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A SIMPLE PROOF
OF THE MURASUGI AND KAUFFMAN THEOREMS
ON ALTERNATING LINKS

by V. G. TURAEV

The aim of the present paper is to give simplified proofs of several
theorems recently obtained by Murasugi and Kauffman with the help of
Jones polynomials for links. These theorems settle several old conjectures
of Tait on alternating link diagrams. The proofs given here follow the main
lines of the proofs given in [3], [6]; however some steps are considerably
simplified, including the crucial “extended dual state Lemma”.

I thank Claude Weber for careful reading of a preliminary version of
this paper and for valuable suggestions. I am also indebted to Pierre
de la Harpe for encouraging remarks.

§ 1. INTRODUCTION

For the definition of (smooth) links in the 3-sphere, link diagrams,
alternating diagrams and alternating links, the reader is referred to [3].

A link diagram is called reduced if there is no (smooth) circle S < R?
intersecting the diagram in exactly two points which lie near a crossing
point, as in the following picture.

L]
.‘.‘.‘...

L P)
00000

FiGURrE 1
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A link diagram is called splittable if there is a circle S' < R? which
does not intersect the diagram and such that both components of R? — S!
intersect the diagram. A link diagram K is said to be a connected sum
of link diagrams K., .., K,, if K,, .., K,, lie in disjoint discs in R? and
if K can be obtained from K,, .., K, by band summation (the bands
are supposed to lie in R? and to have no crossing point with each other

and with U K;). Finally, a link diagram is called weakly alternating if

each of its split components is either a reduced alternating diagram or a
connected sum of reduced alternating diagrams. Here is an example of a
weakly alternating diagram which is not alternating.

- )
(A

FIGURE 2

For a link diagram K we denote by c¢(K) the number of crossing points
of K and by r(K) the number of split components of K.
Recall that with each oriented link L < S3, V. Jones [4] has associated
a polynomial V,(t) e Z[t'/?, ¢t~ Y], If
Vi) = <Z< aitt with n, m,ie%Z and a,# 0 # a,,,
then one defines span(L) = m — n.

- According to [4], if L has an odd number of components, then
V. (t)e Z[t,t~']; if L has an even number of components, then t**V (¢
e Z[t,t']. Therefore, in all cases span (L)€ Z. Note also that span (L)
is not changed if we invert the orientations of some components of L
(thanks to the Jones reversing result, see §8 of [3]). Thus the integer
span (L) is an invariant of non-oriented links.

This invariant has the following additive properties. If L splits into links
Ly, .., L, then

(1) span(L) =r — 1 + i span (L;) .
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This follows from the formula
V(L) = (—t"?*—t~ 12y=1 1_[ V()
i=1

of Jones [4]. If L is a connected sum of two links L' and L" (performed
from the unlinked union on any choice of components), then

VL(L) = VL'(t)VL”(t)
so that

span (L) = span (L) + span (L") .

TuroreM 1 (Murasugi, Kauffman). Let K be a diagram of a link L.
Then:

(@) ¢(K) + r(K) — 1 > span (L),

(i) ¢(K) + n(K) — 1 = span (L) if and only if K is a weakly alternating
diagram.

In particular, as #(K) = 1 if L is unsplittable:

COROLLARY 1. Let K be a diagram of an unsplittable link L. Then
o(K) = span (L), with equality if and only if K is a connected sum of
reduced alternating diagrams.

Let us observe that, if K and K’ are alternating projections, one can
always make connected sums K; and K, of K and K’ in order that K,
be alternating and K, be non-alternating. In particular, it follows that a link
which has a weakly alternating projection is indeed an alternating link.
See figure 3.

¥ COROLLARY 2. Two weakly alternating diagrams of the same alternating

link L have the same number of split components. This number is equal
to the number of split components of L.

Proof. It is enough to note that every unsplittable weakly alternating
diagram represents an unsplittable link. This fact is well known (at least
for unsplittable alternating diagrams: see Crowell [1] and references therein).
However, for the reader’s convenience, we shall give here a proof of this
fact which depends only on Theorem 1 and on a few elementary observations.
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FIGURE 3

Let L be a link presented by an unsplittable weakly alternating
diagram K, so that »(K) = 1. Suppose that L splits into unsplittable links
L,.,L,. Then K is a “union” of subdiagrams K,, .., K, where K;
represents L; for i = 1, .., p. Since L; is unsplittable, K; is also unsplittable.
In view of Corollary 1

@ 3 oK) > Y span(Ly) = span (L) — (p—1) = e(K) — G—1).

