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TRISECANTES DES SURFACES ALGEBRIQUES 9

puisque X est supposé intersection de quadriques. L’exemple le plus simple est
évidemment le volume X intersection compléte de quatre quadriques, ou I'on
trouve ainsi 512 droites (ce qu'on vérifie directement dans G(1, 7)).

De méme, si X = P% est un tel volume, le degré de la surface reglee
formée des droites dans X est donné par tg(V) ou V = X n #; comme
précédemment. '

Premiére partie: P*

I) RAPPELS ET DEFINITIONS; SCHEMAS X ET X,

19 Hilb* P¥, Al* PY ET FORMULES k-SECANTES
On rappelle rapidement les notions introduites dans [24] et [25].

a) Le corps de base est algébriquement clos de caractéristique nulle; on se
place sur C pour la commodite.

Si Hilb* PY désigne le schéma de Hilbert [10] des k-uplets de PY
(sous-schémas de dimension O et longueur k), on désignera par Hilb} PY
I'ouvert formé des k-uplets curvilignes c’est-a-dire situés sur une courbe
non-singuliére. L’ouvert Hilb* PV est en général non dense [15], mais en tout
cas non-singulier [24] de dimension Nk. Il contient 'ouvert Hﬂb’; PV des
k-uplets formeés de points distincts comme ouvert dense.

Les k-uplets de PN qui sont sous-schémas d’une droite, appelée axe
du k-uplet, sont dits alignés. Ils forment une sous-variété¢ non-singuliére
de dimension 2N + k — 2, notée A* P", de Hilb* PY. On a une fibration
naturelle, au-dessus de la grassmannienne des droites:

Axe: AFPY - G(1, N)

qui 4 un-k-uplet aligné fait correspondre son axe. La fibre-type est
Hilb* P! ~ Pk,

Exemples et notations. Un doublet est toujours aligné. Si (x, y) sont les
coordonnées de C?, le triplet d’idéal (x2, xy, y*) n’est pas curviligne; le triplet
d’idéal (x3, y+x?) est curviligne mais non aligné. On notera — un doublet
de support réduit a un point. Un triplet curviligne de support réduit 4 un

: .3 . . 3
point sera noté “ et s§'il est aligné, on le notera . Remarquons par

exemple que le quadruplet — — est aligné, mais celui-ci: — T ne Test
pas, bien qu’évidemment le réduit associé le soit!




10 P. LE BARZ

b) Définissons maintenant le cycle des k-sécantes d’une surface de PV,

Soit S = PY une surface et i: AI* PY ¢, Hilb* P¥ TIinjection canonique.
Comme Hilb* § s’identifie & un sous-schéma de Hilb* P¥ (par exemple [8]),
notons Hilb* S la trace de Hilb* S sur Hilb* P. Le cycle associé [Hilb¥ S]
de Hilb* PV est de dimension 2k et donc le cycle

i* [Hilb* S

appartient & A*V~2(A4[* PY) ou A" désigne Panneau de Chow, gradué par la
codimension. Soit Z un cycle fixé dans AI* P, de dimension complémentaire.
On appellera formule k-sécante pour S dans PV, une formule donnant le degré
d’un O-cycle Z.i* [Hilbk S lorsque le cycle Z est fixé.

Exemple. N = 4, k = 4; dans ce cas Z doit appartenir a A*(Al* P%).
Un exemple de formule quadrisécante pour les surfaces de P* est donc:
les quadrisécantes rencontrant une droite fixe. Dans ce cas, on prend
Z = Axe*o ou o€ A*(G(1, 4)) est le cycle de Schubert des droites coupant
une droite fixe. -

Dans la suite de cet article, on ne s’intéressera qu’aux formules tri-
sécantes pour une surface. On renvoie a [28] pour les autres cas.

2°) PLATITUDE ET EQUIVALENCE RATIONNELLE

La proposition 1 démontrée dans ce paragraphe est le ceur de larticle.
Elle permet de remplacer Hilb* S par Hilb* X, .

a) Comme d’habitude, si ¥V est un sous-schéma du schéma H, on désigne
par [ V] le cycle associé. Commengons par montrer le

LemMeE 1. Soit U wun ouvert de C contenant 0 et 1 et soit
U= U - {0}. Soit H un schéma.
On se donne un sous-schéma réduit Z de H x U quon suppose

plat sur U; soit Z son adhérence dans H x U. Si la fibre Z, est
génériquement réduite, on a I'équivalence rationnelle dans H :

[21] ~ [Zo] = [(Zo)red]-

Preuve. Vu ([14], prop. 1.4) et ([11], 1.9.5.9 et 1.9.5.10), Z est l'unique
sous-schéma relatif de H x U, plat sur U, dont la restriction a U est Z.
(De plus Z est réduit). Par définition de I'équivalence rationnelle, vu la
platitude de Z sur U, on a [Z,] ~ [Z,]. Mais Z, = Z, et [Z,] = [(Z)redl
par hypothése, ce qui démontre le lemme.
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Donnons maintenant une définition:

Définition 1. Soit U un ouvert de C et soit X/U un schéma relatif.
On dit que X/U est k-plat si le schéma de Hilbert relatif

Hilb* X/U
est plat sur U et réduit.

Remarque 1. Le cas le plus évident, qui nous intéressera principalement,
est celui ou X/U est isomorphe a un produit F x U. Dans ce cas, on a
lisomorphisme Hilb* X/U ~ (Hilb* F) x U. Ce schéma relatif étant un
produit, est plat. Il suffit donc de supposer Hilb* F  réduit, ce qui est
toujours le cas si F est non-singulier (car alors Hilb* F est aussi non-
singulier) ou bien si F est une surface a singularités ordinaires de P*
(voir Annexe 1).

