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puisque X est supposé intersection de quadriques. L'exemple le plus simple est

évidemment le volume X intersection complète de quatre quadriques, où l'on

trouve ainsi 512 droites (ce qu'on vérifie directement dans G(l, 7)).

De même, si X c= P6 est un tel volume, le degré de la surface réglée

formée des droites dans X est donné par t6(V) où V X n 3 comme

précédemment.

Première partie : P4

I) Rappels et définitions; schémas I et I0

1°) HilbJ PA, Alk PN ET FORMULES k-SÉCANTES

On rappelle rapidement les notions introduites dans [24] et [25].

a) Le corps de base est algébriquement clos de caractéristique nulle; on se

place sur C pour la commodité.

Si Hilbk PA désigne le schéma de Hilbert [10] des k-uplets de PA

(sous-schémas de dimension 0 et longueur /c), on désignera par HilbJ PA

l'ouvert formé des k-uplets curvilignes c'est-à-dire situés sur une courbe

non-singulière. L'ouvert HilbJ PN est en général non dense [15], mais en tout
cas non-singulier [24] de dimension Nk. Il contient l'ouvert Hilbl P^ des

/c-uplets formés de points distincts comme ouvert dense.

Les /c-uplets de PiV qui sont sous-schémas d'une droite, appelée axe
du /c-uplet, sont dits alignés. Ils forment une sous-variété non-singulière
de dimension 21V + k — 2, notée Alk PN, de HilbJ PN. On a une fibration
naturelle, au-dessus de la grassmannienne des droites :

Axe : Alk ~PN G(l, N)

qui à un-/c-uplet aligné fait correspondre son axe. La fibre-type est
Hilbk P1 ~ Pk.

Exemples et notations. Un doublet est toujours aligné. Si (x, y) sont les

coordonnées de C2, le triplet d'idéal (x2, xy, y2) n'est pas curviligne; le triplet
d'idéal (x3, y Ex2) est curviligne mais non aligné. On notera - un doublet
de support réduit à un point. Un triplet curviligne de support réduit à un
point sera noté ^ et s'il est aligné, on le notera Remarquons par
exemple que le quadruplet -> est aligné, mais celui-ci: ^ j ne l'est
pas, bien qu'évidemment le réduit associé le soit
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b) Définissons maintenant le cycle des k-sécantes d'une surface de FN.

Soit S c une surface et i: AlkFN c» HilbJ l'injection canonique.
Comme Hilbfc S s'identifie à un sous-schéma de Hilbfe FN (par exemple [8]),
notons HilbJ S la trace de Hilbfc S sur HilbJ PN. Le cycle associé [HilbJ S]
de HilbJ P^ est de dimension 2k et donc le cycle

i* [Hilbck S]

appartient à Ak(N'2\Alk FN) où A' désigne l'anneau de Chow, gradué par la
codimension. Soit Z un cycle fixé dans Alk PN, de dimension complémentaire.
On appelleraformule k-sécante pour S dans PN, uneformule donnant le degré
d'un 0-cycle Z. i* [HilbJ S] lorsque le cycle Z est fixé.

Exemple. N 4, k 4; dans ce cas Z doit appartenir à Z2(Z/4 P4).

Un exemple de formule quadrisécante pour les surfaces de P4 est donc:
les quadrisécantes rencontrant une droite fixe. Dans ce cas, on prend
Z Axe*a où a g A2(G( 1, 4)) est le cycle de Schubert des droites coupant
une droite fixe.

Dans la suite de cet article, on ne s'intéressera qu'aux formules tri-
sécantes pour une surface. On renvoie à [28] pour les autres cas.

2°) Platitude et équivalence rationnelle

La proposition 1 démontrée dans ce paragraphe est le cœur de l'article.
Elle permet de remplacer HilbJ S par HilbJ £0.

a) Comme d'habitude, si V est un sous-schéma du schéma H, on désigne

par [F] le cycle associé. Commençons par montrer le

Lemme 1. Soit Ü un ouvert de C contenant 0 et 1 et soit
U 0 — {0}. Soit H un schéma.

On se donne un sous-schéma réduit Z de H x U qu'on suppose

plat sur U ; soit Z son adhérence dans H x Ü. Si la fibre Z0 est

génériquement réduite, on a l'équivalence rationnelle dans H :

[ZJ ~ [Z0] - [(Z0)red].

Preuve. Vu ([14], prop. 1.4) et ([11], 1.9.5.9 et 1.9.5.10), Z est l'unique
sous-schéma relatif de H x Ü, plat sur Ü, dont la restriction à U est Z.

(De plus Z est réduit). Par définition de l'équivalence rationnelle, vu la

platitude de Z sur Ü, on a [ZJ — [Z0]. Mais Zx Zt et [Z0] [(Z0)red]

par hypothèse, ce qui démontre le lemme.
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Donnons maintenant une définition :

Définition 1. Soit U un ouvert de C et soit X/U un schéma relatif.

On dit que X/U est k-plat si le schéma de Hilbert relatif

HilbJ X/U

est plat sur U et réduit.

Remarque 1. Le cas le plus évident, qui nous intéressera principalement,
est celui où X/U est isomorphe à un produit F x U. Dans ce cas, on a

l'isomorphisme HilbJ X/U ~ (Hilb* F) x U. Ce schéma relatif étant un
produit, est plat. Il suffit donc de supposer Hilb* F réduit, ce qui est

toujours le cas si F est non-singulier (car alors HilbJ F est aussi non-
singulier) ou bien si F est une surface à singularités ordinaires de P4

(voir Annexe 1).