M=

1

| Let us prove that
) oK) = (K, + o(Ky) + .. + c(K,) + 2(p—1). j
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Consider the graph with p vertices ki, .., k, in which the vertices k; and
k; are connected by one edge if i # j and if K; crosses K; in one point
at least. Since K is unsplittable, this graph is connected. Thus it has at
least p — 1 edges. On the other hand, the number of crossings of K;
and K; is even for i # j. Therefore, if K; crosses K; at all, the number
of such crossings is at least two. This implies (3).

Formulas (2) and (3) show that p = 1, namely that L is unsplittable. O

COROLLARY 3. Two weakly alternating diagrams of the same alternating
link L have the same number ¢ of crossing points. This number is
minimal among all diagrams of L. Any diagram of L with c¢ crossing
points is weakly alternating.

Proof. This is straightforward from Theorem 1 and Corollary 2. Of
course, ¢ = span (L) — 1 + r where r is the number of split components
of L. ]

Remarks.

1. 1In the case of alternating diagrams of knots, the first two statements
of Corollary 3 were conjectured by Tait [8]. For a recent discussion of this
and of other conjectures by Tait, see [3].

2. For non-alternating link diagrams, the inequality (1) of Theorem 1
can be somewhat improved — see the Appendix to the present paper.

The next theorem 1s concerned with the writhe number of an oriented
alternating link diagram. Recall that, up to isotopy in R?, there are two
types of crossing point of oriented link diagrams, distinguished by a sign:

AR X

Sfjn: +1 Sijn:-i

FIGURE 4
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The writhe number w(K) of an oriented link diagram K is the sum of the
signs over all crossing points of K. Little believed that the writhe number
of an oriented reduced alternating diagram is a link type invariant. This
conjecture has been recently proved independently by Murasugi [6] and
Thistlethwaite [9]. It follows directly from the following Theorem.

THEOREM 2 (Murasugi [6]). If K is an oriented weakly alternating
diagram, then

W(K) = G(L) - dmax (VL(t)) - dmin(VL(t))

where the oriented link presented by K is denoted by L, its signature by
o(L), and where d,,, and d_,, denote the maximal and minimal degrees of
a polynomial. ( Note that Murasugi uses the polynomial V = V,(t™1), so that
his formula has two plus signs.)

Theorems 1 and 2 imply that, for oriented weakly alternating diagrams,
both the number of positive crossing points and the number of negative
crossing points are link type invariants.

It is worth realizing that, if K™ is the mirror image of an oriented
link diagram K, then w(K ™) = —w(K). Therefore, if K is weakly alternating
and represents an amphicheiral link, then Theorem 2 implies that w(K) = 0.

*

The remaining part of this paper is organized as follows. In §2 the
extended dual state Lemma, due to Kauffman and Murasugi, is stated and
proved. In §3 I quickly recall the Kauffman state model for the Jones
polynomial. Theorem 1 is proved in §4 and Theorem 2 is proved in § 5.
In the Appendix, the inequality (i) of Theorem 1 is somewhat improved.

§ 2. THE EXTENDED DUAL STATE LEMMA

Let T" be the image of a generic immersion of a finite number of
circles into R?. Note that self-crossing points of I'" are exclusively double
points. For each double point x of I' a small disc in R*> centered in x
is divided by I into four parts. These parts appear in two pairs of opposite
sectors. Each of these pairs is called a marker of I' at x. In pictures these
markers are indicated like that:

- VA
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+

One can smooth (or surger) I along the markers:

FIGURE 5

+ -~
B alEN

A state S for I' is a choice of one marker at each double point of T
The opposite choice of marker at each double point defines the dual state
of S, denoted by S. The dual state of S is obviously S. If we surger I
along the markers of a state S we obtain a closed imbedded 1-manifold
['s = R? as in the following picture.
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2

FIGURE 7

Let | S| denote the number of connected components of I'.