On peut de maniere analogue montrer le

LemMme 2. Si X/U est un schéma relatif lisse, le schéma relatif
Hilbf X/U est également lisse, donc plat et réduit. Ainsi X /U est k-plat.

Preuve. Soit m: X — U la projection et x un point de X. Il existe
un voisinage ¥~ (disons transcendant) de x et un isomorphisme ¥~ > U’ x F
au-dessus d’un voisinage U’ de m(x), ou F est non-singulier. Alors on a
Hilbf v'/U’" ~ (Hilbk F) x U’; or Hilb* F est non-singulier, d’ou la lissité.

b) Nous pouvons maintenant énoncer et démontrer la

ProposITION 1. Soit U un ouvert de C contenant 0 et 1 et soit
U=U-— {0} Soit H = Hilb* P¥.

Soit X/U wun sous-schéma relatif de PN x U. On suppose

a) tout k-uplet curviligne dans la fibre X, est limite de k-uplets curvilignes
dans des fibres X,, avec N # 0, de X/U;

b) Hilb¥ X, est génériqguement réduit :
c) le schéma relatif X/U est k-plat (déf. 1).

Alors on a Péquivalence rationnelle dans Hilb* PV :
[Hilb; X, ] ~ [(Hilb! X,),.q] = [Hilbf X,] .

Preuve. Considérons le schéma relatif Z/U = Hilbk X/U. Par Fhypo-
thése c), Z est plat sur U et réduit. D’autre part Z est contenu dans le
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schéma relatif Hilb¥ X/U et ce dernier est fermé dans Hilb* PV x U. Par
définition de I’'adhérence, on a donc 'inclusion

7 < Hilb* X/U .

C’est une inclusion de schémas puisque Z est réduit. On en déduit 'inclusion de
schémas entre les fibres:

(1) Z, < Hilbk X, .

Maintenant lhypothése a) signifie précisément linclusion (Hilb¥ X),.q = Z.
Comme (Hilb* X,),.q est contenu dans la fibre en 0 de HilbfP" x U,
on a donc I'inclusion

(2) (Hﬂb’cc X0)rea < Z_o .
On a donc montré
(3) (Hilb¥ X ),.qa © Z, < HilbF X, .

Or I'hypothése b) assure que Hilb* X, est génériquement réduit; donc Z,,
aussi, d’apres (3). Les hypothéses du lemme 1 sont donc satisfaites pour Z
et 'on a ainsi, vu (3):

[Z,] ~ [Z,] = [Hilb; X,] = [(Hilb{ X)real -

Or par définition méme, Z, = (Hilb* X/U), = Hilb* X,. La proposition 1
est donc démontrée.

¢) Nous allons donner pour linstant comme application de cette proposition,
un corollaire technique qui peut étre sauté en premiere lecture. Par singu-
larités ordinaires d’une surface S’ dans P® nous entendons uniquement
croisements normaux, points-triples et points-pince.

PROPOSITION 2. Soit S < P3 une surface a singularités ordinaires,
de degré n. Alors pour tout cycle K dans A (AI® P3), de dimension 3,
le degré du O-cycle

K.i* [Hilb? §']

n n
an + a, <2> + a, (3)

ou a,,a,,as sontdes constantes ne dépendant que de K.

est de la forme
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(Comme toujours, i: Al P* ¢ Hilb? P? désigne I'injection canonique.)
Remarquons que Hilb> S’ est génériquement réduit par I'Annexe 2: §' n'a
que des singularités ordinaires.

Preuve. Soit M la réunion de n plans en position générale dans P°,
tous transverses a S'. Soit f, une équation de S’ et f, une équation de M.
Considérons le sous-schéma relatif X/C de P*? x C défini par I’¢quation

A=2)fo + Af2 =0

ou A parcourt C. On a bien sir X, = §' et X, = M. Soit U Touvert
maximal de C tel que X/U soit lisse au-dessus de U. Il est non vide et
on peut toujours supposer que 1 lui appartient. Le schéma X/U est k-plat
car il est lisse (lemme 2).

Soit Uy, = U v {0} et U, = U v {2}. Les lemmes 10 et 11 de ’Annexe 2
montrent que les hypothéses a) et b) de la proposition 1 sont vérifiées:
en effet localement au-dessus d’un voisinage de 0 ou 2, le schéma relatif X
est isomorphe aux schémas relatifs ® ou Il des lemmes 10 et 11. Cela
resulte de ce que S’ et M n’ont que des singularités ordinaires. On applique
alors deux fois la proposition 1, en remplagant I'une des deux fois 0 par 2
evidemment, et on trouve donc I’équivalence rationnelle:

[Hilbf X,] ~ [Hilb* X,] ~ [Hilb* X,],
solt encore

[Hilbk S'] ~ [Hilb* M].

On s’est donc ramené d montrer la proposition pour la réunion de n plans.
Soit Py, P, ... P, les plans dont la réunion est M soit k, , k, ... k, des entiers
positifs tels que k; + k, + ... + k, = 3etsoit Uy, ,, ., ensemble des triplets
simples ayant k; points sur P;. D’aprés le lemme 10 (Annexe 2) le schéma

(Hilb? M),., admet les adhérences Uk, k,...x, COMme uniques composantes
irreductibles. Appelons « type » d’une telle composante I’ensemble des k;
non nuls. Ainsi (Hilb? M), 4 est formé de

n
<3> composantes irréductibles de type {1, 1, 1},

n
2 ( 2> composantes irreductibles de type {2, 1},

n composantes irréductibles de type {3} .
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De plus, deux composantes irréductibles de méme type sont évidemment
rationnellement équivalentes dans Hilb? P?, comme on le voit en faisant
agir PGL(3) sur les triplets de plans. Ainsi,

n

[Hilb? M] = [(Hilb? M),,] = (;’) A+ (2

)B + nC
ou A, B et C sont trois cycles fixés dans 'anneau de Chow de Hilb? P3;
d’ou le résultat annoncé.