On peut de manière analogue montrer le

Lemme 2. Si X/U est un schéma relatif lisse, le schéma relatif
Hilb* X/U est également lisse, donc plat et réduit. Ainsi X/U est k-plat.

Preuve. Soit n: X -> U la projection et x un point de X. Il existe
un voisinage iZ (disons transcendant) de x et un isomorphisme V ^ U' x F
au-dessus d'un voisinage U' de tt(x), où F est non-singulier. Alors on a

HilbjU' ~ (Hilb* F) x U'; or Hilbkc F est non-singulier, d'où la lissité.

b) Nous pouvons maintenant énoncer et démontrer la

Proposition 1. Soit Ü un ouvert de C contenant 0 et 1 et soit
U Ü - {0}. Soit H Hilb* P*.

Soit X/Ü un sous-schéma relatif de PN x Ü. On suppose:
a) tout k-uplet curviligne dans la fibre X0 est limite de k-uplets curvilignes

dans des fibres Xx, avec X # 0, de X/U ;

b) Hilb* X0 est génériquement réduit;
c) le schéma relatif X/U est k-plat (défi 1

Alors on a l'équivalence rationnelle dans Hilb* P^ ;

[Hilb* XJ - [(Hilb* 2f0)red] [Hilb* JT0]

Preuve. Considérons le schéma relatif Z/U Hilb* X/U. Par l'hypothèse

c), Z est plat sur U et réduit. D'autre part Z est contenu dans le
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schéma relatif HilbJ X/U et ce dernier est fermé dans Hilb* PN x U. Par
définition de l'adhérence, on a donc l'inclusion

Z c= Hilb* X/Ü

C'est une inclusion de schémas puisque Z est réduit. On en déduit l'inclusion de

schémas entre les fibres :

(1) Z0 cz Hilbc X0

Maintenant l'hypothèse a) signifie précisément l'inclusion (HilbJ X0 )red cz Z.
Comme (HilbJ X0 )red est contenu dans la fibre en 0 de HilbJ PN x Ü,

on a donc l'inclusion

(2) (HilbUoLd <=Z0.

On a donc montré

(3) (HilbJ X0)red cz Z0 cz HilbJ

Or l'hypothèse b) assure que HilbJ X0 est génériquement réduit ; donc Z0
aussi, d'après (3). Les hypothèses du lemme 1 sont donc satisfaites pour Z
et l'on a ainsi, vu (3) :

[ZJ ~ [Z0] - [HilbcfcX0] - [(HilbJ 2f0)red]

Or par définition même, Zx (HilbJ X/U)1 HilbJ Xx. La proposition 1

est donc démontrée.

c) Nous allons donner pour l'instant comme application de cette proposition,
un corollaire technique qui peut être sauté en première lecture. Par
singularités ordinaires d'une surface S' dans P3 nous entendons uniquement
croisements normaux, points-triples et points-pince.

Proposition 2. Soit S' cz P3 une surface à singularités ordinaires,
de degré n. Alors pour tout cycle K dans A* (Al3 P3), de dimension 3,

le degré du 0-cycle

K.i* [Hilb3 S"]

est de la forme

«1« + «2 {^j + Û3 Q
où ax,a2, a3 sont des constantes ne dépendant que de K.
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(Comme toujours, i : Al3 P3 c> Hilbc3 P3 désigne l'injection canonique.)

Remarquons que Hilb3 S' est génériquement réduit par l'Annexe 2 : S' n'a

que des singularités ordinaires.

Preuve. Soit M la réunion de n plans en position générale dans P3,

tous transverses à S'. Soit f0 une équation de S7 et f2 une équation de M.

Considérons le sous-schéma relatif I/C de P3 x C défini par l'équation

où X parcourt C. On a bien sûr X0 S' et X2 M. Soit U l'ouvert
maximal de C tel que X/U soit lisse au-dessus de U. Il est non vide et

on peut toujours supposer que 1 lui appartient. Le schéma X/U est /c-plat

car il est lisse (lemme 2).

Soit ÜQ U u {0} et Ü2 U u {2}. Les lemmes 10 et 11 de l'Annexe 2

montrent que les hypothèses a) et b) de la proposition 1 sont vérifiées:

en effet localement au-dessus d'un voisinage de 0 ou 2, le schéma relatif X
est isomorphe aux schémas relatifs © ou II des lemmes 10 et 11. Cela
résulte de ce que S' et M n'ont que des singularités ordinaires. On applique
alors deux fois la proposition 1, en remplaçant l'une des deux fois 0 par 2

évidemment, et on trouve donc l'équivalence rationnelle :

On s'est donc ramené à montrer la proposition pour la réunion de n plans.
Soit P1, P2 Pn les plans dont la réunion est M ; soit k1, k2 kn des entiers
positifs tels que k1 + k2 + + kn 3 et soit I/fcl>fc2fen l'ensemble des triplets
simples ayant kt points sur Pt. D'après le lemme 10 (Annexe 2) le schéma

(Hilb3 M)red admet les adhérences Uklfk2_kn comme uniques composantes
irréductibles. Appelons «type» d'une telle composante l'ensemble des kt
non nuls. Ainsi (Hilb3 M)red est formé de

(X-2)f0 + Xf2 0

[Hilbc Xo] ~ [HilbJ XJ ~ [Hilb? X2]

soit encore

[Hilbc S'] - [Hilbc M]

J composantes irréductibles de type {1, 1, 1}

2 composantes irréductibles de type {2, 1}

n composantes irréductibles de type {3}
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De plus, deux composantes irréductibles de même type sont évidemment
rationnellement équivalentes dans Hilbc3 P3, comme on le voit en faisant

agir PGL(3) sur les triplets de plans. Ainsi,

où A, B et C sont trois cycles fixés dans l'anneau de Chow de Hilb3 P3 ;

d'où le résultat annoncé.

