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IV. Structure of algebras
(a) Over the complex and real numbers (Molien, E. Cartan,
Frobenius); 1890s-1903.
(b) Over any field (Wedderburn); 1907.

V. Interlude
(a) Division algebras (Wedderburn, Dickson); 1905-1926.

(b) Definitions of abstract algebras and abstract rings (Dickson,
Fraenkel); 1903, 1914.

V1. Structure of rings with minimum condition

The Artin-Wedderburn structure theorems (Artin); 1927.

VII. Some subsequent developments

(a) Deep study of division rings (algebras) (Albert, Brauer, Hasse,
Noether); late 1920s-early 1930s.

(b) Nilpotent rings; 1930s-.

(¢) Quasi-Frobenius rings (Nakayama); 1939-1941.

(d) Primitive rings (Jacobson); 1945.

() Prime rings (Goldie); 1958-1960.

(f) Representations of rings and algebras (Kothe, Brauer ef al.); 1930s-.

(g) Homological methods (H. Cartan, Eilenberg, MacLane ef al.);
1950s-.

We now turn to a point by point discussion of the above outline.

I. SOURCES

The early sources—symbolical algebra and quaternions—provided the
impetus for the birth and early growth of the theory of hypercomplex number
systems, while the later sources—Lie groups and Lie algebras—supplied the
inspiration, motivation, and techniques for its mature development, resulting
in the basic structure theorems for such systems (beginning with IV above).
These two sources also reflected two distinct approaches to the subject of
hypercomplex systems, two traditions—the abstract Anglo-American tradition
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and the more ‘‘down-to-earth’® concrete Continental tradition, respectively
(see [66]). We shall deal with the later sources (Lie groups and Lie algebras)
when they begin to make their impact (under item IV).

In a strict sense, noncommutative ring theory originated from a single
example, namely the quaternions created by Hamilton in 1843. These are
“numbers’’ of the form a + bi + ¢j + dk (a, b, ¢, d real numbers) which are
added componentwise and multiplied according to the rules i? = j2 = k?
= —-1,ijj=k= —ji,jk =i= —kj, ki =] = —ik, with the obvious extension
to all quaternions. This was the first example of a noncommutative ‘‘number
system’’ (a system closed under the operations of addition, subtraction,
multiplication and, initially, also division), and was the catalyst for the
introduction of various other noncommutative number systems. We will
consider some of these, as well as Hamilton’s motivation for his creation,
shortly. We wish to turn briefly now to an earlier development, namely the
creation of symbolical algebra in the 1830s, which brought about, through
speculations on the nature of algebra, a favourable climate for the construction
of various ‘‘nontraditional’”’ number systems.

The isolation of British mathematics in the 18th century had adverse effects
on its development. The universities, for example, taught Newton’s method
of fluxions rather than the more powerful methods developed on the continent
by the Bernoullis, Euler, and Lagrange. In the early 19th century several
British mathematicians at Cambridge, among them Whewell, Peacock, and
De Morgan, undertook a reform in the teaching of mathematics. In the British
universities of this period mathematics was viewed more as an instrument for
the training of logical minds than as a tool for the solution of practical pro-
blems. If this was to be effective, one would have to put algebra (which at
the time consisted of symbolical manipulation relating to numbers) on a sound
logical basis. That meant justifying the laws of operation with numbers
(mainly negative and complex numbers). For example, why is
(—a)(—b) = ab? Is }ab = }/a)/b true for negative as well as positive
numbers? Why is a(b—c¢) = ab — ac when b < ¢? Why is a™a” = a™*" when
m and n are negative or rational numbers?

The applicability of the ‘‘laws” of arithmetic to positive integers was
considered ‘‘obvious’’. (For example, the equality a(b—c) = ab — ac was not
questioned when b > c¢.) The ‘‘science’” of operations on the symbols
representing positive integers was called ‘‘arithmetical algebra’’, and, as
mentioned, was taken for granted. Against this, Peacock, De Morgan,
Gregory, and others created ‘‘symbolical algebra’’, which was intended to have
much broader applicability. We focus on Peacock’s work, which had the
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greatest impact. It was embodied in his major publication A Treatise on
Algebra of 1830.

Peacock wrote this work, he says, ‘‘with a view of conferring upon Algebra
the character of a demonstrative science’’. To him symbolical algebra was ‘‘the
science which treats of the combination of arbitrary signs and symbols by
means of defined though arbitrary laws’’. As for the laws, he claims that

We may assume any laws for the combination and incorporation of
such symbols, so long as our assumptions are independent, and
therefore not inconsistent with each other.

This, of course, is a rather modern point of view, well ahead of its time.
This programme, however, was not implemented by Peacock in the stated
generality. For although Peacock seems to profess freedom in choosing the
laws which such a symbolical algebra can possess, he in fact postulates these
laws to be the same as the laws of arithmetic. Thus, for example, the equality
a(b—c) = ab — acis decreed to be true when b < c¢. We will not go into details
here since the subject has been dealt with extensively in the literature. See [10],
[15], [51], [60], [61], [68], [70], [71], [73].