Remarque 2. Le lecteur adaptera sans peine la démonstration pour
montrer que pour tout cycle K € A" (Al P3), de dimension k, le degré du
O-cycle K .i* [Hilb* S'] est de la forme

n n
an + a, <2> + .. + a (k)

ou les a; ne dépendent que de K.

3°) DEFORMATION DE S EN X,; ETUDE DE Hilb* X,

Soit S une surface de P* La définition donnée en 1) des formules
k-sécantes pour S oblige a connaitre la classe d’équivalence de [Hilb} S]
dans ’anneau de Chow de Hilb* P*.

L’idée quon va utiliser est de construire un schéma relatif £/C avec
fibre £, = S, la fibre £, ayant pour réduit la projection §" de S sur un
hyperplan générique H. On essayera alors d’arriver a I'équivalence rationnelle
[Hilb* ST ~ [Hilbk X,] et dutiliser la proposition 1. Considérons maintenant
un schéma F. Si F est non-singulier, I'ouvert Hilb%, F des k-uplets simples
est dense dans Hilb¥ F: car un k-uplet curviligne dans F est aussi contenu
dans une courbe non-singuliére A située sur F; on le déforme alors en k
points simples sur A. (Remarquer par contre que Hilbf F n’est en général
pas dense dans Hilb* F; voir [15]).

Remarque 3. C’est justement la présence de composantes immergees dans
T, (de réduit §') qui fait qu'on a Hilb% X, (ou Hilb% §') non dense dans
Hilb X,. En fait, on verra que Hilbf S’ (qui est I'adhérence de Hilb% S
est seulement une composante irréductible de Hilbf X, lequel scinde en
plusieurs composantes. Et c’est I’évaluation de la contribution de chacune
de ces composantes dans les formules k-sécantes qui constitue I'essentiel de
la démonstration.
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a) Commengons par décrire un proceédé général de déformation d’un sous-
schéma de PV

Soit Z = P¥ un schéma réduit et Z' sa projection sur un hyperplan H
par un point générique . D’apres ([14], prop. 1.4) ou encore ([137, 11, ex. 9.8.3),
il existe un sous-schéma réduit & de PV x C, plat sur C, avec pour fibres
¥, =7 et (Zo)ea = Z. Rappelons pourquoi: On prend pour cela un
systéme de coordonnées homogeénes (Xg:X;:..:Xy) pour lequel H ait pour
équation xy = 0, le point ® étant le point (0:0:..:0:1). Le schéma a la
structure — réduite — de P’adhérence dans P¥ x C de I'image de Z x C*
par le plongement

Z x C* ¢ PY¥ x C*
(o1 Xy Xyopixy), A) o (o1 Xyt i Xyoy P AXy ) A
En général, la fibre Z, posséde des composantes immergées (voir [13], p. 260).

Remarque 4. Si on pose U = C et U = C* le schéma relatif Z/U
est plat puisqu’il est isomorphe au produit Z x U.

b) Appliquons ce qui précéde a une surface S & singularités ordinaires de P*.
On la projette génériquement en S’ sur un hyperplan H. La sous-variété S’
possede une courbe-double I', des points triples M4, .., M, et des points-
pinces P, .., P,. Il s’agit d’abord d’¢tablir la structure nilpotente de Z,,
sachant que (X,),.q4 = S'. Nous pouvons €noncer deux propositions.

ProPOSITION 3. Avec les notations précedentes, on a légalité des sous-
schémas de P*:

o =S uIlMouoMPu..uoMP

ou pour V <= P* V@ désigne le i-éme voisinage infinitésimal de V dans P*
De plus, S" = (X(),eq = Zo O H.

Dans le dessin ci-apres les nilpotents sont dans P*; on a représenté

les doublets (dans P*) par des traits courts et les triplets par des traits
courbés plus longs.

Avant d’énoncer la proposition suivante, donnons une définition. Celle-ci
est motivee par le fait, comme on I'a dit, que pour un schéma quelconque F,
Pouvert Hilb% F n’est en général pas dense dans Hilbf F.

Définition 2. Appelons k-uplet « double » (resp. « triple »), une réunion
disjointe de points simples et de doublets de support un point (resp. points




16 P. LE BARZ

S/

simples, doublets de support un point et triplets curvilignes de support un
point).

Alors a défaut de pouvoir déformer tout k-uplet curviligne d’un schéma F
en k-uplets simples, on peut espérer le déformer en k-uplets doubles, voire
triples. C’est justement ce qu’affirme la proposition suivante (en i) pour le
schéma X, .

PRrROPOSITION 4. Soit X/C le schéma relatif associé a une surface a
singularités ordinaires S de P* dont S’ est la projection sur hyper-
plan H.

i) Tout k-uplet curviligne dans X, de support un point-triple {M}, est limite
(pour k=4) de k-uplets triples dans X%, .

Tout k-uplet curviligne dans X, de support un point-pince {P}, est
limite (pour k>=3) de k-uplets doubles dans Z.
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Tout k-uplet curviligne dans Zo, de support un point de la courbe double T
de S', est limite (pour k>=3) de k-uplets double dans X,.

ii) Tout k-uplet curviligne dans X, est limite de k-uplets curvilignes dans des
fibres X, de X/C avec M\ # Q.

iii) Hilb® £, est réduit au voisinage d’un triplet curviligne t de support un

' point-triple {M}, lorsque t & S = (Zg)ea = Zo N H.