Remarque 2. Le lecteur adaptera sans peine la démonstration pour
montrer que pour tout cycle K e A'(Alk P3), de dimension k, le degré du
0-cycle K. i* [Hilb? S"] est de la forme

Soit S une surface de P4. La définition donnée en 1) des formules
/c-sécantes pour S oblige à connaître la classe d'équivalence de [Hilb? S]
dans l'anneau de Chow de Hilb? P4.

L'idée qu'on va utiliser est de construire un schéma relatif Z/C avec

fibre Zjl S, la fibre £0 ayant pour réduit la projection S' de S sur un
hyperplan générique H. On essayera alors d'arriver à l'équivalence rationnelle

[Hilb? S] ~ [Hilb? E0] et d'utiliser la proposition 1. Considérons maintenant

un schéma F. Si F est non-singulier, l'ouvert Hilbfef F des /c-uplets simples
est dense dans Hilb? F : car un k-uplet curviligne dans F est aussi contenu
dans une courbe non-singulière À située sur F ; on le déforme alors en k

points simples sur À. (Remarquer par contre que Hilb? F n'est en général

pas dense dans Hilbfc F; voir [15]).

Remarque 3. C'est justement la présence de composantes immergées dans

Z0 (de réduit S') qui fait qu'on a Hilb^ Z0 (ou Hilb^ 5') non dense dans

Hilb? Z0. En fait, on verra que Hilb? S' (qui est l'adhérence de Hilb?t S')

est seulement une composante irréductible de Hilb? £0, lequel scinde en

plusieurs composantes. Et c'est l'évaluation de la contribution de chacune

de ces composantes dans les formules /c-sécantes qui constitue l'essentiel de

la démonstration.

[Hilb3 M] [(Hilb3 M)red] B + nC

où les a{ ne dépendent que de K.

3°) Déformation de S en Z0 ; étude de Hilb? Z0
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a) Commençons par décrire un procédé général de déformation d'un sous-

schéma de P*\

Soit Z c PY un schéma réduit et Z* sa projection sur un hyperplan H

par un point générique co. D'après ([14], prop. 1.4) ou encore ([13], III, ex. 9.8.3),

il existe un sous-schéma réduit Jf de PlY x C, plat sur C, avec pour fibres

Z et (^o)red Rappelons pourquoi: On prend pour cela un

système de coordonnées homogènes (x0 : xx :... : xN) pour lequel H ait pour

équation xv 0, le point co étant le point (0:0 :... : 0:1). Le schéma a la

structure — réduite — de l'adhérence dans Pv x C de l'image de Z x C*

par le plongement

Z x C* PY x C*

((x0 : x± :... : xN_ ±
: xN), X) i— ((x0 : xx :... : xN_ x. XxiY), X).

En général, la fibre if 0 possède des composantes immergées (voir [13], p. 260).

Remarque 4. Si on pose Ü C et U C*, le schéma relatif FFjU
est plat puisqu'il est isomorphe au produit Z x U.

b) Appliquons ce qui précède à une surface S à singularités ordinaires de P4.

On la projette génériquement en S' sur un hyperplan H. La sous-variété S'

possède une courbe-double F, des points triples M±,..., Mt et des points-
pinces Pl5..., Pv. Il s'agit d'abord d'établir la structure nilpotente de E0,
sachant que (Z0)red S'. Nous pouvons énoncer deux propositions.

Proposition 3. Avec les notations précédentes, on a l'égalité des sous-
schémas de P4 :

S0 S' u r(1) u M[2) u u M{2)

où pour V ci P4, V{l) désigne le i-ème voisinage infinitésimal de V dans P4.

De plus, S' (Z0)red Zö n H.

Dans le dessin ci-après les nilpotents sont dans P4; on a représenté
les doublets (dans P4) par des traits courts et les triplets par des traits
courbés plus longs.

Avant d'énoncer la proposition suivante, donnons une définition. Celle-ci
est motivée par le fait, comme on l'a dit, que pour un schéma quelconque F,
l'ouvert Hilbfcf F n'est en général pas dense dans HilbJ F.

Définition 2. Appelons /c-uplet « double » (resp. « triple »), une réunion
disjointe de points simples et de doublets de support un point (resp. points
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simples, doublets de support un point et triplets curvilignes de support un
point).

Alors à défaut de pouvoir déformer tout /c-uplet curviligne d'un schéma F
en /c-uplets simples, on peut espérer le déformer en k-uplets doubles, voire
triples. C'est justement ce qu'affirme la proposition suivante (en i) pour le

schéma £0.

Proposition 4. Soit E/C le schéma relatif associé à une surface à

singularités ordinaires S de P4, dont S' est la projection sur Vhyper-

plan H.

i) Tout k-uplet curviligne dans E0, de support un point-triple {M}, est limite

(pour k^4) de k-uplets triples dans E0.

Tout k-uplet curviligne dans Z0 de support un point-pince {P}, est

limite (pour k^3) de k-uplets doubles dans £0.
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Tout k-uplet curviligne dans Z0, de support un point de la courbe double T

de S', est limite (pour k^3) de k-uplets double dans E0 •

ii) Tout k-uplet curviligne dans Z0 est limite de k-uplets curvilignes dans des

fibres de L/C avec X # 0.

iii) Hilb3 Z0 est réduit au voisinage d'un triplet curviligne t de support un

point-triple {M}, lorsque t fi S' (£0)red n H.