To summarize, the doctrine of the British School of symbolical algebra,
although not fully implemented, suggested that what matters in algebra are the
rules which symbols obey rather than the meaning which one may attach to
such symbols.!) Whatever its limitations, it provided a positive climate for
subsequent developments in algebra. Thus symbolical algebra can be said to
have given mathematicians the licence to create nontraditional number
systems, while Hamilton and others showed them how to do it. In the words
of Bourbaki [13]:

The algebraists of the English school were the first to isolate, between
1830 and 1850, the abstract notion of law of composition, and then
immediately broadened the field of algebra by applying this notion to
a host of new mathematical entities: the algebra of logic (Boole), ...
quaternions (Hamilton), matrices and nonassociative algebras (Cayley).

Hamilton, in his creation of quaternions in 1843, would seem to have prac-
ticed what Peacock had preached. This is not the case, however. Hamilton was,
indeed, concerned with the foundations of algebra. As he remarked in 1853
(see [35]):

‘). This notion, that symbols have a ‘‘life of their own’’, without requiring recourse to
meaning, has its precursor in the Operational Calculus of Lagrange and the work of others

in the 18th century. It has been suggested that the inspiration for symbolical algebra came
from these sources. See [51].
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The difficulties which so many have felt in the doctrine of Negative and
Imaginary Quantities in Algebra forced themselves long ago on my
attention.

Hamilton’s proposed solution of these difficulties, however, was different
from that of Peacock and his school of symbolical algebra. In particular,
Hamilton objected to Peacock’s view of the symbols of algebra as arbitrary
marks without any meaning. To Hamilton the symbols of algebra had to stand
for something ‘‘real’’—not necessarily material objects but at least mental
constructs. It was necessary, Hamilton claimed, to ‘‘look beyond the signs to
the things signified.””!) (Isn’t this a foreshadowing of the formalist—
intuitionist debate of almost a century later?)

Hamilton formulated his ‘‘philosophy’’ of algebra in an 1835 paper entitled
“Theory of Conjugate Functions, or Algebraic Couples; With a Preliminary
and Elementary Essay on Algebra as the Science of Pure Time.” He was
stimulated to write this essay, he says, by passages in Kant’s Critique of Pure
Reason. Briefly, just as (according to Kant) geometry is grounded in a mental
intuition of space, so algebra should be grounded in a mental intuition of time.
(For details see [35], [63], [68]). In this essay Hamilton also defines the
complex numbers as ordered pairs of real numbers. Here he presents one of
the earliest attempts to list systematically the properties of the real and complex
number systems. He comes very close, in fact, to defining a field—the
commutative and distributive laws are given, as are the closure laws, additive
and mutiplicative inverses, and a definition of the zero element. What is miss-
ing are the associative laws—these he stated for the first time in his 1843 work
on quaternions, to which we now turn.

Hamilton’s motivation for the introduction of the quaternions is not easy
to reconstruct. (For the mathematical thinking leading to their creation see
[79].) His own (retrospective) view of them, given in 1855, is (see [35]):

The quaternion [was] born, as a curious offspring of a quaternion of
parents, say of geometry, algebra, metaphysics, and poetry... I have
never been able to give a clearer statement of their nature and their aim
than I have done in two lines of a sonnet addressed to Sir John
Herschel:

“An how the one of Time, of Space the Three. Might in the Chain
of Symbols girdled be.”’

) It is interesting that the mathematicians of the symbolical school soon came to think
that Hamilton’s work was well in accord with their own philosophy of algebra.
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We might surmise that the geometric motivation was the desire to extend vec-
tors in the plane to vectors in space (an extension which the quaternions, in
a sense, accomplished); the algebra stemmed from a natural (from a
mathematician’s point of view) desire to extend number-pairs to triples, and,
when this failed, to quadruples; the metaphysical connection with the ideas
of Kant, which we mentioned above, was a factor in all of Hamilton’s works
in algebra; as for the poetry, we can do no better than to quote Welerstrass:
“No mathematician can be a complete mathematician unless he is also
something of a poet’’. See [35] for a detailed analysis.

For twenty two years following the invention of the quaternions, Hamilton
was preoccupied almost exclusively with their application to geometry, physics,
and elsewhere. To him the quaternions were the long-sought key which would
unlock the mysteries of geometry and mathematical physics. The main impor-
tance of the quaternions, however, lay in another direction, namely in algebra
(see [56]). Poincaré’s tribute of 1902 is telling:

Hamilton’s quaternions give us an example of an operation which
presents an almost perfect analogy with multiplication, which may be
called multiplication, and yet it is not commutative... This presents a
revolution in arithmetic which is entirely similar to the one which
Lobachevsky effected in geometry.

We will explore some of the consequences of that revolution in the following
section. '

II. EXPLORATION

Hamilton’s quaternions at first received less than universal understanding
and acclaim. Thus when Hamilton communicated his invention (discovery?)
to his friend John Graves, the latter responded as follows [66]:

There is still something in this system [of quaternions] which gravels
me. I have not yet any clear view as to the extent to which we are at

liberty arbitrarily to create imaginaries, and to endow them with super-
natural properties.

Most mathematicians, however (including Graves) quickly came around to
Hamilton’s point of view. The floodgates were opened and the stage was set
for the exploration of diverse ‘‘number systems’’, with properties which
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