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puisque X est supposé intersection de quadriques. L'exemple le plus simple est

évidemment le volume X intersection complète de quatre quadriques, où l'on

trouve ainsi 512 droites (ce qu'on vérifie directement dans G(l, 7)).

De même, si X c= P6 est un tel volume, le degré de la surface réglée

formée des droites dans X est donné par t6(V) où V X n 3 comme

précédemment.

Première partie : P4

I) Rappels et définitions; schémas I et I0

1°) HilbJ PA, Alk PN ET FORMULES k-SÉCANTES

On rappelle rapidement les notions introduites dans [24] et [25].

a) Le corps de base est algébriquement clos de caractéristique nulle; on se

place sur C pour la commodité.

Si Hilbk PA désigne le schéma de Hilbert [10] des k-uplets de PA

(sous-schémas de dimension 0 et longueur /c), on désignera par HilbJ PA

l'ouvert formé des k-uplets curvilignes c'est-à-dire situés sur une courbe

non-singulière. L'ouvert HilbJ PN est en général non dense [15], mais en tout
cas non-singulier [24] de dimension Nk. Il contient l'ouvert Hilbl P^ des

/c-uplets formés de points distincts comme ouvert dense.

Les /c-uplets de PiV qui sont sous-schémas d'une droite, appelée axe
du /c-uplet, sont dits alignés. Ils forment une sous-variété non-singulière
de dimension 21V + k — 2, notée Alk PN, de HilbJ PN. On a une fibration
naturelle, au-dessus de la grassmannienne des droites :

Axe : Alk ~PN G(l, N)

qui à un-/c-uplet aligné fait correspondre son axe. La fibre-type est
Hilbk P1 ~ Pk.

Exemples et notations. Un doublet est toujours aligné. Si (x, y) sont les

coordonnées de C2, le triplet d'idéal (x2, xy, y2) n'est pas curviligne; le triplet
d'idéal (x3, y Ex2) est curviligne mais non aligné. On notera - un doublet
de support réduit à un point. Un triplet curviligne de support réduit à un
point sera noté ^ et s'il est aligné, on le notera Remarquons par
exemple que le quadruplet -> est aligné, mais celui-ci: ^ j ne l'est
pas, bien qu'évidemment le réduit associé le soit
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b) Définissons maintenant le cycle des k-sécantes d'une surface de FN.

Soit S c une surface et i: AlkFN c» HilbJ l'injection canonique.
Comme Hilbfc S s'identifie à un sous-schéma de Hilbfe FN (par exemple [8]),
notons HilbJ S la trace de Hilbfc S sur HilbJ PN. Le cycle associé [HilbJ S]
de HilbJ P^ est de dimension 2k et donc le cycle

i* [Hilbck S]

appartient à Ak(N'2\Alk FN) où A' désigne l'anneau de Chow, gradué par la
codimension. Soit Z un cycle fixé dans Alk PN, de dimension complémentaire.
On appelleraformule k-sécante pour S dans PN, uneformule donnant le degré
d'un 0-cycle Z. i* [HilbJ S] lorsque le cycle Z est fixé.

Exemple. N 4, k 4; dans ce cas Z doit appartenir à Z2(Z/4 P4).

Un exemple de formule quadrisécante pour les surfaces de P4 est donc:
les quadrisécantes rencontrant une droite fixe. Dans ce cas, on prend
Z Axe*a où a g A2(G( 1, 4)) est le cycle de Schubert des droites coupant
une droite fixe.

Dans la suite de cet article, on ne s'intéressera qu'aux formules tri-
sécantes pour une surface. On renvoie à [28] pour les autres cas.

2°) Platitude et équivalence rationnelle

La proposition 1 démontrée dans ce paragraphe est le cœur de l'article.
Elle permet de remplacer HilbJ S par HilbJ £0.

a) Comme d'habitude, si V est un sous-schéma du schéma H, on désigne

par [F] le cycle associé. Commençons par montrer le

Lemme 1. Soit Ü un ouvert de C contenant 0 et 1 et soit
U 0 — {0}. Soit H un schéma.

On se donne un sous-schéma réduit Z de H x U qu'on suppose

plat sur U ; soit Z son adhérence dans H x Ü. Si la fibre Z0 est

génériquement réduite, on a l'équivalence rationnelle dans H :

[ZJ ~ [Z0] - [(Z0)red].

Preuve. Vu ([14], prop. 1.4) et ([11], 1.9.5.9 et 1.9.5.10), Z est l'unique
sous-schéma relatif de H x Ü, plat sur Ü, dont la restriction à U est Z.