Hilb? ¥, est réduit au voisinage d'un doublet d de support un point-
pince {P}, lorsque d & §'.

Hilb? X, est réduit au voisinage d'un doublet d de support un point

- de I', lorsque d & S

Preuves des propositions 3 et 4. 1l s’agit essentiellement, par des calculs
en coordonnées, de se ramener a I’¢tude de modeles locaux pour X,
d’abord au voisinage de la courbe double I', puis d’'un point triple M et
enfin d’'un point pince. Or cette étude pour les modeles locaux a été faite
dans [24]. Voir I’Annexe 3 pour tous les détails de calcul.

II) TRISECANTES DANS P*: LA THEORIE

Soit S une surface de P* a singularités ordinaires. Notons n son degré,
d le degré de la courbe double apparente et t le nombre de points-
triples apparents, dans une projection générique sur un P>.

On regarde le diagramme, ou les fleches sont les injections canoniques
et les dimensions sont entre parentheéses:

9  ABPP* & HiIBEP* (1)
J
Hilb3S  (6).

Le but de ce § II est de montrer la

PROPOSITION 5. Soit S une surface de P* dinvariants (n,d, 1).

Pour tout cycle Z dans AAI* P*), la formule trisécante donnant le degré
du O-cycle Z.i* [Hilb? ST est de la forme
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T(S) = an + a, <Z> + a; <z> + ot + dPn+7)

ou ay,a,,a3,% B et <y sont des constantes ne dépendant que de Z.

1°) CompPosaNTES DE Hilb? X,

a) Notons S’ la projection de S sur un P*® générique de P* S admet une
courbe double I'" avec t points-triples M, ... M, et v points-pince. En 1.3.b on
a construit un schéma relatif X/C avec X, = S et (£),qa = 5. De plus
(proposition 3), on a

(*) So=SuIMuoMPuU.uM?

ou V9 désigne le i-éme voisinage infinitésimal de V dans P*; on a
S, AP = §.

Nous allons détailler les différentes composantes du schéma (Hilb> Z),eq -

Notation 1. Notons S,; la sous-variété (localement fermée) de Hilb? P*
formée des triplets t = d U m ou

d est un doublet de P* de support un point de T,

m est un point de S — I

Soit S,, 'adhérence de S,, dans Hilb? P*.
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Notons S4 pour j = 1,2..¢ la sous-varieté de Hilb2 P* des triplets
curvilignes £ de P*, de support {M,}. Soit S; leur reéunion (disjointe).

Remarque 5. Bien sir, §2—1 et S; sont contenus dans (Hilb? Z0);eq
d’aprés la structure nilpotente méme de X, (*).

b) On ala
PROPOSITION 6.

i) (Hilb2 Xg),q estréunionde (Hilb? )4, de S,y etdes Sh(j=1,2..1).

ii) Hilb? X, est génériquement réduit le long de ces composantes.

Preuve. i) Soit t un triplet curviligne contenu dans X,. Si ¢ est contenu
dans I'hyperplan P3, comme I, n P?> = §', on a t € (Hilb? §'),.q. Si t & P>,
le support de t ne peut étre formé de trois points simples, puisque (Xp)eq = §
et ' < P3. Donc Suppt rencontre I', car en dehors de I', les faisceaux
structuraux de S’ et £, sont égaux.

Premier cas. Suppt = {a,b} avec aeI et t double en a. Si b¢Tl,
par définition, on a teS,;. Si bel, on le «bouge» en b'eS§ — I et

donc t appartient a 5—21

Deuxiéme cas. Suppt = {a} ouae!l. Sia est'un des points-triples M,
on a teS;. Si a n’est pas I'un des points M;, c’est soit un point-pince
soit un point générique de I'. Dans les deux cas, ¢ est limite de triplets
de support formé de deux points: en effet cela résulte de la proposition 4.

ii) La composante Hilb? S est génériquement réduite d’aprés les lemmes 10
et 11 de 'Annexe 2 puisque S’ = P> n’a que des singularités ordinaires.
Par ailleurs S% est génériquement réduite d’aprés la proposition 4 iii): un
triplet générique de S4 n’est pas dans H. Enfin, montrons que S,, (donc S—21)
est génériquement réduit. Soit d U m un triplet générique de S,,; ainsi le
support de d n’est pas un point triple et d ¢ H. Alors Hilb? £, est réduit
au voisinage de d par la proposition 4 iii); d’ou §,,; réduit au voisinage de
dum.

2°) CONTRIBUTION DE CES COMPOSANTES DANS T/(S)

Soit Z € A*(AI° P*) un cycle fixé. Nous allons montrer trois lemmes,
avec les notations précédentes.

LEMME 3. Le degré du O-cycle Z.i* [Hilb3 S est de la forme
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n n
an + a, (2> + aj (3)

ou ai,a, et as ne dépendent que de Z.

LEMME 4. Le degré du O-cycle Z.i*[S;] est de la forme ot ou
o ne dépend que de Z. (S, désigne la réunion disjointe des S4 pour
j=1L2.t)

LEMME 5. Le degré du O-cycle Z.i* [_.SZ] est de la forme d(Pn+v)
ou B et y ne dépendent que de Z.

a) Prouvons le lemme 3. Regardons le diagramme commutatif ou les fléches
sont les injections canoniques et les dimensions entre parentheéses:

i

9  APP* & HIRPY (12
J”L Lu

i
l

(7)  APBP3 & HiIb3IPP  (9)

L

Hilb3 S (6).