Hilb2 Z0 est réduit au voisinage d'un doublet d de support un point-

pince {P}, lorsque d fi S'.

Hilb2 Z0 est réduit au voisinage d'un doublet d de support un point
de T, lorsque d fi S'.

Preuves des propositions 3 et 4. Il s'agit essentiellement, par des calculs

en coordonnées, de se ramener à l'étude de modèles locaux pour £0,
d'abord au voisinage de la courbe double T, puis d'un point triple M et

enfin d'un point pince. Or cette étude pour les modèles locaux a été faite
dans [24]. Voir l'Annexe 3 pour tous les détails de calcul.

II) Trisécantes dans P4: la théorie

Soit S une surface de P4 à singularités ordinaires. Notons n son degré,
d le degré de la courbe double apparente et t le nombre de points-
triples apparents, dans une projection générique sur un P3.

On regarde le diagramme, où les flèches sont les injections canoniques
et les dimensions sont entre parenthèses :

(9) Al3 P4 cfi Hilb3 P4 (12)

d

Hilb3 5 (6).

Le but de ce § II est de montrer la

Proposition 5. Soit S une surface de P4, d'invariants (;n,d,t).
Pour tout cycle Z dans A3(Al3 P4), la formule trisécante donnant le degré
du 0-cycle Z.i* [Hilb3 5] est de la forme
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T(S) axn + a2 + a3 + at + d(ßn + y)

où al9 a2, a3, a, ß et y sont des constantes ne dépendant que de Z.

1°) Composantes de Hilbc3 £0

a) Notons S' la projection de S sur un P3 générique de P4. S' admet une
courbe double F avec t points-triples M1 Mt et v points-pince. En I.3.b on
a construit un schéma relatif E/C avec S et (E0)red S'. De plus

(proposition 3), on a

où K(I) désigne le i-ème voisinage infinitésimal de V dans P4 ; on a

E0 n P3 S'.

Nous allons détailler les différentes composantes du schéma (Hilb3 E0)red.

Notation 1. Notons S21 la sous-variété (localement fermée) de Hilb3 P4

formée des triplets t d y m où

d est un doublet de P4 de support un point de T,

m est un point de S' — F.

Soit S2i l'adhérence de S21 dans Hilb3 P4.

(*) E0 S' u r(1) u M[2) u u M\2)
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Notons SJ3 pour j -1,2... tla sous-variété de Hilb3 P4 des triplets

curvilignes E, de P4, de support {Mj}.SoitS3 leur réunion (disjointe).

Remarque 5. Bien sûr, S21 et S3 sont contenus dans (Hilbc3 S0)red

d'après la structure nilpotente même de Z0 (*).

b) On a la

Proposition 6.

i) (Hilbc3 Z0)red est réunion de (Hilb3 S')TQd, de S21 et des SJ3 (j 1, 2 t).

ii) Hilb3 E0 est génériquement réduit le long de ces composantes.

Preuve, i) Soit t un triplet curviligne contenu dans £0. Si t est contenu

dans l'hyperplan P3, comme I0nP3 S", on a te (Hilb3 S")red. Si t 9^ P3,

le support de t ne peut être formé de trois points simples, puisque (£0)red S'

et S' cz P3. Donc Supp t rencontre T, car en dehors de T, les faisceaux

structuraux de S' et E0 sont égaux.

Premier cas. Supp t {a, b} avec aeT et t double en a. Si b $ F,

par définition, on a teS21. Si b e T, on le «bouge» en b' e S' — T et

donc t appartient à S21

Deuxième cas. Supp t {a} où a e F. Si a est l'un des points-triples Mj9
on a te S3. Si a n'est pas l'un des points Mj, c'est soit un point-pince
soit un point générique de F. Dans les deux cas, t est limite de triplets
de support formé de deux points: en effet cela résulte de la proposition 4.

ii) La composante Hilb3 S7 est génériquement réduite d'après les lemmes 10

et 11 de l'Annexe 2 puisque S' a P3 n'a que des singularités ordinaires.
Par ailleurs S | est génériquement réduite d'après la proposition 4 iii) : un

triplet générique de S{ n'est pas dans H. Enfin, montrons que S21 (donc S21

est génériquement réduit. Soit dum un triplet générique de S21; ainsi le

support de d n'est pas un point triple et d £ H. Alors Hilb2 £0 est réduit
au voisinage de d par la proposition 4 iii); d'où S21 réduit au voisinage de

dum.

2°) Contribution de ces composantes dans T(S)

Soit Z g A3(Âl3 P4) un cycle fixé. Nous allons montrer trois lemmes,
avec les notations précédentes.

Lemme 3. Le degré du 0-cycle Z .i* [Hilb3 S"] est de la forme
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a^n -F 0-2 + a3

où a1,a2 et a3 ne dépendent que de Z.

Lemme 4. Le degré du 0-cycle Z. i* [S3] est de la forme at où

a ne dépend que de Z. (S3 désigne la réunion disjointe des Sj3 pour
j= 1,2...t.)

Lemme 5. Le degré du 0-cycle Z .i* [S2i] est de la forme d(ßn + y)
où ß et y ne dépendent que de Z.

a) Prouvons le lemme 3. Regardons le diagramme commutatif où les flèches

sont les injections canoniques et les dimensions entre parenthèses :

Nous voyons par examen des dimensions que Al3 P4 et Hilb^ P3 ne se coupent

pas proprement dans Hilb3 P4.