(De plus Z est réduit). Par définition de l'équivalence rationnelle, vu la

platitude de Z sur Ü, on a [ZJ — [Z0]. Mais Zx Zt et [Z0] [(Z0)red]

par hypothèse, ce qui démontre le lemme.
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Donnons maintenant une définition :

Définition 1. Soit U un ouvert de C et soit X/U un schéma relatif.

On dit que X/U est k-plat si le schéma de Hilbert relatif

HilbJ X/U

est plat sur U et réduit.

Remarque 1. Le cas le plus évident, qui nous intéressera principalement,
est celui où X/U est isomorphe à un produit F x U. Dans ce cas, on a

l'isomorphisme HilbJ X/U ~ (Hilb* F) x U. Ce schéma relatif étant un
produit, est plat. Il suffit donc de supposer Hilb* F réduit, ce qui est

toujours le cas si F est non-singulier (car alors HilbJ F est aussi non-
singulier) ou bien si F est une surface à singularités ordinaires de P4

(voir Annexe 1).

On peut de manière analogue montrer le

Lemme 2. Si X/U est un schéma relatif lisse, le schéma relatif
Hilb* X/U est également lisse, donc plat et réduit. Ainsi X/U est k-plat.

Preuve. Soit n: X -> U la projection et x un point de X. Il existe
un voisinage iZ (disons transcendant) de x et un isomorphisme V ^ U' x F
au-dessus d'un voisinage U' de tt(x), où F est non-singulier. Alors on a

HilbjU' ~ (Hilb* F) x U'; or Hilbkc F est non-singulier, d'où la lissité.

b) Nous pouvons maintenant énoncer et démontrer la

Proposition 1. Soit Ü un ouvert de C contenant 0 et 1 et soit
U Ü - {0}. Soit H Hilb* P*.

Soit X/Ü un sous-schéma relatif de PN x Ü. On suppose:
a) tout k-uplet curviligne dans la fibre X0 est limite de k-uplets curvilignes

dans des fibres Xx, avec X # 0, de X/U ;

b) Hilb* X0 est génériquement réduit;
c) le schéma relatif X/U est k-plat (défi 1

Alors on a l'équivalence rationnelle dans Hilb* P^ ;

[Hilb* XJ - [(Hilb* 2f0)red] [Hilb* JT0]

Preuve. Considérons le schéma relatif Z/U Hilb* X/U. Par l'hypothèse

c), Z est plat sur U et réduit. D'autre part Z est contenu dans le
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schéma relatif HilbJ X/U et ce dernier est fermé dans Hilb* PN x U. Par
définition de l'adhérence, on a donc l'inclusion

Z c= Hilb* X/Ü

C'est une inclusion de schémas puisque Z est réduit. On en déduit l'inclusion de

schémas entre les fibres :

(1) Z0 cz Hilbc X0

Maintenant l'hypothèse a) signifie précisément l'inclusion (HilbJ X0 )red cz Z.
Comme (HilbJ X0 )red est contenu dans la fibre en 0 de HilbJ PN x Ü,

on a donc l'inclusion

(2) (HilbUoLd <=Z0.

On a donc montré

(3) (HilbJ X0)red cz Z0 cz HilbJ

Or l'hypothèse b) assure que HilbJ X0 est génériquement réduit ; donc Z0
aussi, d'après (3). Les hypothèses du lemme 1 sont donc satisfaites pour Z
et l'on a ainsi, vu (3) :

[ZJ ~ [Z0] - [HilbcfcX0] - [(HilbJ 2f0)red]

Or par définition même, Zx (HilbJ X/U)1 HilbJ Xx. La proposition 1

est donc démontrée.

c) Nous allons donner pour l'instant comme application de cette proposition,
un corollaire technique qui peut être sauté en première lecture. Par
singularités ordinaires d'une surface S' dans P3 nous entendons uniquement
croisements normaux, points-triples et points-pince.

Proposition 2. Soit S' cz P3 une surface à singularités ordinaires,
de degré n. Alors pour tout cycle K dans A* (Al3 P3), de dimension 3,

le degré du 0-cycle

K.i* [Hilb3 S"]

est de la forme

«1« + «2 {^j + Û3 Q
où ax,a2, a3 sont des constantes ne dépendant que de K.
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(Comme toujours, i : Al3 P3 c> Hilbc3 P3 désigne l'injection canonique.)

Remarquons que Hilb3 S' est génériquement réduit par l'Annexe 2 : S' n'a

que des singularités ordinaires.

