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TRISECANTES DES SURFACES ALGEBRIQUES 9

puisque X est supposé intersection de quadriques. L’exemple le plus simple est
évidemment le volume X intersection compléte de quatre quadriques, ou I'on
trouve ainsi 512 droites (ce qu'on vérifie directement dans G(1, 7)).

De méme, si X = P% est un tel volume, le degré de la surface reglee
formée des droites dans X est donné par tg(V) ou V = X n #; comme
précédemment. '

Premiére partie: P*

I) RAPPELS ET DEFINITIONS; SCHEMAS X ET X,

19 Hilb* P¥, Al* PY ET FORMULES k-SECANTES
On rappelle rapidement les notions introduites dans [24] et [25].

a) Le corps de base est algébriquement clos de caractéristique nulle; on se
place sur C pour la commodite.

Si Hilb* PY désigne le schéma de Hilbert [10] des k-uplets de PY
(sous-schémas de dimension O et longueur k), on désignera par Hilb} PY
I'ouvert formé des k-uplets curvilignes c’est-a-dire situés sur une courbe
non-singuliére. L’ouvert Hilb* PV est en général non dense [15], mais en tout
cas non-singulier [24] de dimension Nk. Il contient 'ouvert Hﬂb’; PV des
k-uplets formeés de points distincts comme ouvert dense.

Les k-uplets de PN qui sont sous-schémas d’une droite, appelée axe
du k-uplet, sont dits alignés. Ils forment une sous-variété¢ non-singuliére
de dimension 2N + k — 2, notée A* P", de Hilb* PY. On a une fibration
naturelle, au-dessus de la grassmannienne des droites:

Axe: AFPY - G(1, N)

qui 4 un-k-uplet aligné fait correspondre son axe. La fibre-type est
Hilb* P! ~ Pk,

Exemples et notations. Un doublet est toujours aligné. Si (x, y) sont les
coordonnées de C?, le triplet d’idéal (x2, xy, y*) n’est pas curviligne; le triplet
d’idéal (x3, y+x?) est curviligne mais non aligné. On notera — un doublet
de support réduit a un point. Un triplet curviligne de support réduit 4 un

: .3 . . 3
point sera noté “ et s§'il est aligné, on le notera . Remarquons par

exemple que le quadruplet — — est aligné, mais celui-ci: — T ne Test
pas, bien qu’évidemment le réduit associé le soit!
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b) Définissons maintenant le cycle des k-sécantes d’une surface de PV,

Soit S = PY une surface et i: AI* PY ¢, Hilb* P¥ TIinjection canonique.
Comme Hilb* § s’identifie & un sous-schéma de Hilb* P¥ (par exemple [8]),
notons Hilb* S la trace de Hilb* S sur Hilb* P. Le cycle associé [Hilb¥ S]
de Hilb* PV est de dimension 2k et donc le cycle

i* [Hilb* S

appartient & A*V~2(A4[* PY) ou A" désigne Panneau de Chow, gradué par la
codimension. Soit Z un cycle fixé dans AI* P, de dimension complémentaire.
On appellera formule k-sécante pour S dans PV, une formule donnant le degré
d’un O-cycle Z.i* [Hilbk S lorsque le cycle Z est fixé.

Exemple. N = 4, k = 4; dans ce cas Z doit appartenir a A*(Al* P%).
Un exemple de formule quadrisécante pour les surfaces de P* est donc:
les quadrisécantes rencontrant une droite fixe. Dans ce cas, on prend
Z = Axe*o ou o€ A*(G(1, 4)) est le cycle de Schubert des droites coupant
une droite fixe. -

Dans la suite de cet article, on ne s’intéressera qu’aux formules tri-
sécantes pour une surface. On renvoie a [28] pour les autres cas.

2°) PLATITUDE ET EQUIVALENCE RATIONNELLE

La proposition 1 démontrée dans ce paragraphe est le ceur de larticle.
Elle permet de remplacer Hilb* S par Hilb* X, .

a) Comme d’habitude, si ¥V est un sous-schéma du schéma H, on désigne
par [ V] le cycle associé. Commengons par montrer le

LemMeE 1. Soit U wun ouvert de C contenant 0 et 1 et soit
U= U - {0}. Soit H un schéma.
On se donne un sous-schéma réduit Z de H x U quon suppose

plat sur U; soit Z son adhérence dans H x U. Si la fibre Z, est
génériquement réduite, on a I'équivalence rationnelle dans H :

[21] ~ [Zo] = [(Zo)red]-

Preuve. Vu ([14], prop. 1.4) et ([11], 1.9.5.9 et 1.9.5.10), Z est l'unique
sous-schéma relatif de H x U, plat sur U, dont la restriction a U est Z.
(De plus Z est réduit). Par définition de I'équivalence rationnelle, vu la
platitude de Z sur U, on a [Z,] ~ [Z,]. Mais Z, = Z, et [Z,] = [(Z)redl
par hypothése, ce qui démontre le lemme.
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Donnons maintenant une définition:

Définition 1. Soit U un ouvert de C et soit X/U un schéma relatif.
On dit que X/U est k-plat si le schéma de Hilbert relatif

Hilb* X/U
est plat sur U et réduit.

