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§ 3. Kauffman's state model for the Jones polynomial

Let K be a link diagram. By a state or a marker of K, we mean

respectively a state or a marker of the corresponding link projection
in R2 (which is obtained from K by forgetting the overcrossing-undercrossing
data). The markers of K are divided into two classes — positive and negative.

By definition, if the over-line is rotated counterclockwise around the double

point, then the first marker it meets is the positive one and the second

one is negative :

positive marker negative marker

Figure 17

Let the diagram K be oriented. Consider the polynomial

VK(t) /l_r 1/2)|S|-1

where w(K) is the writhe number of K. The summation is over all the
states S of K; the number of positive [respectively negative] markers
of the state S is denoted by % [respectively 6S], and the number | S |

is defined in § 2.

It is shown in [5] that the polynomial VK(t) is equal to the Jones
polynomial of the oriented link presented by K (see also [3]).

§ 4. Proof of Theorem 1

Orient the diagram K and denote the corresponding oriented link
by L. Denote^ by A the state of K in which all markers are positive,
and by B A the dual state in which all markers are negative. For any
state S of K, denote by Ds and ds respectively the maximal and minimal
degrees in t in the expression

{-(as ~ _ £ 1/2 _ ^ - l/2yS| - 1
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(see § 3), namely

Ds (as-bs + 2\S\-2)/4

ds (as-bs-2\S\ + 2)/4.

In particular

Da [c + 2\A\-2)/4
(6)

dB (-c-2|fl| + 2)/4.

Proof of (i). If a state S2 is obtained from a state S by replacing
one positive marker by a negative one (at some crossing point), then

%2 as — 1, bs2 bs + 1 and | S2 | ^ | S | + 1. Thus

DS2 - Ds- I + (|S2|-|S|)/2 < 0

so that DS2 < Ds. This implies that Ds ^ for any state S of K.
Therefore

dmj VL( t)) ^ 1 w(K + Da

dmJVL(t)) ^W(-K^ + d" "

Thus in view of equalities (6) and of Lemma 1 of § 2, one has

(7) span(L) ^ DA — dB (c + \A\ + \B\ — 2)/2

^ (2c + 2r — 2)/2 c + r — 1

Proof of (ii). Let Kl5..., Kr be the unsplittable components of K,
with r r(K). Denote by Lt the oriented link represented by Kt. It follows
from part (i) of the Theorem and from formula (1) that

c{K) £ c(Kt)>X span (L;) span(L) - (r-1).
i 1 £ 1

Thus the equality c(K) + r — 1 span (L) holds if and only if c(£f)
span (Li) for each i. Therefore, to prove (ii), it suffices to consider the

unsplittable case r 1.

It is evident that the numbers c(K) and span (L) are both additive under
connected sum of diagrams. Therefore it is enough to prove the following
assertion (*).
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{For
a prime unsplittable diagram K of an oriented link L, the

equality c(K) span (L) holds if and only if K is a reduced and

alternating diagram.

In (*), note that, formally, the link L is not supposed to be prime or even

unsplittable.
Suppose first that c(K) span (L). Then all inequalities above are in fact

equalities. As r 1, one has in particular

\ Â \ + \ B \ c + 2r c + 2.

Lemma 2 of § 2 shows that the state A is monochrome. This implies that

K is alternating, because of the easy but essential lemma :

Lemma. Let K be an oriented connected link diagram. Then K is

alternating if and only if the state A is monochrome.

Moreover the diagram K is reduced, since all prime diagrams are reduced

except the two diagrams

Figure 18

which are excluded by the assumption c(K) span (L).

Suppose conversely that K is reduced and alternating. The preceeding
Lemma shows that the state A is monochrome. According to Lemma 2 of § 2 :

I A I + I B I c + 2. We prove below that

(8) dnJVM) ~ l^K) + Da

(9) dmin(VL(t))= ~^w(K) + dB.

Thus the inequalities (7) are in fact equalities, so that span (L) c + r
- 1 c.

By region, we mean hereafter a connected component of S2 — K. (Here
S2 R2 kj {oo}.) Since K is alternating, each region intersects either markers
which are all positive or markers which are all negative. Shade the regions
of the first type :
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Figure 19

Observe that two unshaded regions near one crossing point are necessarily

distinct, otherwise the diagram K would not be reduced :

Figure 20

It is evident that A is equal to the number of unshaded regions. Let a

state S2 be obtained from A by replacing one positive marker by the

negative marker. Under this operation two distinct unshaded regions are

connected by a band, and therefore [ S2 | | A | — 1. In view of the

arguments given in the proof of part (i) of the Theorem, this implies that
Ds < Da for any state S of K. This implies (8). Analogous arguments

imply (9), and the proof of (ii) in Theorem 1 is complete.

§ 5. Proof of Theorem 2

Let me first recall the definition of the signature of an oriented link L
in terms of a (not necessarily orientable) surface V bounded by L (see [2]).
One defines a bilinear form
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