Preuve. Soit M la réunion de n plans en position générale dans P3,

tous transverses à S'. Soit f0 une équation de S7 et f2 une équation de M.

Considérons le sous-schéma relatif I/C de P3 x C défini par l'équation

où X parcourt C. On a bien sûr X0 S' et X2 M. Soit U l'ouvert
maximal de C tel que X/U soit lisse au-dessus de U. Il est non vide et

on peut toujours supposer que 1 lui appartient. Le schéma X/U est /c-plat

car il est lisse (lemme 2).

Soit ÜQ U u {0} et Ü2 U u {2}. Les lemmes 10 et 11 de l'Annexe 2

montrent que les hypothèses a) et b) de la proposition 1 sont vérifiées:

en effet localement au-dessus d'un voisinage de 0 ou 2, le schéma relatif X
est isomorphe aux schémas relatifs © ou II des lemmes 10 et 11. Cela
résulte de ce que S' et M n'ont que des singularités ordinaires. On applique
alors deux fois la proposition 1, en remplaçant l'une des deux fois 0 par 2

évidemment, et on trouve donc l'équivalence rationnelle :

On s'est donc ramené à montrer la proposition pour la réunion de n plans.
Soit P1, P2 Pn les plans dont la réunion est M ; soit k1, k2 kn des entiers
positifs tels que k1 + k2 + + kn 3 et soit I/fcl>fc2fen l'ensemble des triplets
simples ayant kt points sur Pt. D'après le lemme 10 (Annexe 2) le schéma

(Hilb3 M)red admet les adhérences Uklfk2_kn comme uniques composantes
irréductibles. Appelons «type» d'une telle composante l'ensemble des kt
non nuls. Ainsi (Hilb3 M)red est formé de

(X-2)f0 + Xf2 0

[Hilbc Xo] ~ [HilbJ XJ ~ [Hilb? X2]

soit encore

[Hilbc S'] - [Hilbc M]

J composantes irréductibles de type {1, 1, 1}

2 composantes irréductibles de type {2, 1}

n composantes irréductibles de type {3}



14 P. LE BARZ

De plus, deux composantes irréductibles de même type sont évidemment
rationnellement équivalentes dans Hilbc3 P3, comme on le voit en faisant

agir PGL(3) sur les triplets de plans. Ainsi,

où A, B et C sont trois cycles fixés dans l'anneau de Chow de Hilb3 P3 ;

d'où le résultat annoncé.

Remarque 2. Le lecteur adaptera sans peine la démonstration pour
montrer que pour tout cycle K e A'(Alk P3), de dimension k, le degré du
0-cycle K. i* [Hilb? S"] est de la forme

Soit S une surface de P4. La définition donnée en 1) des formules
/c-sécantes pour S oblige à connaître la classe d'équivalence de [Hilb? S]
dans l'anneau de Chow de Hilb? P4.

L'idée qu'on va utiliser est de construire un schéma relatif Z/C avec

fibre Zjl S, la fibre £0 ayant pour réduit la projection S' de S sur un
hyperplan générique H. On essayera alors d'arriver à l'équivalence rationnelle

[Hilb? S] ~ [Hilb? E0] et d'utiliser la proposition 1. Considérons maintenant

un schéma F. Si F est non-singulier, l'ouvert Hilbfef F des /c-uplets simples
est dense dans Hilb? F : car un k-uplet curviligne dans F est aussi contenu
dans une courbe non-singulière À située sur F ; on le déforme alors en k

points simples sur À. (Remarquer par contre que Hilb? F n'est en général

pas dense dans Hilbfc F; voir [15]).

Remarque 3. C'est justement la présence de composantes immergées dans

Z0 (de réduit S') qui fait qu'on a Hilb^ Z0 (ou Hilb^ 5') non dense dans

Hilb? Z0. En fait, on verra que Hilb? S' (qui est l'adhérence de Hilb?t S')

est seulement une composante irréductible de Hilb? £0, lequel scinde en

plusieurs composantes. Et c'est l'évaluation de la contribution de chacune

de ces composantes dans les formules /c-sécantes qui constitue l'essentiel de

la démonstration.

[Hilb3 M] [(Hilb3 M)red] B + nC

où les a{ ne dépendent que de K.

