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250 I. KLEINER

with minimum condition (see sec. VI below). What it left open is important
questions about the structure of nilpotent algebras and division algebras (see

secs. V, VII). It is perhaps fitting to conclude our discussion of Wedderburn's
work with several tributes:

[Wedderburn] was the first to find the real significance and meaning
of the structure of a simple algebra. This extraordinary result has
excited the fantasy of every algebraist and still does so in our day.
(Artin, [6].)

Wedderburn's pioneering work on the structure of simple algebras set
the stage for the deep investigations—often with an eye to applications
in algebraic number theory—in the theory of algebras. (Herstein, [43].)

[Wedderburn's] rational methods struck at the heart of the theory of
algebras, and their influence is felt even to this day... His work neatly
and brilliantly placed the theory of algebras in the proper, or at least
in the modern, perspective. (Parshall, [66].)

V. Interlude

The title is not meant to suggest a lack of activity in the study of algebras

during the first two decades or so of the 20th century. There were simply no
fundamental developments in the period between the work of Wedderburn in
1907 and the works of Artin, Noether et al. in the 1920s. Below we briefly
describe two areas of progress in these intervening years.

(a) Division algebras

As we noted, Wedderburn's structure theorems left unresolved the nature
of division algebras. Knowledge of finite-dimensional division algebras over

a field F was available only in the following three cases:

(i) F R. In this case, as we have seen, there are only three division
algebras over F, namely the reals, complex numbers, and quaternions.

(ii) F - an algebraically closed field (eg. C). In this case Wedderburn
himself showed (in the 1907 paper where his structure theorem appears)

that over such a field there are no division algebras except for the field
itself. As Wedderburn put it:

If the given field is so extended that every equation is soluble, the only
primitive [division] algebra in the extended field is the algebra of one
unit, e e2.
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(iii) F a finite field. Since the algebra is finite-dimensional it must, in fact,

be finite in this case. Wedderburn had earlier (1905) established the

remarkable result that in such a case the division algebra is commutative

(see [81]).l) The division algebra over the finite field F is thus itself a

finite field. Still earlier (1893) E.H. Moore had characterized all finite

fields. This case, then, was also completely solved.

No other examples of division algebras were known at that time (in 1905).

Thus the only "genuine" (i.e. noncommutative) division algebra known was

the quaternions. Dickson noted that the discovery and classification of division

algebras was the chief outstanding problem in the theory of algebras over an

arbitrary field. He then proceeded (in 1905 and 1914) to contribute to its solution

by exhibiting new classes of division algebras over an arbitrary field (see

[26] for details). He also showed that there are infinitely many nonisomorphic

quaternion algebras over the rationals (see [4]). In the 1920s Dickson (and

others) defined the important class of cyclic division algebras. (See footnote
on p. 257 for a definition.) The major step in the study of division algebras

was the description, in the early 1930s, of all division algebras over the field
of rational numbers (see sec. VII).

(b) Definitions of an abstract algebra and an abstract ring
The definition of an "associative algebra" (hypercomplex number system)

throughout the 19th century, and even in the early 20th century (for example,
in Wedderburn's 1907 paper) was that of a system of elements of the form
£ ajCi (ai elements of a field, et "basis" elements), with componentwise addition

and with multiplication of the basis elements given by "structural
constants", obeying certain laws (see p. 238). In 1903 Dickson gave the first more
or less abstract definition of an associative algebra [25]. To him, it is a

System of elements A =» (au a2>..., an) each uniquely defined by n
marks of the field F together with their sequence. The marks ax, an
are called the coordinates of A. The element (0, 0, 0) is called zero
and designated 0. Addition of elements is defined thus:
A + B (ax + b\, a2 + b2, an + bn).

It follows that there is an element D (ax-bXi a2-b2, an-bn)
such that D + B A.
Consider a second rule of combination of the elements having the
properties:

') The theorem, for example, provides the only known proof that in a finite projective
plane Desargues' theorem implies Pappus' theorem. Artin [6] claims that this theorem of

k Wedderburn "has fascinated most algebraists to a very high degree."
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1. For any two elements A and B of the system, A • B is an element
of the system whose coordinates are bilinear functions of the
coordinates of A and B, with fixed coefficients belonging to F.
2. (A • B) - C A • (B • Q, if A - B, B • C, (A - B) - C, A • (B • C)
belong to the system.
3. There exists in the system an element / such that A • / A for every
element A of the system.
4. There exists in the system at least one element A such that
A - Z 0 for any element Z ^ 0.