Denote by r = rI') the number of connected components of the set
[ in R? and by ¢ = ¢(I') the number of double points of I'. It is clear
that I has 2° states. (If ¢ = 0, then, by definition, I" has one state S
with I'y = T')

LeMMA 1 (the dual state Lemma [5]). For any state S of I, one has
4) S|+ 15| <c+2r.

To prove this Lemma and to study the case of equality in (4), we
need the following definitions.

By an edge of I, we shall mean an arc in I' whose interior does
not contain any double point, and whose two ends are double points of T
The case of coinciding ends is not excluded, and such an edge is called
a loop.

Let S be a state of I. An edge e of I' is called S-monochrome if either
e is a loop, or e has distinct ends and the markers of S at these ends
look like this:

or

FIGURE 8

7N
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The edges of I' which are not S-monochrome are called S-polychrome. Any
S-polychrome edge has two distinct ends and the markers of S at these ends
look like this:

or

FIGURE 9

The state S of I' is called monochrome if all edges of I' are S-monochrome.
It is clear that S is monochrome if and only if S is monochrome.

We shall say that I' is prime if each circle S* = R? which intersects T’
in exactly two points and transversally bounds a disc in §* = R* { ] {o0}
which intersects I" in a simple arc.

LEMMA 2. Suppose that T' is prime and connected. Let S be a state
of T. Then the equality
IS|+|S|=c+2
holds if and only if S is monochrome.

Proof of lemmas 1 and 2. Let S be a state of I'. To each double point x
of I" we associate a small square in R?:

N/ \d \/
R
2558 5638

DO X

FiGure 10
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To each S-monochrome edge e of I we associate a plane band with core e:

A
A R

Ficure 11

If e is a loop, the band looks like this:

FIGURE 12

To each S-polychrome edge e we associate a 1-twisted band in R® with
core e:

FIGURE 13

Denote by M = M(S) the union of all these squares and bands. It is
clear that M is a compact surface in R>.

It is easy to check that the boundary 0M of M is the disjoint union
I'(II I's, where it is understood that I'y and I's are slightly moved away
in R? to avoid intersections. See the following picture:
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JI 18 DIe
W al 14

monochrome arc

) 3
polychrome arc

FIGURE 14

Therefore | S| + | S| = bo(0M) where b, denote the i-th Betti number of a
space with coefficients Z/2Z. As M retracts on I" by deformation, b(M) = b{(I')
for all i. In particular, bo(M) = r. Since I' is quadrivalent and has ¢
double points, I' has 2¢ edges. Thus

by(M) = bo(M) — x(M) =1 —(c—2¢c) =1+ ¢.

Consider the homology exact sequence of the pair (M, J0M) with
coefficients Z,/2Z.:

.. = H, (M) - H,(M, 0M) — Hy(0M) - Hy(M) — {0} .
As b,(M, 0M) = b,(M) = r + ¢ by Poincaré duality, one has
S|+ |S| = by(dM) < bo(M) + b,(M, M) = 2r + c.
This proves Lemma 1.
Let us now prove Lemma 2. The equality | S| + lS‘I = ¢ + 2 holds
if and only if the inclusion homomorphism H,(M) - H,(M, 0M) in the exact

sequence above is equal to zero. This happens if and only if the intersection
form

(%) H,(M) x H,(M) - Z/2Z

i1s zero. If S is monochrome then M(S) is a planar surface, so that the
form (5) is indeed zero.

Suppose that S is not monochrome. We shall prove that the form (5)
is non zero. This will imply the strict inequality | S| + | S | < ¢+ 2
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Let e be a S-polychrome edge of I'. Consider the connected components
of R? — T which are adjacent to e. These components are distinct : Otherwise
there would exist a simple loop in R? intersecting I" in exactly one regular
point, which is impossible. Denote these two components by a and b. It
is clear that a n b is a union of edges and double points of I', with in
particular ee a n b. If @ n b were to contain an edge of I' distinct from e,

then the dotted circle in the following picture would intersect I' in two
points.
L 4
, 0® o @ 0, pe ..
4 region a P

P

» regfonkn s T

.. "
o o0

FIGURE 15

But this is impossible because I' is prime. Thus a n b is equal to the
union of e and some double points.