Nous aurons besoin du théorème de l'intersection résiduelle [7] [17]
sous forme de la formule de Fulton-MacPherson [6], qu'on énoncera ainsi:

Théorème (Fulton-MacPherson). Soit Y une sous-variété non-singulière
de la variété non-singulière X. Soit A une sous-variété de X et

I A n Y. Considérons le diagramme commutatif où les flèches sont les

injections canoniques :

(9) Al3 P4 i Hilbc3 P4 (12)

t"
(7) Al3P3 <4. Hilb3 P3 (9)

t
Hilb3 5" (6).

A <4 x
t«

i c4 y
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Si I est localement intersection complète dans A et si

dim I dim A + dim Y - dim X + r

alors pour tout cycle oc dans Y, le cycle dans A est égal à

j#(Cr.i*oc) où Cr est fixé dans Ar(I).

L'Annexe 7 montre que Al3 P4 et Hilbc3 P3 se coupent schématiquement

en Al3P3. Appliquons alors la formule de Fulton-MacPherson à

a [Hilb3 S"] dans A'(Hilb3 P3). Comme ici r 1, on obtient

iX°c i*[Hilb3S"] j,C

où C CL.î* [Hilb3 S'] avec C1 fixé dans A1 (Al3 P3). Par suite, par la

formule des projections, on a dans A (Al3 P4) :

Z. i* [Hilb3 S"] Z jJfZ. Ci. f* [Hilb3 S']).

Mais K j*Z.C\ appartient à AfiAI3 P3) et donc par la proposition 2:

deg Z. i* [Hilb3 S'] deg [Hilb3 S']

est de la forme

apn + a2 ^ + a3 ^
où a1, a2 et a3 sont des constantes. Le lemme 3 est donc prouvé.

b) Prouvons le lemme 4. Pour cela nous avons besoin d'un lemme auxiliaire :

Lemme 6. Désignons par P l'intersection ensembliste de S{ (défini
dans ce paragraphe en l.a) et de Al3 P4 dans Hilb;? P4.

Alors génériquement, S{ et Al3 F4 se coupent transversalement ; par suite

P [Si] [P]
Remarquer que P est isomorphe à P3 par le choix de l'axe du triplet

passant par M-}.

Preuve du lemme 6. C'est un simple calcul en coordonnées, comme on en
fera beaucoup dans l'Annexe: soit E,0 un triplet aligné de support {M;},
d'axe transverse à P3 (l'hyperplan qui contient S'). Dans un système
inhomogène de coordonnées (x, y, z, u) centré en Mj, S' a pour équations

xyz + 0, u 0

et Axe est engendré par un vecteur de coordonnées (a, ß, y, 8). Puisque
é,o est supposé générique dans P, on se ramène äa=ß y 5 l
et l'idéal de est alors
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J0 (x3, y — x, z — x, u — x).

Une carte de Hilbf P4 en £,0 est donnée par

(a, b, c, a1,b1,c1,a2,b2,c2,a3,b3,c3)

correspondant à l'idéal voisin :

I (x3 + ax2 + bx + c, y — a + ö1x2 + 61x + c1, z — x + a2x2+ b2x + c2,

u — x + a3x2 + b3x + c3).

Dans cette carte, Al3 P4 s'exprime par a1 a2 a3 0 et S{ par

— d'une part c1 c2 c3 0 car la courbe sur laquelle est le triplet
curviligne doit passer par 0,

— d'autre part a b — c 0 car le support doit être {0}. Cela termine
la démonstration du lemme 6.

Nous aurons besoin de rappeler la proposition suivante (montrée en [25]).
C'est une conséquence facile du théorème de Leray-Hirsch, car

Axe : Alk PN G( 1, N)

est une fibration de fibre type Pfe.

Proposition 7. Soit i un entier et 34? l9 34? 2 34? f des hyperplans
de FN en position générale. Pour k ^ i, soit Ht la sous-variété de

Alk PN formée des k-uplets alignés E, avec £, n 34?
p ^ 0 pour 1 < p ^ i.

Alors on a Fégalité dans A'Q(Alk PN) des sous-espaces vectoriels

A lQ(Alk PN) et © Axe*A lQ \G). [if.]
j=o

(On note A'Q A' (g) et G G(l, N)).
z

Dans le cas qui nous occupe (k 3), on a donc en fixant 34? l9 3tf29 3#?
3

trois hyperplans de P4 en position générale, l'égalité :

A3Q{Al3 P4)

Axe*A q(G) © Axe*Ag(G). [iJJ © Axe*A *(G). [JJ2] © Q [H3]

Or il est bien connu par la décomposition de Schubert (voir par exemple [21])

que A\G( 1, 4)) est donné par:

— A3(G) Z(0, 4) © Z(l, 3) où
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(0, 4) droites passant par un point fixe 0 de P4,

\ (1, 3) droites contenues dans un hyperplan H' de P4 et coupant

une droite A' de H'.

— A2(G) Z(l, 4) © Z(2, 3) où

(1, 4) droites coupant une droite À" de P4,

\ (2, 3) droites contenues dans un hyperplan H" de P4.

— A'(G) Z(2, 4) où

(2, 4) droites coupant un plan fixe n de P4.

Pour montrer l'assertion du lemme 4, il suffit de la montrer pour Z
décrivant une base de A3(Al3 P4). Mais on a (lemme 6) Z. i* [SJ3] Z. [J7].