Remarque 1. Le cas le plus évident, qui nous intéressera principalement,
est celui ou X/U est isomorphe a un produit F x U. Dans ce cas, on a
lisomorphisme Hilb* X/U ~ (Hilb* F) x U. Ce schéma relatif étant un
produit, est plat. Il suffit donc de supposer Hilb* F  réduit, ce qui est
toujours le cas si F est non-singulier (car alors Hilb* F est aussi non-
singulier) ou bien si F est une surface a singularités ordinaires de P*
(voir Annexe 1).

On peut de maniere analogue montrer le

LemMme 2. Si X/U est un schéma relatif lisse, le schéma relatif
Hilbf X/U est également lisse, donc plat et réduit. Ainsi X /U est k-plat.

Preuve. Soit m: X — U la projection et x un point de X. Il existe
un voisinage ¥~ (disons transcendant) de x et un isomorphisme ¥~ > U’ x F
au-dessus d’un voisinage U’ de m(x), ou F est non-singulier. Alors on a
Hilbf v'/U’" ~ (Hilbk F) x U’; or Hilb* F est non-singulier, d’ou la lissité.

b) Nous pouvons maintenant énoncer et démontrer la

ProposITION 1. Soit U un ouvert de C contenant 0 et 1 et soit
U=U-— {0} Soit H = Hilb* P¥.

Soit X/U wun sous-schéma relatif de PN x U. On suppose

a) tout k-uplet curviligne dans la fibre X, est limite de k-uplets curvilignes
dans des fibres X,, avec N # 0, de X/U;

b) Hilb¥ X, est génériqguement réduit :
c) le schéma relatif X/U est k-plat (déf. 1).

Alors on a Péquivalence rationnelle dans Hilb* PV :
[Hilb; X, ] ~ [(Hilb! X,),.q] = [Hilbf X,] .

Preuve. Considérons le schéma relatif Z/U = Hilbk X/U. Par Fhypo-
thése c), Z est plat sur U et réduit. D’autre part Z est contenu dans le
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schéma relatif Hilb¥ X/U et ce dernier est fermé dans Hilb* PV x U. Par
définition de I’'adhérence, on a donc 'inclusion

7 < Hilb* X/U .

C’est une inclusion de schémas puisque Z est réduit. On en déduit 'inclusion de
schémas entre les fibres:

(1) Z, < Hilbk X, .

Maintenant lhypothése a) signifie précisément linclusion (Hilb¥ X),.q = Z.
Comme (Hilb* X,),.q est contenu dans la fibre en 0 de HilbfP" x U,
on a donc I'inclusion

(2) (Hﬂb’cc X0)rea < Z_o .
On a donc montré
(3) (Hilb¥ X ),.qa © Z, < HilbF X, .

Or I'hypothése b) assure que Hilb* X, est génériquement réduit; donc Z,,
aussi, d’apres (3). Les hypothéses du lemme 1 sont donc satisfaites pour Z
et 'on a ainsi, vu (3):

[Z,] ~ [Z,] = [Hilb; X,] = [(Hilb{ X)real -

Or par définition méme, Z, = (Hilb* X/U), = Hilb* X,. La proposition 1
est donc démontrée.

¢) Nous allons donner pour linstant comme application de cette proposition,
un corollaire technique qui peut étre sauté en premiere lecture. Par singu-
larités ordinaires d’une surface S’ dans P® nous entendons uniquement
croisements normaux, points-triples et points-pince.

PROPOSITION 2. Soit S < P3 une surface a singularités ordinaires,
de degré n. Alors pour tout cycle K dans A (AI® P3), de dimension 3,
le degré du O-cycle

K.i* [Hilb? §']

n n
an + a, <2> + a, (3)

ou a,,a,,as sontdes constantes ne dépendant que de K.

est de la forme
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(Comme toujours, i: Al P* ¢ Hilb? P? désigne I'injection canonique.)
Remarquons que Hilb> S’ est génériquement réduit par I'Annexe 2: §' n'a
que des singularités ordinaires.

