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It is clear that these two arcs of a pass 2i — 1 times from right to left
under a. Thus the contribution of the neighbourhood °U to Q(a, a) is given by

£ (2i — 1) — n + 2 Yj * n2
•

i 1 i 1

This shows that g(a, a) > 0 if a crosses at least one band of V. If not,
then a 0.

Thus Q is positive definite. This completes the proof of Theorem 2.

Appendix: an improvement of the inequality of Theorem 1

Though the inequality

(10) c(K) + r(K) — 1 ^ span (L)

of Theorem 1 becomes an equality for weakly alternating diagrams, it
may be sharpened a little for other cases. Let K be a link diagram in
R2 and let T c R2 be the associated link projection. For P e S2 — T
(where S2 R2 u {oo}), let i(P) be the intersection number modulo 2 of

r with a generic 1-chain connecting P to oo. Shade the regions of S2 — T
for which i 1 (mod 2), so that S2 is painted like a chessboard. Let
b1,..., bm be the shaded regions of S2 — T and let wx,..., wn be the unshaded

regions of S2 — T.

An edge e of T is called K-good either if e is a loop or if one of the

end points of e corresponds to an overcrossing point of K and the other
end point of e corresponds to an undercrossing point of K. An edge of T
which is not K-good is called K-bad. For any ie {1,..., m} and for any

j e {1,..., n}, it is clear that the set bt n Wj consists of several edges and double

points of T. Denote by a(i,j) the number modulo 2 of K-bad edges in

bt n Wj. Denote by u(K) the rank of the m — by — n matrix (a(i, j)).

Theorem. If K is a diagram of a link L, then

(11) c(K) + r(K) - 1 ^ span (L) + u(K).

Corollary. If K is a diagram of an unsplittable link L, then

c(K) ^ span (L) + u(K).

Of course, if K is a weakly alternating diagram, then u(K) 0.
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The inequalities of the Theorem and of the Corollary may be strict.

For example, if we take the diagram K 819 in Rolfsen's book, then

span (819) 5 and u(K) 2, so that the inequality (11) amounts to 8 > 7.

Unfortunately, even in the case where (11) is an equality, it does not mean

that K is a minimal diagram of L, since u(K) depends on K and is not

an invariant of L.
The proof of the Theorem goes along the same lines as the proof of

Theorem 1 of § 1. Indeed the proof of Lemma 1 of § 2 shows in fact

that |S| + |S|^c + 2r-R, where R is the rank of the intersection

form (5). For the state A, it is easy to show that R 2u(K), and this

gives the desired result.
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