Or dans la base énumérée ci-dessus de Aq(A13 T?4), seul le premier cycle

Axe*(0, 4) a une intersection non vide avec P. En effet,

Notons alors a le degré d'intersection Axe*(0,4). [J7]. (On peut se

convaincre que c'est 1 par un calcul en coordonnées, mais c'est inutile pour
la suite). Cela correspond à l'unique triplet aligné dans P4 de support

{Mj} et d'axe OMj. On a donc deg Axe*(0, 4). i* [SJ3] a d'où

deg Axe*(0, 4). i* [S3] at puisque [53] ^ [>SJ3]

j-1
L'assertion du lemme 4 est prouvée pour Z décrivant une base de

A3(Al3 P4), donc le lemme 4 est démontré.

c) Prouvons le lemme 5. Nous aurons besoin comme en b), d'un lemme
auxiliaire :

Lemme 7. Désignons par I Tintersection ensembliste de S21 (défini
dans ce paragraphe en La)) et de Al3 P4 dans Hilbc3 P4. Alors géné-

riquement, S21 et Al3 P4 se coupent transversalement ; par suite P [S21]
[/] dans A'(Al3 P4).

La preuve du lemme 7 est un calcul en coordonnées comme le lemme 6 :

voir l'Annexe 4.

Axe*(l, 3). [I7] 0 car Mj $ H'

car Mj£
car M x

car Mj$ 34?!

car Mj^ 34?!

Axe*(l, 4). [HJ [J7] 0

Axe*(2, 3). [HJ [P] 0

Axe*(2, 4). [ff2] [P] 0

[H3] [L] « 0



24 P. LE BARZ

D'après ce lemme, pour prouver le lemme 5, il suffit de montrer que pour
tout cycle Z dans A3((Al3 P4), le degré du 0-cycle Z. [/] est de la forme
d(ßn + y) où ß et y ne dépendent que de Z. Il suffit donc de le vérifier

pour Z décrivant une base de Aq(A13 P4). Or une telle base a été explicitée
en b), comme conséquence de la proposition 7. On utilise donc les mêmes

notations qu'en b).

Il s'agit de voir que les degrés des 0-cycles

/ i) Axe*(0, 4). [/]
l ii) Axe*(l, 3). [/]

iii) Axe*(l, 4). [tfj.17]
iiv) Axe*(2,3).[H1].[I]

\v) Axe*(2, 4). [#2] [/]
vi) [H3].[/]

vérifient l'assertion du lemme 5.

Montrons-le rapidement cas par cas, toujours avec les notations de b).

L'hyperplan de P4 contenant la projection S' est noté P3.

i) Les axes des triplets éléments de I sont dans P3, donc ne peuvent
rencontrer un point fixe 0 de P4. Le premier des degrés cherchés est donc 0.

ii) Les axes des triplets de I sont dans le plan H' n P3 de P3 et passent

par le point fixe À' n P3 de ce plan. Donc il y a d possibilités pour le choix
d'un point-double et il reste n — 2 autres possibilités pour le point simple.
Dans ce cas le degré cherché est d(n — 2).

On ne tient pas compte d'une multiplicité éventuelle, car cela ne change rien

à l'énoncé du lemme.

iii) Soit 0 A" n P3 et P x n P3 (où est l'hyperplan qui définit
le cycle H^). Les axes des triplets de / doivent passer par O et les triplets
avoir un point au moins sur P. Deux cas à distinguer :

— ou le point simple est sur P n S' et le point-double a son support
sur T. Il y a donc nd choix possibles puisque deg F d ;

— ou le point-double a pour support l'un des d points de P n F et il
reste n — 2 autres possibilités pour le point simple. (En plus, dans ce cas

la multiplicité est 2).

La somme est bien de toute façon de la forme d(ßn + y).



Dans l'un comme l'autre cas de figure ci-dessus, les petits traits représentent
les doublets dans P4, de support T.

iv) Soit P H" n P3 et P1 n P3. Les triplets doivent donc être dans

P et avoir au moins un point sur la droite À P n P1. Il y a donc

n possibilités pour le point simple, d'où dn possibilités pour le choix d'un
tel triplet.

v) Les axes des triplets de I doivent couper la droite fixe À n n P3

et les triplets doivent avoir deux points sur et j4?2. Soit Pt n P3.

Comme les triplets de I ne sont pas formés de trois points distincts, le

support {0} du point-double doit être ou sur P1 ou sur P2. Supposons

qu'il soit sur P1 ; comme le degré de F est d, cela donne d possibilités
de choix pour 0. Mais alors la droite À et le point 0 engendrent un plan P.

La droite P n P2 coupe S' en n points dans P parmi lesquels est choisi le
troisième point du triplet; donc il y a dn solutions et par symétrie entre
P1 et P2, 2dn au total.

vi) Soit Pt Jf f n P3. Les triplets de I doivent avoir un point sur chacun
des trois plans Pl9 P2, P3; mais comme ces triplets ne sont pas simples,
la partie doublet est obligatoirement à support sur une des droites Pt n P •.

Or aucune de ces droites ne coupe F ; l'intersection est donc 0.
Le lemme 5 est ainsi démontré.
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d) Conclusion

Soit S une surface de P4 à singularités ordinaires et E/C le schéma

relatif associé défini en I.3.b. Posons Ü C et U C*. Nous allons voir
que les hypothèses de la proposition 1 sont satisfaites pour le schéma relatif
Z/C.

Pour a), cela résulte de la proposition 4ii). Pour b), cela résulte de la

proposition 6 ii), chaque composante de Hilb3 X0 étant génériquement réduite.
Enfin le schéma X/C* est isomorphe au produit S x C* par construction même

(remarque 3). Donc par la remarque 1, X/C* est /c-plat, puisque S c= P4

n'a que des singularités ordinaires. L'hypothèse c) de la proposition 1

est donc satisfaite.