3°) Déformation de S en Z0 ; étude de Hilb? Z0
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a) Commençons par décrire un procédé général de déformation d'un sous-

schéma de P*\

Soit Z c PY un schéma réduit et Z* sa projection sur un hyperplan H

par un point générique co. D'après ([14], prop. 1.4) ou encore ([13], III, ex. 9.8.3),

il existe un sous-schéma réduit Jf de PlY x C, plat sur C, avec pour fibres

Z et (^o)red Rappelons pourquoi: On prend pour cela un

système de coordonnées homogènes (x0 : xx :... : xN) pour lequel H ait pour

équation xv 0, le point co étant le point (0:0 :... : 0:1). Le schéma a la

structure — réduite — de l'adhérence dans Pv x C de l'image de Z x C*

par le plongement

Z x C* PY x C*

((x0 : x± :... : xN_ ±
: xN), X) i— ((x0 : xx :... : xN_ x. XxiY), X).

En général, la fibre if 0 possède des composantes immergées (voir [13], p. 260).

Remarque 4. Si on pose Ü C et U C*, le schéma relatif FFjU
est plat puisqu'il est isomorphe au produit Z x U.

b) Appliquons ce qui précède à une surface S à singularités ordinaires de P4.

On la projette génériquement en S' sur un hyperplan H. La sous-variété S'

possède une courbe-double F, des points triples M±,..., Mt et des points-
pinces Pl5..., Pv. Il s'agit d'abord d'établir la structure nilpotente de E0,
sachant que (Z0)red S'. Nous pouvons énoncer deux propositions.

Proposition 3. Avec les notations précédentes, on a l'égalité des sous-
schémas de P4 :

S0 S' u r(1) u M[2) u u M{2)

où pour V ci P4, V{l) désigne le i-ème voisinage infinitésimal de V dans P4.

De plus, S' (Z0)red Zö n H.

Dans le dessin ci-après les nilpotents sont dans P4; on a représenté
les doublets (dans P4) par des traits courts et les triplets par des traits
courbés plus longs.

Avant d'énoncer la proposition suivante, donnons une définition. Celle-ci
est motivée par le fait, comme on l'a dit, que pour un schéma quelconque F,
l'ouvert Hilbfcf F n'est en général pas dense dans HilbJ F.

Définition 2. Appelons /c-uplet « double » (resp. « triple »), une réunion
disjointe de points simples et de doublets de support un point (resp. points
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simples, doublets de support un point et triplets curvilignes de support un
point).

Alors à défaut de pouvoir déformer tout /c-uplet curviligne d'un schéma F
en /c-uplets simples, on peut espérer le déformer en k-uplets doubles, voire
triples. C'est justement ce qu'affirme la proposition suivante (en i) pour le

schéma £0.

Proposition 4. Soit E/C le schéma relatif associé à une surface à

singularités ordinaires S de P4, dont S' est la projection sur Vhyper-

plan H.

i) Tout k-uplet curviligne dans E0, de support un point-triple {M}, est limite

(pour k^4) de k-uplets triples dans E0.

Tout k-uplet curviligne dans Z0 de support un point-pince {P}, est

limite (pour k^3) de k-uplets doubles dans £0.
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Tout k-uplet curviligne dans Z0, de support un point de la courbe double T

de S', est limite (pour k^3) de k-uplets double dans E0 •

ii) Tout k-uplet curviligne dans Z0 est limite de k-uplets curvilignes dans des

fibres de L/C avec X # 0.

iii) Hilb3 Z0 est réduit au voisinage d'un triplet curviligne t de support un

point-triple {M}, lorsque t fi S' (£0)red n H.

Hilb2 Z0 est réduit au voisinage d'un doublet d de support un point-

pince {P}, lorsque d fi S'.

Hilb2 Z0 est réduit au voisinage d'un doublet d de support un point
de T, lorsque d fi S'.

Preuves des propositions 3 et 4. Il s'agit essentiellement, par des calculs

en coordonnées, de se ramener à l'étude de modèles locaux pour £0,
d'abord au voisinage de la courbe double T, puis d'un point triple M et

enfin d'un point pince. Or cette étude pour les modèles locaux a été faite
dans [24]. Voir l'Annexe 3 pour tous les détails de calcul.

II) Trisécantes dans P4: la théorie

Soit S une surface de P4 à singularités ordinaires. Notons n son degré,
d le degré de la courbe double apparente et t le nombre de points-
triples apparents, dans une projection générique sur un P3.

On regarde le diagramme, où les flèches sont les injections canoniques
et les dimensions sont entre parenthèses :

(9) Al3 P4 cfi Hilb3 P4 (12)

d

Hilb3 5 (6).

Le but de ce § II est de montrer la

Proposition 5. Soit S une surface de P4, d'invariants (;n,d,t).
Pour tout cycle Z dans A3(Al3 P4), la formule trisécante donnant le degré
du 0-cycle Z.i* [Hilb3 5] est de la forme
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