Nous voyons par examen des dimensions que Al® P* et Hilb? P? ne se coupent
pas proprement dans Hilb? P*.

Nous aurons besoin du théoréme de lintersection résiduelle [7] [17]
sous forme de la formule de Fulton-MacPherson [6], quon énoncera ainsi:

THEOREME (Fulton-MacPherson). Soit Y une sous-variété non-singuliére
de la variété nomn-singulicre X. Soit A wune sous-variété de X et
I = AnY. Considérons le diagramme commutatif ou les fleches sont les
injections canoniques:
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Si I est localement intersection compléte dans A et si
dm] =dmA+dmY —dmX +r,

alors pour tout cycle o dans Y, le cycle i*u,o dans A est égal a
jo(C,.T*0) ou C, est fixé dans AT(D).

| L’Annexe 7 montre que AI° P* et Hilb? P* se coupent schématiquement
' en AI®P3. Appliquons alors la formule de Fulton-MacPherson a
o = [Hilb? §'] dans 4'(Hilb? P3). Comme ici r = 1, on obtient

ifuyo = i* [Hilb? 7 = j,C

ou C = C,.* [Hilb? §'] avec C, fixé dans A'(AI° P°). Par suite, par la
formule des projections, on a dans A'(AI°> P%):

Z % [Hilb? §] = Z.j,C = j(j*Z.C,.i* [Hilb? §7).
Mais K = j*Z.C, appartient a A*(AI® P?) et donc par la proposition 2:
deg Z.i* [Hilb? '] = deg K.i™* [Hilb] S']

n n
an + a, (2) + a; (3)

ou a,, a, et a; sont des constantes. Le lemme 3 est donc prouve.

est de la forme

b) Prouvons le lemme 4. Pour cela nous avons besoin d’un lemme auxiliaire:

LEMME 6. Désignons par I/ Tintersection ensembliste de S% (défini
dans ce paragraphe en 1.a) et de AI® P* dans Hilb] P*.

Alors génériquement, S% et AP P* se coupent transversalement ; par suite
i* [S4] = [I'].

Remarquer que I’ est isomorphe & P> par le choix de I'axe du triplet
passant par M;.

Preuve du lemme 6. C’est un simple calcul en coordonnées, comme on en
fera beaucoup dans '’Annexe: soit &, un triplet aligné de support {M;},
d’axe transverse a P> (Uhyperplan qui contient S'). Dans un systéme inho-
mogene de coordonnées (x,y,z u) centré en M;, S’ a pour équations

xyz+ ..=0, u=0

et Axe &, est engendré par un vecteur de coordonnées (o, B, v, 8). Puisque
£, est supposé générique dans I/, on se raméne 4 a = B =y =& = 1
et I'idéal de &, est alors
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Iy = (X%, y—x,z—x, u—x).
Une carte de Hilb? P* en £, est donnée par
(a,b,c,a.,b,,¢c,,a,,b,,C5,0a5,bs3,C3)
correspondant a I'idéal voisin:

I = (x*+ax*+bx+c, y—x+a;x*+bx+cy, z—x+a,x*+byx+c,,
U—x+asx*+byx+cy).
Dans cette carte, AI° P* s’exprime par a, = a, = a; = 0 et S4 par

— d’une part ¢; = ¢, = ¢z = 0 car la courbe sur laquelle est le triplet
curviligne doit passer par 0,

— d’autre part a = b = ¢ = 0 car le support doit étre {0}. Cela termine
la démonstration du lemme 6.

Nous aurons besoin de rappeler la proposition suivante (montrée en [25]).
C’est une conséquence facile du théoreme de Leray-Hirsch, car

Axe: AIF PY — G(1, N)
est une fibration de fibre type P*.

ProPOSITION 7. Soit i un entier et Hy,H,..#; des hyperplans
de PY en position générale. Pour k =i, soit H;, la sous-variété de
AFPY formée des k-uplets alignés & avec & #,# @ pour 1 <p<i

Alors on a Pégalité dans Ay (Al* PY) des sous-espaces vectoriels

A(AFPY) et '690 Axe*A5’(G).[H]] .
i=

(On note Ay = A’ ® et G = G(I, N))

Dans le cas qui nous occupe (k=3); on a donc en fixant 5#,, #,, #5
trois hyperplans de P* en position générale, ’égalité:
AYAP PH
= Axe*43(G) @ Axe*A(G).[H,] ® Axe*44(G).[H,] ® Q[H;] .
Or il est bien connu par la décomposition de Schubert (voir par exemple [21])
que A(G(1, 4)) est donné par:
— A%G) = Z(0,4) & Z(1, 3) ou

-
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(0, 4) = droites passant par un point fixe 0 de P4,
{ (1, 3) = droites contenues dans un hyperplan H' de P* et coupant
une droite A’ de H'.
— A*G) = Z(1,4) & Z(2,3) ou
{ (1,4) = droites coupant une droite A” de P*,

(2, 3) = droites contenues dans un hyperplan H” de P4

_ AYG) = Z(2, 4) ot
(2, 4) = droites coupant un plan fixe © de P*.

Pour montrer 'assertion du lemme 4, il suffit de la montrer pour Z
décrivant une base de A3(41® P*). Mais on a (lemme 6) Z.i* [S4] = Z.[I].
Or dans la base énumérée ci-dessus de A(AI® P*), seul le premier cycle
Axe*(0, 4) a une intersection non vide avec [’. En effet,

[ Axe*(1,3).[I'] = 0 car M;¢ H'
Axe*(1,4).[H,].[IF] = 0 car M, ¢ #,

| Axe*(2,3).[H,].[] = 0 car M, ¢ #,
Axe*(2, 4).[H,].[I'] = 0 car M, ¢ #,
[H5].[I'] =0 car M;¢ H .

