof of this corollary follows immediately from Corollary 2.

We thank M. Feighn for a critical reading of an earlier version of this note.
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