Since e is S-polychrome, the intersection of the homology classes [da]
and [0b] in H,(M) ~ H,(T) is equal to 1 (modulo 2):

Fegion a

.""' oo eoe

re 3:’0)» L
FIGURE 16

Thus (5) is a non-zero form, and the proof is complete. O

Remark. It is not important for us but curious to observe that M(S)
is always an orientable surface.
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§ 3. KAUFFMAN’S STATE MODEL FOR THE JONES POLYNOMIAL

Let K be a link diagram. By a state or a marker of K, we mean
respectively a state or a marker of the corresponding link projection
in R? (which is obtained from K by forgetting the overcrossing-undercrossing
data). The markers of K are divided into two classes — positive and negative.
By definition, if the over-line is rotated counterclockwise around the double
point, then the first marker it meets is the positive one and the second

one is negative:

positive marker negative marker

FiGURE 17

Let the diagram K be oriented. Consider the polynomial
VK(t) — (_ t)_ 3w(K)/4 Z t(as_ bs)/4-( . t1/2 —t 1/2)|s| -1

where w(K) is the writhe number of K. The summation is over all the
states S of K; the number of positive [respectively negative] markers
of the state S is denoted by ag [respectively bg], and the number | S|
is defined in § 2.

It is shown in [5] that the polynomial V(t) is equal to the Jones
polynomial of the oriented link presented by K (see also [3]).

§4. PROOF OF THEOREM 1

Orient the diagram K and denote the corresponding oriented link
by L. Denote by A4 the state of K in which all markers are positive,
and by B = A the dual state in which all markers are negative. For any

state S of K, denote by Dg and.dg respectively the maximal and minimal
degrees in ¢ in the expression

t(as—bs)/4(~__ t1/2 —t~ 1/2)|s| -1
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(see § 3), namely

Dg = (as—bs+2|S|—2)/4
dg = (ag—bs—2|S|+2)/4 .

In particular

D, = (c+2|4]—2)/4
(6)
dy = (—c—2|B|+2)/4.

Proof of (i). If a state S? is obtained from a state S by replacing
one positive marker by a negative one (at some crossing point), then
ds: = ag — 1, bgs = bg + 1 and | S?| < | S| + 1. Thus

1
Ds» = Ds = — 5+ (IS*[=ISh/2 < 0

so that Dg. < Dg. This implies that Dy < D, for any state S of K.
Therefore

e Vaf0) < — 2 WK) + D,

I V10) > — 3 WK) + d.

Thus in view of equalities (6) and of Lemma 1 of § 2, one has

(7) span (L) < D, — dg = (c+|A|+|B|—2)/2
KQ2c+2r—2)2=c+r—1. O

Proof of (ii). Let K,,.. K, be the unsplittable components of K,
with r = r(K). Denote by L, the oriented link represented by K;. It follows
from part (i) of the Theorem and from formula (1) that

r

oK) = ) oK;) = Zr: span (L;) = span (L) — (r—1).

i=1

Thus the equality ¢(K) + r — 1 = span (L) holds if and only if ¢(K;)

= span (L;) for each i. Therefore, to prove (i1), it suffices to consider the
unsplittable case r = 1.

It is evident that the numbers ¢(K) and span (L) are both additive under

connected sum of diagrams. Therefore it i1s enough to prove the following
assertion (*).

S Iy N
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For a prime unsplittable diagram K of an oriented link L, the
(%) equality ¢(K) = span (L) holds if and only if K 1s a reduced and
alternating diagram.

In (%), note that, formally, the link L is not supposed to be prime or even

unsplittable.
Suppose first that ¢(K) = span (L). Then all inequalities above are in fact
equalities. As r = 1, one has in particular

|A|+|Bl=c+2r=c+ 2.

Lemma 2 of §2 shows that the state A4 is monochrome. This implies that
K is alternating, because of the easy but essential lemma.:

LEMMA. Let K be an oriented connected link diagram. Then K is
alternating if and only if the state A is monochrome.

Moreover the diagram K is reduced, since all prime diagrams are reduced
except the two diagrams

O CO

FiGURE 18

which are excluded by the assumption ¢(K) = span (L).