Notons alors o le degré d’intersection Axe*(0,4).[I’]. (On peut se
convaincre que c’est 1 par un calcul en coordonnées, mais c’est inutile pour
la suite). Cela correspond & l'unique triplet aligné &, dans P* de support

{M;} et daxe OM;. On a donc degAxe*0,4).i*[S{] =oa dou
t
deg Axe*(0, 4).i* [S3] = ot puisque [S3] = Y, [S4].

j=1
L’assertion du lemme 4 est prouvée pour Z décrivant une base de

A3(ADP P*), donc le lemme 4 est démontré.

¢) Prouvons le lemme 5. Nous aurons besoin comme en b), d’'un lemme
auxiliaire:

LEMME 7. Désignons par 1 lintersection ensembliste de 5—2: (défini ]
dans ce paragraphe en l.a)) et de AP P* dans Hilb> P*. Alors géné-
riqguement, S,; et AP’ P* se coupent transversalement; par suite i* [S,,]
= [I] dans A'(AI® P%).

La preuve du lemme 7 est un calcul en coordonnées comme le lemme 6:
voir I’Annexe 4.
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D’apres ce lemme, pour prouver le lemme 5, il suffit de montrer que pour
tout cycle Z dans A°(A°® P*), le degré du O-cycle Z.[I] est de la forme
dBn+v) ou P et y ne dépendent que de Z. Il suffit donc de le vérifier
pour Z décrivant une base de A AI® P*). Or une telle base a été explicitée
en b), comme conséquence de la proposition 7. On utilise donc les mémes
notations qu’en b). |

Il s’agit de voir que les degrés des O-cycles
[ 1) Axe*(0,4).[[1]
i) Axe*(1, 3).[[]
(iii) Axe*(1,4).[H,].[I]
iv) Axe*(2,3).[H,].[[I]
\ v) Axe*(2,4).[H,].[I]
vi) [Hs].[1]

vérifient I'assertion du lemme 5.

Montrons-le rapidement cas par cas, toujours avec les notations de b).
L’hyperplan de P* contenant la projection S’ est noté P>,

i) Les axes des triplets éléments de I sont dans P>, donc ne peuvent ren-
contrer un point fixe O de P* Le premier des degrés cherchés est donc O.

ii) Les axes des triplets de I sont dans le plan H n P? de P> et passent
par le point fixe A’ n P? de ce plan. Donc il y a d possibilités pour le choix
d’un point-double et il reste n — 2 autres possibilités pour le point simple.
Dans ce cas le degré cherché est d(n—?2).

On ne tient pas compte d’une multiplicité éventuelle, car cela ne change rien
a Iénoncé du lemme.

iii) Soit 0 = A"nP?>et P = #, n P> (ou #, est Phyperplan qui définit
le cycle H,). Les axes des triplets de I doivent passer par O et les triplets
avoir un point au moins sur P. Deux cas a distinguer:

— ou le point simple est sur P n S’ et le point-double a son support
sur I'. I y a donc nd choix possibles puisque deg I' = d;

— ou le point-double a pour support 'un des d points de PN T et il
reste n — 2 autres possibilités pour le point simple. (En plus, dans ce cas
la multiplicité est 2).

La somme est bien de toute fagon de la forme d(Bn+ 7).
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SI

Dans I'un comme Pautre cas de figure ci-dessus, les petits traits représentent
les doublets dans P*, de support T

iv) Soit P = H' nP3et P, = #,; n P> Les triplets doivent donc étre dans
P et avoir au moins un point sur la droite A = Pn P,. Il y a donc
n possibilités pour le point simple, d’ou dn possibilités pour le choix d’un
tel triplet.

v) Les axes des triplets de I doivent couper la droite fixe A = n n P3
et les triplets doivent avoir deux points sur #; et #,. Soit P; = #; n P>
Comme les triplets de I ne sont pas formés de trois points distincts, le
support {0} du point-double doit &tre ou sur P; ou sur P,. Supposons
qu’il soit sur P;; comme le degré de I' est d, cela donne d possibilités
de choix pour O. Mais alors la droite A et le point O engendrent un plan P.
La droite P n P, coupe S’ en n points dans P parmi lesquels est choisi le
troisieme point du triplet; donc il y a dn solutions et par symétrie entre
P, et P,, 2dn au total.

vi) Soit P, = #; n P3. Les triplets de I doivent avoir un point sur chacun
des trois plans P;, P,, P;; mais comme ces triplets ne sont pas simples,
la partie doublet est obligatoirement a support sur une des droites P; N P;.
Or aucune de ces droites ne coupe I'; 'intersection est donc O.

Le lemme 5 est ainsi démontré.
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d) Conclusion

Soit S une surface de P* & singularités ordinaires et £/C le schéma
relatif associé défini en 1.3.b. Posons U = C et U = C*. Nous allons voir
que les hypotheses de la proposition 1 sont satisfaites pour le schéma relatif
¥/C. :

Pour a), cela résulte de la proposition 4ii). Pour b), cela résulte de la
proposition 6 ii), chaque composante de Hilb® T, étant génériquement réduite.
Enfin le schéma X/C* est isomorphe au produit S x C* par construction méme
(remarque 3). Donc par la remarque 1, £/C* est k-plat, puisque S = P*
n’a que des singularités ordinaires. L’hypotheése c¢) de la proposition 1
est donc satisfaite.

