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It is clear that these two arcs of a pass 2i — 1 times from right to left
under a. Thus the contribution of the neighbourhood % to Q(a, o) is given by

2(21—1 —n—I-Zii:nz.
i= i=1

This shows that Q(a, o) > O if a crosses at least one band of V. If not,
then o = 0.

Thus Q@ is positive definite. This completes the proof of Theorem 2.

APPENDIX: AN IMPROVEMENT OF THE INEQUALITY OF THEOREM 1

Though the inequality
(10) c¢(K) + n(K) — 1 > span (L)

of Theorem 1 becomes an equality for weakly alternating diagrams, it
may be sharpened a little for other cases. Let K be a link diagram in
R?* and let I' = R* be the associated link projection. For PeS* — T
(where S? = R? U {o0}), let i(P) be the intersection number modulo 2 of
I with a generic 1-chain connecting P to co. Shade the regions of S? — T
for which i = 1 (mod2), so that S? is painted like a chessboard. Let
b,, .., b, be the shaded regions of S*> — I'" and let w,, .., w, be the unshaded
regions of S* — T.

An edge e of I' is called K-good either if e is a loop or if one of the
end points of e corresponds to an overcrossing point of K and the other
end point of e corresponds to an undercrossing point of K. An edge of I’
which is not K-good is called K- bad For any ie{l,..,m} and for any

je{1,..,n},itis clear that the set b; N w; consists of several edges and double
points of I'. Denote by af(i,j) the number modulo 2 of K-bad edges in

b; O v—v: Denote by w(K) the rank of the m—by—n matrix (a(i, j)).
THEOREM. If K is a diagram of a link L, then

(11) oK) + n(K) — 1 = span (L) + u(K).

CorROLLARY. If K is a diagram of an unsplittable link L, then
c(K) = span (L) + u(K).

Of course, if K is a weakly alternating diagram, then w(K) =
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The inequalities of the Theorem and of the Corollary may be strict.
For example, if we take the diagram K = 8;, in Rolfsen’s book, then
span (8,4) = 5 and u(K) = 2, so that the inequality (11) amounts to & > 7.
Unfortunately, even in the case where (11) is an equality, it does not mean
that K is a minimal diagram of L, since u(K) depends on K and is not
an invariant of L.

The proof of the Theorem goes along the same lines as the proof of
Theorem 1 of §1. Indeed the proof of Lemma 1 of §2 shows in fact
that | S|+ |S|<c+ 2r — R, where R is the rank of the intersection
form (5). For the state A, it is easy to show that R = 2u(K), and this
gives the desired result.

REFERENCES

[1] CrROWELL, R. H. Nonalternating links. Ill. J. Math. 3 (1959), 101-120.

[2] GorDON, C. McA and R. A. LITHERLAND. On the signature of a link. Invent.
math. 47 (1978), 53-609.

[3] pE LA Harpg, P, M. KerVAIRE and C. WEBER. On the Jones polynomial.
L’Enseignement math. 32 (1986), 271-335.

[4] Jones, V. A polynomial invariant for knots via von Neumann algebras. Bull.
Amer. Math. Soc. 12 (1985), 103-111.

[5] KAUFFMAN, L. State models and the Jones polynomial. Preprint, 1986.

[6] MurasuaGl, K. Jones polynomials and classical conjectures in knot theory.
Topology 26 (1987), 187-194.

[7] ROLFSEN, D. Knots and links. Publish or Perish 1976.

[8] Tarr, P. G. On Knots I, IL, II1. Scientific papers, Vol. 1 (1898), 273-347.

[9] THISTLETHWAITE, M. B. Kauffman’s polynomial and alternating links. Preprint,
1986.

(Regu le 7 avril 1987 )

V. G. Turaev

Steklov Inst. of Math.
Fontaka 27
Leningrad (191011)
USSR




	Appendix: an improvement of the inequality of Theorem 1