Preuve. Soit M la réunion de n plans en position générale dans P°,
tous transverses a S'. Soit f, une équation de S’ et f, une équation de M.
Considérons le sous-schéma relatif X/C de P*? x C défini par I’¢quation

A=2)fo + Af2 =0

ou A parcourt C. On a bien sir X, = §' et X, = M. Soit U Touvert
maximal de C tel que X/U soit lisse au-dessus de U. Il est non vide et
on peut toujours supposer que 1 lui appartient. Le schéma X/U est k-plat
car il est lisse (lemme 2).

Soit Uy, = U v {0} et U, = U v {2}. Les lemmes 10 et 11 de ’Annexe 2
montrent que les hypothéses a) et b) de la proposition 1 sont vérifiées:
en effet localement au-dessus d’un voisinage de 0 ou 2, le schéma relatif X
est isomorphe aux schémas relatifs ® ou Il des lemmes 10 et 11. Cela
resulte de ce que S’ et M n’ont que des singularités ordinaires. On applique
alors deux fois la proposition 1, en remplagant I'une des deux fois 0 par 2
evidemment, et on trouve donc I’équivalence rationnelle:

[Hilbf X,] ~ [Hilb* X,] ~ [Hilb* X,],
solt encore

[Hilbk S'] ~ [Hilb* M].

On s’est donc ramené d montrer la proposition pour la réunion de n plans.
Soit Py, P, ... P, les plans dont la réunion est M soit k, , k, ... k, des entiers
positifs tels que k; + k, + ... + k, = 3etsoit Uy, ,, ., ensemble des triplets
simples ayant k; points sur P;. D’aprés le lemme 10 (Annexe 2) le schéma

(Hilb? M),., admet les adhérences Uk, k,...x, COMme uniques composantes
irreductibles. Appelons « type » d’une telle composante I’ensemble des k;
non nuls. Ainsi (Hilb? M), 4 est formé de

n
<3> composantes irréductibles de type {1, 1, 1},

n
2 ( 2> composantes irreductibles de type {2, 1},

n composantes irréductibles de type {3} .
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De plus, deux composantes irréductibles de méme type sont évidemment
rationnellement équivalentes dans Hilb? P?, comme on le voit en faisant
agir PGL(3) sur les triplets de plans. Ainsi,

n

[Hilb? M] = [(Hilb? M),,] = (;’) A+ (2

)B + nC
ou A, B et C sont trois cycles fixés dans 'anneau de Chow de Hilb? P3;
d’ou le résultat annoncé.

Remarque 2. Le lecteur adaptera sans peine la démonstration pour
montrer que pour tout cycle K € A" (Al P3), de dimension k, le degré du
O-cycle K .i* [Hilb* S'] est de la forme

n n
an + a, <2> + .. + a (k)

ou les a; ne dépendent que de K.

3°) DEFORMATION DE S EN X,; ETUDE DE Hilb* X,

Soit S une surface de P* La définition donnée en 1) des formules
k-sécantes pour S oblige a connaitre la classe d’équivalence de [Hilb} S]
dans ’anneau de Chow de Hilb* P*.

L’idée quon va utiliser est de construire un schéma relatif £/C avec
fibre £, = S, la fibre £, ayant pour réduit la projection §" de S sur un
hyperplan générique H. On essayera alors d’arriver a I'équivalence rationnelle
[Hilb* ST ~ [Hilbk X,] et dutiliser la proposition 1. Considérons maintenant
un schéma F. Si F est non-singulier, I'ouvert Hilb%, F des k-uplets simples
est dense dans Hilb¥ F: car un k-uplet curviligne dans F est aussi contenu
dans une courbe non-singuliére A située sur F; on le déforme alors en k
points simples sur A. (Remarquer par contre que Hilbf F n’est en général
pas dense dans Hilb* F; voir [15]).

Remarque 3. C’est justement la présence de composantes immergees dans
T, (de réduit §') qui fait qu'on a Hilb% X, (ou Hilb% §') non dense dans
Hilb X,. En fait, on verra que Hilbf S’ (qui est I'adhérence de Hilb% S
est seulement une composante irréductible de Hilbf X, lequel scinde en
plusieurs composantes. Et c’est I’évaluation de la contribution de chacune
de ces composantes dans les formules k-sécantes qui constitue I'essentiel de
la démonstration.
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a) Commengons par décrire un proceédé général de déformation d’un sous-
schéma de PV

Soit Z = P¥ un schéma réduit et Z' sa projection sur un hyperplan H
par un point générique . D’apres ([14], prop. 1.4) ou encore ([137, 11, ex. 9.8.3),
il existe un sous-schéma réduit & de PV x C, plat sur C, avec pour fibres
¥, =7 et (Zo)ea = Z. Rappelons pourquoi: On prend pour cela un
systéme de coordonnées homogeénes (Xg:X;:..:Xy) pour lequel H ait pour
équation xy = 0, le point ® étant le point (0:0:..:0:1). Le schéma a la
structure — réduite — de P’adhérence dans P¥ x C de I'image de Z x C*
par le plongement

Z x C* ¢ PY¥ x C*
(o1 Xy Xyopixy), A) o (o1 Xyt i Xyoy P AXy ) A
En général, la fibre Z, posséde des composantes immergées (voir [13], p. 260).