La proposition 1 donne alors I’équivalence rationnelle dans Hilb? P*:
[Hilb? ST ~ [Hilb} Z,].
Or par la proposition 6 i), on a I’égalité des cycles:
[Hilb? £,] = [Hilb? 877 + [S;,] + [Ss].
D’ou pour n’importe quel cycle Z de A3(AI® P%), Dégalité des O-cycles:
Z.i* [Hilb? §] = Z.i* [Hilb? §7 + Z.i* [S,1] + Z.i* [S5].

Des lemmes 3, 4 et 5 résulte alors aussitot la proposition 5 que 'on cherchait
a prouver.

III) TRISECANTES DANS P#: LES CALCULS

Soit S une surface de P* d’invariants n, d, ¢t (notations du § II). On va
donner deux formules trisécantes pour S, supposée a singularités ordinaires
dans P*.

1°) TANGENTES A S RECOUPANT S ET UNE DROITE FIXEE.
Nous cherchons le degré du O-cycle
[2] . Axe*o, . i* [Hilb2 S]

ou comme d’habitude, i: A® P* ¢ Hilb? P* est I'injection canonique. Ici,
9 < AP P* est I'hypersurface des triplets alignés non simples et o, = (1, 4)
est le cycle de A%*(G(1,4)) des droites de P* coupant une droite fixe A,
D’aprés la proposition 5, ce nombre est de la forme
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T(S) = ayn + a, <Z> + as <;Z> + at + d(Pn+vy).

a) Avant de commencer le calcul des six coefficients, regardons le cas ou S
~est singuliére avec § points-doubles impropres. Soit O 'un de ces points.
- 1l engendre avec A un plan P recoupant S en n — 2 autres points et non pas
- n — 3 (voir IV.1.ci). Or chacune des n — 2 droites joignant O a l'un de
- ces n — 2 points est une droite coupant S suivant un triplet non simple
(car double en 0). C’est une « fausse » tangente a S. Donc il faudra, pour
avoir le nombre de « vraies » tangentes a S, retrancher de T(S) ces d(n—2)
- fausses tangentes par les points-doubles de S. Mais il faut le faire bien str
' en comptant la multiplicité.

| Un calcul montre alors (Annexe 8) que cette multiplicité est 2. Clest
- tout a fait analogue au fait que la classe d’'une courbe plane avec § points-
doubles ordinaires est n(n—1) — 28 puisqu’'on doit retrancher les droites,
~ comptant deux fois, qui passent par les points-doubles.

b) Soit alors § la réunion de S et d’un plan P générique de P*. Essayons
d’évaluer T(S). D’aprés le lemme 9 (Annexe 1) Hilb? § se décompose en
quatre composantes (réduites)

Hilb3 S
Hilb? S, x P,

S, x Hilb? P,
Hilb3 P

ou Sg =S — P et Py =P — §; la barre est I'adhérence dans Hilb? P*.
On a donc, si i: AI° P* ¢, Hilb? P* est l'injection canonique,
i* [Hilb? §]
= i* [Hilb? S + i* [Hilb? S, x Py] + i* [S, x Hilb? P,] + i* [Hilb? P] .

- Pour obtenir T(S), on intersecte avec [Z] . Axe*s, dans A(AI° P%). Le premier
- terme va donc donner par définition T(S) et le dernier T(P). Le troisiéme
terme, lui, va donner O car une droite dans P ne recoupe pas une droite
fixée générique.

Reste a voir la contribution du deuxiéme terme. Rappelons qu’on cherche
des triplets non simples. Deux cas sont & distinguer:

. — oule point-double est sur S et le point simple sur P,




28 P. LE BARZ

— ou deux points simples sont sur S et le point-double provient de la
rencontre avec P en 'un des points-simples.

S

Premier cas Deuxiéme cas

Dans le premier cas, le nombre cherché est n(n—1). En effet, il s’agit
du nombre de tangentes a S coupant un plan P fixé et une droite fixée.
Par la formule de Pieri, on a dans A(G(1, 4)):

(1,4).(2,4) = (0,4) + (1, 3).

Il s’agit donc du nombre de tangentes a S passant par un point fixe O
plus le rang (i;) d’une section hyperplane. Cest donc v + 28 d’une part
(i1 faut bien compter, et avec multiplicité 2, les 6 fausses tangentes a S
passant par O et 'un des & points-doubles impropres de S) et d’autre part
i, = nn—1) — 2d ([34], p. 190) car une section hyperplane de S a degré n
et d points-doubles apparents.

Soit au total n(n—1) car 2d = v + 28 (cf. Annexe 6). La multiplicité
est 1 car P est choisi générique.

Dans le deuxieme cas, vu ce quon a dit au début de ce paragraphe,
il s’agit de « fausses » tangentes a S par I'un des n points d’intersection de P
et S. Donc on doit les compter 2n(n+1—2) puisque S est de degré n + 1.

Au total, la contribution du deuxiéme terme dans T(S) est 3n(n—1).
On a donc montré la relation

TS) = T(S) + T(P) + 3n(n—1),

soit en utilisant le lemme 13 de ’Annexe 5:
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a(n+1) + a, (”;1) + ay (”§1> + ot +d) + (d+n) (Br+1)+7)

n

2> + a; <Z) + at + d(Bn+y) + a; + 3nn—1).

(Il vient T(P) = a, car alors n = 1,d = t = 0). Or le lemme 12 (Annexe 5)
~ permet d’identifier les coefficients ce qui donne:
pourd: a+ B =0,

=y =a,—a3 +6 (on afaitn = —1)
potr - a, +2+v =20 (on afaitn = 1).