Suppose conversely that K is reduced and alternating. The preceeding
Lemma shows that the state 4 is monochrome. According to Lemma 2 of § 2:
|A| + | B| = ¢ + 2. We prove below that

® bl Vi(0) = — 3 WK) + D,

& bl Vi(0) = — 2 W(K) + d.

Thus the inequalities (7) are in fact equalities, so that span(L) = ¢ + r
— 1 = ¢

By region, we mean hereafter a connected component of S?> — K. (Here
§? = R* U {o0}.) Since K is alternating, each region intersects either markers

which are all positive or markers which are all negative. Shade the regions
of the first type:
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11

H

NANEEENND
FIGURE 19

Observe that two unshaded regions near one crossing point are necessarily
distinct, otherwise the diagram K would not be reduced:

O'."

FiGure 20

It is evident that A is equal to the number of unshaded regions. Let a
state S? be obtained from A by replacing one positive marker by the
negative marker. Under this operation two distinct unshaded regions are
connected by a band, and therefore |S?| =|A| — 1. In view of the
arguments given in the proof of part (i) of the Theorem, this implies that
Dy < D, for any state S of K. This implies (8). Analogous arguments
imply (9), and the proof of (ii) in Theorem 1 is complete.

§ 5. PROOF OF THEOREM 2
Let me first recall the definition of the signature of an oriented link L

in terms of a (not necessarily orientable) surface ¥ bounded by L (see [2]). 1
One defines a bilinear form
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Q = Qy:Hy(V;Z) x HV;Z)—- Z

as follows. Let o, pe H,(V;Z) be represented by loops a, b in V. Let us
double all points of a and push them in § 3 _ ¥ along both normal directions
to V, at the same small distance. We obtain an oriented closed 1-manifold
GeS3 — V: the following picture shows the local situation. The natural
projection a@ — a is of course a 2-sheeted covering.

FIGURE 21

Denote by Q(a, B) the linking coefficient Lk(a, b) of a and b. It turns
out that Q is a well defined symmetric bilinear form. Let L” be a parallel
copy of Lin S* — V. Define

o(L) = sign (Q) — —;—Lk(L, L").

Here sign (Q) denotes the signature of the symmetric bilinear form obtained
by factorizing out the annihilator of Q. According to [2], o(L) does not
depend on the choice of the spanning surface V. In case V is orientable,
Lk(L,LY) = 0 and we get the classical definition of the signature of L
due to Murasugi.

All diagrams and links being oriented, it is easy to check that the
writhe number of a link diagram, the signature of a link, and the number
Amax(V L(0)) + diin(V () are additive with respect to both disjoint unions
and connected sums of diagrams. Therefore it is enough to prove Theorem 2
for a diagram K which is connected, prime, alternating and reduced.

Let ¢, and c_ denote the numbers of positive and negative crossing
points of such a K.

CLAM (Murasugi). One has o(L) = |A| — 1 — c,.
This claim implies Theorem 2. Indeed, formulas (8), (9) and (6) show that
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e V1(8)) + drin V1)) + W(K)
= —wWK)/2 + D, + dg = —w(K)/2 + (|4|—|BJ)/2.
Substituting in the last expression
wK) = c, — c_
|Bl =c+2—|A|
C =¢C4 + C_

we obtain

Amad V1(8) + dinin( V(1) + W(K)

=|A4]—1—c, = ol).

This implies Theorem 2.

Proof of the Claim. There is a spanning surface V' of L associated with
the diagram K. It is built up from shaded regions of S?> — K (see §4)
and small bands connecting these regions which enter one crossing point.
In a neighbourhood of a crossing point, V looks like this:

FIGURE 22

We shall prove the claim by using this surface V.
1
We prove first that the number — ELk(L, L") is equal to —c,.. We

may assume that the push-off LV of L in S° — V lies in the unshaded
regions of R? except in a neighbourhood of the crossing points. The
following picture shows LY near a crossing point (the orientations of L
and L are not shown).

P
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We compute Lk(L, L*), by counting the algebraic number of times L”
passes under L. It is easy to check that each crossing point of L con-
tributes with a 2 if it is positive and with a 0 if it is negative. Thus
Lk(L,LY) = 2c,.