La proposition 1 donne alors l'équivalence rationnelle dans Hilb3 P4 :

[Hilb;? S] ~ [Hilb' Z0]

Or par la proposition 6 i), on a l'égalité des cycles :

[Hilb' Z0] [Hilb' S'] + [S^] + [S3]

D'où pour n'importe quel cycle Z de A3(Al3 P4), l'égalité des 0-cycles :

Z. i* [Hilb3 S] Z. i* [Hilb3 S"] + Z. i* [S^] + Z. i* [S3]

Des lemmes 3, 4 et 5 résulte alors aussitôt la proposition 5 que l'on cherchait
à prouver.

III) TrISÉCANTES DANS P4 : LES CALCULS

Soit S une surface de P4 d'invariants n, d, t (notations du § II). On va
donner deux formules trisécantes pour S, supposée à singularités ordinaires
dans P4.

1°) Tangentes à S recoupant S et une droite fixée.

Nous cherchons le degré du 0-cycle

[0] Axe*a2. Z* [Hilb3 S]

où comme d'habitude, i : Al3 P4 c» Hilb3 P4 est l'injection canonique. Ici,
@ a Al3 P4 est l'hypersurface des triplets alignés non simples et a2 (1, 4)

est le cycle de Z2(G(1, 4)) des droites de P4 coupant une droite fixe À.

D'après la proposition 5, ce nombre est de la forme
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T(S) a^n + a2 + a3 + at + d{ßn + y).

a) Avant de commencer le calcul des six coefficients, regardons le cas où S

est singulière avec 8 points-doubles impropres. Soit 0 l'un de ces points.

Il engendre avec À un plan P recoupant S en n — 2 autres points et non pas

n — 3 (voir IV.l.c.i). Or chacune des n — 2 droites joignant 0 à l'un de

ces n — 2 points est une droite coupant S suivant un triplet non simple

(car double en 0). C'est une « fausse » tangente à S. Donc il faudra, pour
avoir le nombre de «vraies» tangentes à S, retrancher de T(S) ces 8(n —2)

fausses tangentes par les points-doubles de S. Mais il faut le faire bien sûr

en comptant la multiplicité.
Un calcul montre alors (Annexe 8) que cette multiplicité est 2. C'est

tout à fait analogue au fait que la classe d'une courbe plane avec 8 points-
doubles ordinaires est n(n— 1) — 28 puisqu'on doit retrancher les droites,

comptant deux fois, qui passent par les points-doubles.

b) Soit alors S la réunion de S et d'un plan P générique de P4. Essayons
d'évaluer T(S). D'après le lemme 9 (Annexe 1) Hilbc3 S se décompose en

quatre composantes (réduites)

iHilb3

S

Hilb2 S0 x P0

S0 x Hilb2 P0

Hilb3 P

où S0 S — P et P0 P — S; la barre est l'adhérence dans Hilb3 P4.

On a donc, si i : Al3 P4 c> Hilb3 P4 est l'injection canonique,

i* [Hilb3 5]

i* [Hilb,? S] + i*[Hilb2S0xP0] + i* [S0 x Hilb2 P0] + i* [Hilb2 P]
Pour obtenir T{S), on intersecte avec \ß~\ Axe*a2 dans A'(Al3 P4). Le premier
terme va donc donner par définition T(S) et le dernier T(P). Le troisième
terme, lui, va donner 0 car une droite dans P ne recoupe pas une droite
fixée générique.

Reste à voir la contribution du deuxième terme. Rappelons qu'on cherche
des triplets non simples. Deux cas sont à distinguer :

— ou le point-double est sur Set le point simple sur P,
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— ou deux points simples sont sur S et le point-double provient de la

rencontre avec P en l'un des points-simples.

4/
Deuxième cas

Dans le premier cas, le nombre cherché est n(n— 1). En effet, il s'agit
du nombre de tangentes à S coupant un plan P fixé et une droite fixée.

Par la formule de Pieri, on a dans Ä(G( 1, 4)) :

(I5 4). (2, 4) (0, 4) + (1, 3).

Il s'agit donc du nombre de tangentes à S passant par un point fixe 0
plus le rang (i^) d'une section hyperplane. C'est donc v + 28 d'une part
(il faut bien compter, et avec multiplicité 2, les 5 fausses tangentes à S

passant par 0 et l'un des 8 points-doubles impropres de S) et d'autre part
p1 n(n — 1) — 2d ([34], p. 190) car une section hyperplane de S a degré n

et à points-doubles apparents.
Soit au total n(n— 1) car 2d v + 28 (cf. Annexe 6). La multiplicité

est 1 car P est choisi générique.

Dans le deuxième cas, vu ce qu'on a dit au début de ce paragraphe,
il s'agit de « fausses » tangentes à S par l'un des n points d'intersection de P

et S. Donc on doit les compter 2n(n+l — 2) puisque S est de degré n -f- 1.

Au total, la contribution du deuxième terme dans T(S) est 3n(n— 1).

On a donc montré la relation

T{S) T(S) + T{P) -h 3n(n — 1),

soit en utilisant le lemme 13 de l'Annexe 5 :

Premier cas
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a^n+1+ a2^ + 03 ("3 ^ + ^t + d) + (d + ") (ß(" +!) +

axn + a2 (^j + a3 ^ + at + d($n + y) + + 3n(n-l).