Remarque 4. Si on pose U = C et U = C* le schéma relatif Z/U
est plat puisqu’il est isomorphe au produit Z x U.

b) Appliquons ce qui précéde a une surface S & singularités ordinaires de P*.
On la projette génériquement en S’ sur un hyperplan H. La sous-variété S’
possede une courbe-double I', des points triples M4, .., M, et des points-
pinces P, .., P,. Il s’agit d’abord d’¢tablir la structure nilpotente de Z,,
sachant que (X,),.q4 = S'. Nous pouvons €noncer deux propositions.

ProPOSITION 3. Avec les notations précedentes, on a légalité des sous-
schémas de P*:

o =S uIlMouoMPu..uoMP

ou pour V <= P* V@ désigne le i-éme voisinage infinitésimal de V dans P*
De plus, S" = (X(),eq = Zo O H.

Dans le dessin ci-apres les nilpotents sont dans P*; on a représenté

les doublets (dans P*) par des traits courts et les triplets par des traits
courbés plus longs.

Avant d’énoncer la proposition suivante, donnons une définition. Celle-ci
est motivee par le fait, comme on I'a dit, que pour un schéma quelconque F,
Pouvert Hilb% F n’est en général pas dense dans Hilbf F.

Définition 2. Appelons k-uplet « double » (resp. « triple »), une réunion
disjointe de points simples et de doublets de support un point (resp. points
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S/

simples, doublets de support un point et triplets curvilignes de support un
point).

Alors a défaut de pouvoir déformer tout k-uplet curviligne d’un schéma F
en k-uplets simples, on peut espérer le déformer en k-uplets doubles, voire
triples. C’est justement ce qu’affirme la proposition suivante (en i) pour le
schéma X, .

PRrROPOSITION 4. Soit X/C le schéma relatif associé a une surface a
singularités ordinaires S de P* dont S’ est la projection sur hyper-
plan H.

i) Tout k-uplet curviligne dans X, de support un point-triple {M}, est limite
(pour k=4) de k-uplets triples dans X%, .

Tout k-uplet curviligne dans X, de support un point-pince {P}, est
limite (pour k>=3) de k-uplets doubles dans Z.
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Tout k-uplet curviligne dans Zo, de support un point de la courbe double T
de S', est limite (pour k>=3) de k-uplets double dans X,.

ii) Tout k-uplet curviligne dans X, est limite de k-uplets curvilignes dans des
fibres X, de X/C avec M\ # Q.

iii) Hilb® £, est réduit au voisinage d’un triplet curviligne t de support un

' point-triple {M}, lorsque t & S = (Zg)ea = Zo N H.

Hilb? ¥, est réduit au voisinage d'un doublet d de support un point-
pince {P}, lorsque d & §'.

Hilb? X, est réduit au voisinage d'un doublet d de support un point

- de I', lorsque d & S

Preuves des propositions 3 et 4. 1l s’agit essentiellement, par des calculs
en coordonnées, de se ramener a I’¢tude de modeles locaux pour X,
d’abord au voisinage de la courbe double I', puis d’'un point triple M et
enfin d’'un point pince. Or cette étude pour les modeles locaux a été faite
dans [24]. Voir I’Annexe 3 pour tous les détails de calcul.

II) TRISECANTES DANS P*: LA THEORIE

Soit S une surface de P* a singularités ordinaires. Notons n son degré,
d le degré de la courbe double apparente et t le nombre de points-
triples apparents, dans une projection générique sur un P>.

On regarde le diagramme, ou les fleches sont les injections canoniques
et les dimensions sont entre parentheéses:

9  ABPP* & HiIBEP* (1)
J
Hilb3S  (6).

Le but de ce § II est de montrer la

PROPOSITION 5. Soit S une surface de P* dinvariants (n,d, 1).

Pour tout cycle Z dans AAI* P*), la formule trisécante donnant le degré
du O-cycle Z.i* [Hilb? ST est de la forme
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