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§ 3. KAUFFMAN’S STATE MODEL FOR THE JONES POLYNOMIAL

Let K be a link diagram. By a state or a marker of K, we mean
respectively a state or a marker of the corresponding link projection
in R? (which is obtained from K by forgetting the overcrossing-undercrossing
data). The markers of K are divided into two classes — positive and negative.
By definition, if the over-line is rotated counterclockwise around the double
point, then the first marker it meets is the positive one and the second

one is negative:

positive marker negative marker

FiGURE 17

Let the diagram K be oriented. Consider the polynomial
VK(t) — (_ t)_ 3w(K)/4 Z t(as_ bs)/4-( . t1/2 —t 1/2)|s| -1

where w(K) is the writhe number of K. The summation is over all the
states S of K; the number of positive [respectively negative] markers
of the state S is denoted by ag [respectively bg], and the number | S|
is defined in § 2.

It is shown in [5] that the polynomial V(t) is equal to the Jones
polynomial of the oriented link presented by K (see also [3]).

§4. PROOF OF THEOREM 1

Orient the diagram K and denote the corresponding oriented link
by L. Denote by A4 the state of K in which all markers are positive,
and by B = A the dual state in which all markers are negative. For any

state S of K, denote by Dg and.dg respectively the maximal and minimal
degrees in ¢ in the expression

t(as—bs)/4(~__ t1/2 —t~ 1/2)|s| -1
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(see § 3), namely

Dg = (as—bs+2|S|—2)/4
dg = (ag—bs—2|S|+2)/4 .

In particular

D, = (c+2|4]—2)/4
(6)
dy = (—c—2|B|+2)/4.

Proof of (i). If a state S? is obtained from a state S by replacing
one positive marker by a negative one (at some crossing point), then
ds: = ag — 1, bgs = bg + 1 and | S?| < | S| + 1. Thus

1
Ds» = Ds = — 5+ (IS*[=ISh/2 < 0

so that Dg. < Dg. This implies that Dy < D, for any state S of K.
Therefore

e Vaf0) < — 2 WK) + D,

I V10) > — 3 WK) + d.

Thus in view of equalities (6) and of Lemma 1 of § 2, one has

(7) span (L) < D, — dg = (c+|A|+|B|—2)/2
KQ2c+2r—2)2=c+r—1. O

Proof of (ii). Let K,,.. K, be the unsplittable components of K,
with r = r(K). Denote by L, the oriented link represented by K;. It follows
from part (i) of the Theorem and from formula (1) that

r

oK) = ) oK;) = Zr: span (L;) = span (L) — (r—1).

i=1

Thus the equality ¢(K) + r — 1 = span (L) holds if and only if ¢(K;)

= span (L;) for each i. Therefore, to prove (i1), it suffices to consider the
unsplittable case r = 1.

It is evident that the numbers ¢(K) and span (L) are both additive under

connected sum of diagrams. Therefore it i1s enough to prove the following
assertion (*).

S Iy N
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For a prime unsplittable diagram K of an oriented link L, the
(%) equality ¢(K) = span (L) holds if and only if K 1s a reduced and
alternating diagram.

In (%), note that, formally, the link L is not supposed to be prime or even

unsplittable.
Suppose first that ¢(K) = span (L). Then all inequalities above are in fact
equalities. As r = 1, one has in particular

|A|+|Bl=c+2r=c+ 2.

Lemma 2 of §2 shows that the state A4 is monochrome. This implies that
K is alternating, because of the easy but essential lemma.:

LEMMA. Let K be an oriented connected link diagram. Then K is
alternating if and only if the state A is monochrome.

Moreover the diagram K is reduced, since all prime diagrams are reduced
except the two diagrams

O CO

FiGURE 18

which are excluded by the assumption ¢(K) = span (L).

Suppose conversely that K is reduced and alternating. The preceeding
Lemma shows that the state 4 is monochrome. According to Lemma 2 of § 2:
|A| + | B| = ¢ + 2. We prove below that

® bl Vi(0) = — 3 WK) + D,

& bl Vi(0) = — 2 W(K) + d.

Thus the inequalities (7) are in fact equalities, so that span(L) = ¢ + r
— 1 = ¢

By region, we mean hereafter a connected component of S?> — K. (Here
§? = R* U {o0}.) Since K is alternating, each region intersects either markers

which are all positive or markers which are all negative. Shade the regions
of the first type:
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FIGURE 19

Observe that two unshaded regions near one crossing point are necessarily
distinct, otherwise the diagram K would not be reduced:

O'."

FiGure 20

It is evident that A is equal to the number of unshaded regions. Let a
state S? be obtained from A by replacing one positive marker by the
negative marker. Under this operation two distinct unshaded regions are
connected by a band, and therefore |S?| =|A| — 1. In view of the
arguments given in the proof of part (i) of the Theorem, this implies that
Dy < D, for any state S of K. This implies (8). Analogous arguments
imply (9), and the proof of (ii) in Theorem 1 is complete.

§ 5. PROOF OF THEOREM 2
Let me first recall the definition of the signature of an oriented link L

in terms of a (not necessarily orientable) surface ¥ bounded by L (see [2]). 1
One defines a bilinear form
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