Now, we prove that sign(Qy) = | A| — 1. The surface V retracts by
deformation onto the complement on the unshaded regions in S As the
diagram is alternating, the number of unshaded regions is | 4|, so that
b;(V) = | A| — 1. Thus we have to prove that the form Q, is positive
definite.

Let o« € H{(V;Z) and let a be an oriented closed 1-manifold (possibly
non connected) in V which represents o. Thus Q(a, o) = Lk(a, a), where
a is the oriented closed 1-manifold in S® — V obtained from a by the
2-sheeted blowing up procedure. If a subarc x of a lies in a shaded region
far from crossing points of K, then, of the two corresponding subarcs of a,
one lies over R? and the other one lies under R?>. We shall always picture
the first (higher) subarc of a on the right side of x (looking from above
along a) and the second (lower) subarc of a on the left side of x; see
the following picture.

ower A higher higher bower
Subare Subarc Subare Subare
& b g -4

a FIGURE 24 a
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Note that the diagram of a misses the diagram of a except in a
neighborhood of the crossing points. Surgering if necessary a in V, we
may assume that all components of a go through any band of V in one
direction. Positions of a like those in the following picture may easily be
removed by surgery.

FIGURE 25

For simplicity, consider first a neighbourhood of a crossing point through
which a goes only once:
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It is clear that a passes under a in this neighbourhood one time from right

to left.

If a goes through a neighbourhood % of a crossing point n times,
then the relative positions of the corresponding »n arcs of a, say x;, ..., X,,
are represented as follows:

.o z" LI X

h \
. . Xn
L, .

¢

FiGURE 27

In the next picture, we show the two arcs of @ which correspond to X;:
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It is clear that these two arcs of a pass 2i — 1 times from right to left
under a. Thus the contribution of the neighbourhood % to Q(a, o) is given by

2(21—1 —n—I-Zii:nz.
i= i=1

This shows that Q(a, o) > O if a crosses at least one band of V. If not,
then o = 0.

Thus Q@ is positive definite. This completes the proof of Theorem 2.

APPENDIX: AN IMPROVEMENT OF THE INEQUALITY OF THEOREM 1

Though the inequality
(10) c¢(K) + n(K) — 1 > span (L)

of Theorem 1 becomes an equality for weakly alternating diagrams, it
may be sharpened a little for other cases. Let K be a link diagram in
R?* and let I' = R* be the associated link projection. For PeS* — T
(where S? = R? U {o0}), let i(P) be the intersection number modulo 2 of
I with a generic 1-chain connecting P to co. Shade the regions of S? — T
for which i = 1 (mod2), so that S? is painted like a chessboard. Let
b,, .., b, be the shaded regions of S*> — I'" and let w,, .., w, be the unshaded
regions of S* — T.

An edge e of I' is called K-good either if e is a loop or if one of the
end points of e corresponds to an overcrossing point of K and the other
end point of e corresponds to an undercrossing point of K. An edge of I’
which is not K-good is called K- bad For any ie{l,..,m} and for any

je{1,..,n},itis clear that the set b; N w; consists of several edges and double
points of I'. Denote by af(i,j) the number modulo 2 of K-bad edges in

b; O v—v: Denote by w(K) the rank of the m—by—n matrix (a(i, j)).
THEOREM. If K is a diagram of a link L, then

(11) oK) + n(K) — 1 = span (L) + u(K).

CorROLLARY. If K is a diagram of an unsplittable link L, then
c(K) = span (L) + u(K).

Of course, if K is a weakly alternating diagram, then w(K) =
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The inequalities of the Theorem and of the Corollary may be strict.
For example, if we take the diagram K = 8;, in Rolfsen’s book, then
span (8,4) = 5 and u(K) = 2, so that the inequality (11) amounts to & > 7.
Unfortunately, even in the case where (11) is an equality, it does not mean
that K is a minimal diagram of L, since u(K) depends on K and is not
an invariant of L.

The proof of the Theorem goes along the same lines as the proof of
Theorem 1 of §1. Indeed the proof of Lemma 1 of §2 shows in fact
that | S|+ |S|<c+ 2r — R, where R is the rank of the intersection
form (5). For the state A, it is easy to show that R = 2u(K), and this
gives the desired result.
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