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FIGURE 19

Observe that two unshaded regions near one crossing point are necessarily
distinct, otherwise the diagram K would not be reduced:
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FiGure 20

It is evident that A is equal to the number of unshaded regions. Let a
state S? be obtained from A by replacing one positive marker by the
negative marker. Under this operation two distinct unshaded regions are
connected by a band, and therefore |S?| =|A| — 1. In view of the
arguments given in the proof of part (i) of the Theorem, this implies that
Dy < D, for any state S of K. This implies (8). Analogous arguments
imply (9), and the proof of (ii) in Theorem 1 is complete.

§ 5. PROOF OF THEOREM 2
Let me first recall the definition of the signature of an oriented link L

in terms of a (not necessarily orientable) surface ¥ bounded by L (see [2]). 1
One defines a bilinear form




MURASUGI AND KAUFFMAN THEOREMS 219

Q = Qy:Hy(V;Z) x HV;Z)—- Z

as follows. Let o, pe H,(V;Z) be represented by loops a, b in V. Let us
double all points of a and push them in § 3 _ ¥ along both normal directions
to V, at the same small distance. We obtain an oriented closed 1-manifold
GeS3 — V: the following picture shows the local situation. The natural
projection a@ — a is of course a 2-sheeted covering.

FIGURE 21

Denote by Q(a, B) the linking coefficient Lk(a, b) of a and b. It turns
out that Q is a well defined symmetric bilinear form. Let L” be a parallel
copy of Lin S* — V. Define

o(L) = sign (Q) — —;—Lk(L, L").

Here sign (Q) denotes the signature of the symmetric bilinear form obtained
by factorizing out the annihilator of Q. According to [2], o(L) does not
depend on the choice of the spanning surface V. In case V is orientable,
Lk(L,LY) = 0 and we get the classical definition of the signature of L
due to Murasugi.

All diagrams and links being oriented, it is easy to check that the
writhe number of a link diagram, the signature of a link, and the number
Amax(V L(0)) + diin(V () are additive with respect to both disjoint unions
and connected sums of diagrams. Therefore it is enough to prove Theorem 2
for a diagram K which is connected, prime, alternating and reduced.

Let ¢, and c_ denote the numbers of positive and negative crossing
points of such a K.

CLAM (Murasugi). One has o(L) = |A| — 1 — c,.
This claim implies Theorem 2. Indeed, formulas (8), (9) and (6) show that
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e V1(8)) + drin V1)) + W(K)
= —wWK)/2 + D, + dg = —w(K)/2 + (|4|—|BJ)/2.
Substituting in the last expression
wK) = c, — c_
|Bl =c+2—|A|
C =¢C4 + C_

we obtain

Amad V1(8) + dinin( V(1) + W(K)

=|A4]—1—c, = ol).

This implies Theorem 2.

Proof of the Claim. There is a spanning surface V' of L associated with
the diagram K. It is built up from shaded regions of S?> — K (see §4)
and small bands connecting these regions which enter one crossing point.
In a neighbourhood of a crossing point, V looks like this:

FIGURE 22

We shall prove the claim by using this surface V.
1
We prove first that the number — ELk(L, L") is equal to —c,.. We

may assume that the push-off LV of L in S° — V lies in the unshaded
regions of R? except in a neighbourhood of the crossing points. The
following picture shows LY near a crossing point (the orientations of L
and L are not shown).

P
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We compute Lk(L, L*), by counting the algebraic number of times L”
passes under L. It is easy to check that each crossing point of L con-
tributes with a 2 if it is positive and with a 0 if it is negative. Thus
Lk(L,LY) = 2c,.

Now, we prove that sign(Qy) = | A| — 1. The surface V retracts by
deformation onto the complement on the unshaded regions in S As the
diagram is alternating, the number of unshaded regions is | 4|, so that
b;(V) = | A| — 1. Thus we have to prove that the form Q, is positive
definite.

Let o« € H{(V;Z) and let a be an oriented closed 1-manifold (possibly
non connected) in V which represents o. Thus Q(a, o) = Lk(a, a), where
a is the oriented closed 1-manifold in S® — V obtained from a by the
2-sheeted blowing up procedure. If a subarc x of a lies in a shaded region
far from crossing points of K, then, of the two corresponding subarcs of a,
one lies over R? and the other one lies under R?>. We shall always picture
the first (higher) subarc of a on the right side of x (looking from above
along a) and the second (lower) subarc of a on the left side of x; see
the following picture.

ower A higher higher bower
Subare Subarc Subare Subare
& b g -4

a FIGURE 24 a
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Note that the diagram of a misses the diagram of a except in a
neighborhood of the crossing points. Surgering if necessary a in V, we
may assume that all components of a go through any band of V in one
direction. Positions of a like those in the following picture may easily be
removed by surgery.

FIGURE 25

For simplicity, consider first a neighbourhood of a crossing point through
which a goes only once:
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It is clear that a passes under a in this neighbourhood one time from right

to left.

If a goes through a neighbourhood % of a crossing point n times,
then the relative positions of the corresponding »n arcs of a, say x;, ..., X,,
are represented as follows:

.o z" LI X

h \
. . Xn
L, .

¢

FiGURE 27

In the next picture, we show the two arcs of @ which correspond to X;:
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It is clear that these two arcs of a pass 2i — 1 times from right to left
under a. Thus the contribution of the neighbourhood % to Q(a, o) is given by

2(21—1 —n—I-Zii:nz.
i= i=1

This shows that Q(a, o) > O if a crosses at least one band of V. If not,
then o = 0.

Thus Q@ is positive definite. This completes the proof of Theorem 2.

APPENDIX: AN IMPROVEMENT OF THE INEQUALITY OF THEOREM 1

Though the inequality
(10) c¢(K) + n(K) — 1 > span (L)

of Theorem 1 becomes an equality for weakly alternating diagrams, it
may be sharpened a little for other cases. Let K be a link diagram in
R?* and let I' = R* be the associated link projection. For PeS* — T
(where S? = R? U {o0}), let i(P) be the intersection number modulo 2 of
I with a generic 1-chain connecting P to co. Shade the regions of S? — T
for which i = 1 (mod2), so that S? is painted like a chessboard. Let
b,, .., b, be the shaded regions of S*> — I'" and let w,, .., w, be the unshaded
regions of S* — T.

An edge e of I' is called K-good either if e is a loop or if one of the
end points of e corresponds to an overcrossing point of K and the other
end point of e corresponds to an undercrossing point of K. An edge of I’
which is not K-good is called K- bad For any ie{l,..,m} and for any

je{1,..,n},itis clear that the set b; N w; consists of several edges and double
points of I'. Denote by af(i,j) the number modulo 2 of K-bad edges in

b; O v—v: Denote by w(K) the rank of the m—by—n matrix (a(i, j)).
THEOREM. If K is a diagram of a link L, then

(11) oK) + n(K) — 1 = span (L) + u(K).

CorROLLARY. If K is a diagram of an unsplittable link L, then
c(K) = span (L) + u(K).

Of course, if K is a weakly alternating diagram, then w(K) =
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