Il reste a trouver trois autres équations. On remarque tout d’abord que ni
un plan, ni une quadrique de P® plongée dans P* n’ont de trisécante ren-
| contrant une droite fixe. On a donc T = 0 pour ces deux surfaces, soit
| a4, = 2a, + a, = 0. Ensuite, la surface S(2, 2), intersection compléte de deux
hyperquadriques de P*, vérifie T = 0; car pour raison de degré, une tri-
sécante est I'une des 16 droites qu’elle contient et aucune ne rencontre
. une droite fixe. Mais on connait n, d, t (Annexe 6) d’ou

4611 "I" 6(12 + 4a3 + 2(4B+'Y) — 0
+ Ces six équations ensemble forment un systéme inversible dont la solution est:

al’——o (1220 a3=_'6
o= —6 B=2©6 y = —12.

On a donc démontré (vu a)) le

THEOREME 1. Soit S une surface a singularités ordinaires de P*,
d’invariants n,d,t. Alors le degré du O-cycle

[9]. Axe*s, . i* [Hilb? §]

(nombre de tangentes & S recoupant S et une droite fixe) est

(o2

Et les & points-doubles impropres éventuels de S contribuent de 20(n—2)
dans ce nombre.
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2°) TANGENTES D’INFLEXION COUPANT UN PLAN FIXE
Nous cherchons cette fois le degré T(S) du O-cycle
[7].Axe*o, . i* [Hilb3 S].

Cette fois, 7 < AI® P° est la sous-fibration en J, — Hilb3 P! formée des
triplets alignés de support un point. (7, a la structure d’'une cubique gauche
dans Hilb® P' ~ P?). Le cycle o, de A'(G(1, 4)), encore noté (2, 4), est formé
des droites coupant un plan « fixé.

Toujours d’apres la proposition 5, le nombre T(S) est de la forme

an + a, (Z) + a;, (Z) + ot + dBn+vy).

a) Avant de chercher les six coefficients, regardons le cas ou S est singuliere
avec 0 points-doubles impropres.

Soit O l'un de ces points. Chacun des plans tangents P, (resp. P,)
a S en O coupe le plan ©n fixé en un point m, (resp. m,). Les deux

triplets alignés de support {O} et d’axe Om, (resp. Om,) sont dans S et
interviennent donc dans T(S). Cependant, ces droites sont de « fausses »
tangentes d’inflexion. L’ Annexe 8 b) montre qu’elles comptent avec multiplicité 3.
On devra donc retrancher de T(S) le nombre 66 de fagon a obtenir le
nombre de « vraies » tangentes d’inflexion. Ceci est analogue au fait que pour
une courbe plane ayant seulement & points-doubles ordinaires, on doit
retrancher 66 a 3n(n—2) pour avoir le nombre de « vrais » points d’inflexion

([34], p. 78).

b) Soit, comme en 1), § la réunion de S et d’un plan P. On obtient,
avec les mémes notations:

i* [Hilb3 §]
— i* [Hilb? §] + i* [Hilb? Sy x Py] + i* [S, x Hilb? Po] + i* [Hilb? P].

Pour obtenir T(S), on intersecte avec [Z].Axe*c,; le premier terme
va donc donner par définition T(S) et le dernier: T(P) = a,. Reste a voir
la contribution des deuxiéme et troisieme termes.

D’aprés a), elle est de 3n pour chacun d’eux. En effet, pour chaque point
d’intersection O de S et P, il y a deux triplets alignés de support {O}
coupant un plan fixe n: 'un dans TS et l'autre dans P; et chacun compte,
vu a), avec la multiplicité 3. On a donc montré la relation




TRISECANTES DES SURFACES ALGEBRIQUES ' 31

TS = T(S) + a; + 6n,

soit comme précédemment:

a,(n+1) + a, <n31> + a, (nng) + ot+d) + (d+n) (B+1)+7)

= an + a, (;) + as <r3z) + ot + dPn+7vy) + a; + 6n.

Grace a IAnnexe 5, on peut identifier comme précédemment en d et n,
- dou
o+B=0, —y=a,—az;—6 et a,+2+y =26

comme équations.
Il reste 4 en trouver trois autres. La surface S(2,2) contient 16 droites

dont aucune ne coupe un plan fixe; donc T(S(Z, 2)) = 0. D’ot comme plus
" haut: 4a, + 6a, + 4a; + 2(4p+7y) = 0. Enfin, par un calcul énumératif
simple (Annexe 9), on a T(S(2, 3)) = 60 et T(S(2, 4)) = 192 d’ou deux der-
~ ni€res équations:

6a, + 15a, + 20a; + 6(6B+7y) = 60 car on connait (n, d, t)

{é%a1 + 28a, + 56a; + 12(88+7v) = 192  pour ces surfaces (Annexe 6) .

Ces six équations ensemble forment un systéme inversible dont la solution est

a1:—3 (12=—6 a3—_—12
a =06 B= -6 vy = 24.

 On a donc démontré, vu a), le
THEOREME 2. Soit S wune surface d singularités ordinaires de P*,

i dinvariants n,d,t. Alors le degré du O-cycle [7].Axe*o,.i* [Hilb] S]
! (nombre de tangentes d’inflexion a S coupant un plan fixe) est

n(n—4) 2n—1) + 6(t—d(n—4)).

Et les & points-doubles impropres éventuels de S contribuent de 68
. dans ce nombre. |




	Première partie : $P^4$
	I) Rappels et définitions; schémas Σ et $\Sigma_0$
	II) Trisécantes dans $P^4$: la théorie
	III) Trisécantes dans $P^4$: les calculs