(Il vient T(jP) a1 car alors n 1, d t 0). Or le lemme 12 (Annexe 5)

permet d'identifier les coefficients ce qui donne :

pour d: a + ß 0

f — y a2 — a3 + 6 (on a fait n — 1)
pour n.

+ 2ß + y 0 (on a fait n 1).

Il reste à trouver trois autres équations. On remarque tout d'abord que ni

un plan, ni une quadrique de P3 plongée dans P4 n'ont de trisécante

rencontrant une droite fixe. On a donc T 0 pour ces deux surfaces, soit

ax 2ax + a2 0. Ensuite, la surface S(2, 2), intersection complète de deux

hyperquadriques de P4, vérifie T 0; car pour raison de degré, une tri-
sécante est l'une des 16 droites qu'elle contient et aucune ne rencontre
une droite fixe. Mais on connaît n, d, t (Annexe 6) d'où

4a1 + 6a2 + 4a3 + 2(4ß + y) 0

Ces six équations ensemble forment un système inversible dont la solution est :

0 a2 0 a3 — 6

a — 6 ß 6 y —12

On a donc démontré (vu a)) le

Théorème 1. Soit S une surface à singularités ordinaires de P4,
d'invariants n, d, t. Alors le degré du 0-cycle

[ß~\ Axe*<j2 • i* [Hilb3 5]

(nombre de tangentes à S recoupant S et une droite fixe) est

Et les 8 points-doubles impropres éventuels de S contribuent de 28(n-2)
dans ce nombre.
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2°) Tangentes d'inflexion coupant un plan fixé

Nous cherchons cette fois le degré T(S) du 0-cycle

\ß~\ Axe*^ i* [Hilbc3 S]

Cette fois, ZT c= Al3 P5 est la sous-fibration en 0 c Hilb3 P1 formée des

triplets alignés de support un point. {3T0 a la structure d'une cubique gauche
dans Hilb3 P1 ~ P3). Le cycle a1 de A1(G(1, 4)), encore noté (2, 4), est formé
des droites coupant un plan n fixé.

Toujours d'après la proposition 5, le nombre T(S) est de la forme

a) Avant de chercher les six coefficients, regardons le cas où S est singulière
avec 5 points-doubles impropres.

Soit 0 l'un de ces points. Chacun des plans tangents Px (resp. P2)
à S en 0 coupe le plan n fixé en un point m1 (resp. m2). Les deux

triplets alignés de support {0} et d'axe Oml (resp. Om2) sont dans S et

interviennent donc dans T(S). Cependant, ces droites sont de « fausses »

tangentes d'inflexion. L'Annexe 8 b) montre qu'elles comptent avec multiplicité 3.

On devra donc retrancher de T(S) le nombre 68 de façon à obtenir le

nombre de « vraies » tangentes d'inflexion. Ceci est analogue au fait que pour
une courbe plane ayant seulement 8 points-doubles ordinaires, on doit
retrancher 68 à 3n(n —2) pour avoir le nombre de « vrais » points d'inflexion

b) Soit, comme en 1), S la réunion de S et d'un plan P. On obtient,
avec les mêmes notations :

i* [Hilb3 S] + i* [Hilb2 S0 x P0] + i* [50 x Hilb2 P0] + ** [Hilb3 P]

Pour obtenir T(S), on intersecte avec \ß"\. Axe*ax ; le premier terme

va donc donner par définition T(S) et le dernier : T(P) a1. Reste à voir
la contribution des deuxième et troisième termes.

D'après a), elle est de 3n pour chacun d'eux. En effet, pour chaque point
d'intersection 0 de S et P, il y a deux triplets alignés de support {0}
coupant un plan fixe k : l'un dans T0S et l'autre dans P ; et chacun compte,

vu a), avec la multiplicité 3. On a donc montré la relation

([34], p. 78).

i* [Hilb3 S]
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T(5) T(S) + ax + 6n,

soit comme précédemment :

afn + 1) + ^2^2^ + "3 + oc(f + d) + (d + ri) (ß(n+ l) + y)

axn + a2 + a3 (*^J 4- at + d(ßn + y) + a1 + 6n

Grâce à l'Annexe 5, on peut identifier comme précédemment en d et n,

d'où

a + ß 0, — y a2 — a3 — 6 et a2 4- 2ß + y 6

comme équations.

Il reste à en trouver trois autres. La surface S(2, 2) contient 16 droites

dont aucune ne coupe un plan fixe ; donc T(S(2, 2)) 0. D'où comme plus
haut: 4a1 4- 6a2 4- 4a3 4- 2(4ß + y) 0. Enfin, par un calcul énumératif

simple (Annexe 9), on a T(S(2, 3)) 60 et T(S(2, 4)) 192 d'où deux
dernières équations :

6a1 4- 15a2 4- 20a3 4- 6(6ß + y) 60 car on connaît (n, d, t)

8ax 4- 28û2 4- 56a3 4- 12(8ß + y) 192 pour ces surfaces (Annexe 6).

Ces six équations ensemble forment un système inversible dont la solution est

a1 — 3 a2 — 6 a3 12

a 6 ß=—6 y 24

On a donc démontré, vu a), le

Théorème 2. Soit S une surface à singularités ordinaires de P4,

d'invariants n, d, t. Alors le degré du 0-cycle \ßT] Axe*«?!. z* [Hilb;? S]
(nombre de tangentes d'inflexion à S coupant un plan fixe) est

n(n — 4) (2n — 1) + 6(t-d(n-4)).
Et les 8 points-doubles impropres éventuels de S contribuent de 68
dans ce nombre.
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