Dickson then goes on to show that "any system of elements given by [this]
definition is a system of complex numbers according to the usual definition."

This he does by first proving the distributive law and the uniqueness
of the identity element 7. Dickson then proves the independence of these

postulates.
This "abstract" definition of an associative algebra (a coordinate-free,

entirely abstract definition of an algebra was given by Dickson in 1923—see

[28]) was one instance of a general interest by American mathematicians
around this time in abstract, postulational definitions of algebraic systems and,
in particular, in establishing the independence of the postulates of such

systems. For example, definitions of groups were given (between 1901 and

1905) by Huntington, E.H. Moore, Dickson, and Pierpont, and of fields (in
1903) by Dickson and Huntington. These definitions of groups and fields were

entirely abstract (even from our point of view).1) See [8], [10], [12], [49].

In 1914, Fraenkel, in a paper entitled "On zero divisors and the decomposition

of rings" [31], was the first to give an abstract definition of a ring
(cf. p. 2). He gave diverse examples of the concept he was defining, which
included both commutative and non-commutative rings, namely integers
modulo n, hypercomplex number systems, matrices, andp-adic integers. It was

an abstract definition in today's style. Thus Fraenkel defines a ring as "a
system" with two (abstract) operations, to which he gives the names addition
and multiplication. Under one of the operations (addition) the system forms

a group (he gives its axioms). The second operation (multiplication) is

associative and distributes over the first operation. Two axioms give the

closure of the system under the operations, and there is the requirement of
an identity in the definition of the ring. Commutativity under addition does

not appear as an axiom but is proved ; so are other elementary properties of

9 Somewhat earlier (at the end of the 19th Century) we witness the emergence of an
abstract, axiomatic approach in geometry (Pasch, Peano, Hilbert) and arithmetic (Dedekind,
Frege, Peano).
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a ring such as a x 0 0, and a( — b) — a)b — —(ab). There are two

extraneous axioms (dealing with "regular" elements in the ring) which depart

from an otherwise modern definition.

Among the main concepts introduced are "zero divisors" and "regular

elements". Fraenkel deals in this paper only with rings which are not integral

domains and discusses divisibility for such rings. Much of the paper deals with

decomposition of rings as direct products of "simple" rings (not the usual

notion of simplicity).
Fraenkel's aim in this paper was to do for rings what Steinitz had just

(1910) done for fields, namely to give an abstract and comprehensive theory

of (commutative and noncommutative) rings.1) Of course he was not

successful (he does admit that the task here is not as "easy" as in the case

of fields)—it was too ambitious an undertaking to try to subsume the structure

of both commutative and noncommutative rings under one theory. Fraenkel

did, however, delineate the abstract notion of a ring and, in this respect, made

a significant contribution.

VI. Structure of rings with minimum condition

In a fundamental paper of 1927 entitled "Zur Theorie der hyperkomplexen
Zahlen" [5], Artin proved a structure theorem for rings with minimum
condition (descending chain condition)2) which generalized Wedderburn's

structure theorem for finite-dimensional algebras (discussed in sec. IV). The

theorem, now known as the Wedderburn-Artin theorem for semi-simple rings
with minimum condition (i.e. rings without nilpotent ideals and satisfying the

descending chain condition for, say, right ideals—see e.g. [43]) states that if
R is such a ring, then it is a direct sum of simple rings and these, in turn, are
matrix rings over division rings; moreover, the above representations are

unique (cf. Wedderburn's structure theorem, p. 246).
As we note, the result is essentially the same as Wedderburn's. It is,

however, the spirit of the work and the conceptual advances which make it

') Steinitz' "Algebraische Theorie der Körper" of 1910 was the first abstract study of
fields as a distinct subject. This fundamental work, which some say marked the beginning
of modern abstract algebra, arose out of a desire to delineate the abstract notions common
to the various contemporary theories of fields. It provided the basic concepts of field theory
necessary for the subsequent abstract study of Galois theory, algebraic number theory, and
algebraic geometry.

2) Artin proved his theorem for rings satisfying both the ascending and descending
chain conditions. Later (1939) Hopkins showed that the descending chain condition suffices.
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