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THE VARIETY OF MODULI OF FOLIATIONS
ON A COMPLEX SPACE

by Hans-Jorg REIFFEN

§0. Let X be a complex space. By X, we denote the singular locus
of X. Let # be a coherent analytic sheaf on X. By S(#) we denote the
singular locus of #, ie. the set of points, where # is not free. S(¥)
is an analytic subset of X. If X is reduced then S(#) is thin. For a
coherent subsheaf #' of # we set S(F : F'): = S(F) v S(F/F').

In the following let X be a reduced complex space. If X' is an
irreducible component of X, then we denote by r(#, X') the rank of &
on X'\(X,;US(F)). Q resp. © is the sheaf of holomorphic I-forms resp.
of vector fields on X. We have S(Q) = X,.

0.1 DermNiTiON. Let Q' be a coherent subsheaf of Q and X’ an irreducible
component of X. Q' is a X'-foliation, iff there is a thin analytic subset A4
of X', X' n X, < A, such that Q' | X"\ A4 defines a regular foliation. Q' is a
foliation, iff Q" 1s a X'-foliation for every irreducible component X’ of X.

In a joint work with G. Bohnhorst (comp. [B/R]) I have developed
a general theory of foliations. The coherent foliations as they are introduced
in [B/R] correspond to those foliations used in this paper, which are full
subsheaves of Q. We call codim,. Q' : = 1(Q'; X') the codimension of the
X'-foliation.

The following homomorphism of sheaves (of groups) is important

p+2
QP 5 A Q, 8P 0, ., 07 = do® A o' A .. A oP.

0.2 REMARK. Let Q" be a coherent subsheaf of Q. Then the following
are equivalent:

(1) Q'is a X'-foliation of codimension p;
2) p=rQ;X), PIQ[X\X)P" =0;
(3) p = Q' X"), there is a point x € X"\X,, such that §*(Q})P*1) = 0.
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For the following compilation of definitions and results the paper by
Douady [Dou] is a good reference.

In the following let Y,Z be further complex spaces, that are not
necessarily reduced. If & is a coherent analytic sheaf on Y and f:Z - Y
a holomorphic mapping then we denote by f*& the analytic inverse
image of & on Z.

Let & be a coherent analytic sheaf on Y x X. For ye Y we denote
by &(y) the analytic restriction of & on X = y x X; &(y) is the analytic
inverse image of & to the injection X = y x X o Y x X. If f:Z > Y
1s a holomorphic mapping then we set &, : = (f xidy)*&. We have &,z)
= &(f(z)) for z € Z.

Let the coherent analytic sheaf & on Y x X be Y-flat, then r(&(y), X')
is locally constant on Y for every irreducible component X’ of X. Therefore

R (Y,8):= {yeY:réWy), X') = p}

is an open and closed subset of Y for every p. Let # be a coherent
subsheaf of &, so that £ : @@/% is also Y-flat. Then % is Y-flat too and we
have %(y) = é’(y)/@(y) in a natural way. Let f:Z — Y be a holomorphic
mapping. Then &, and %, are Z-flat and we have £, = é”z/@Z in a
natural way.

Let & be a coherent analytic sheaf on X. Then the analytic inverse
image 7 : = n*% to the projection n: Y x X — X is Y-flat and we have
F¥y) = # in a natural way. In the following let # be a coherent
subsheaf of QY, such that #:= QY/# is Y-flat. Let X’ be an irreducible
component of X. We set:

F2.(Y,R):= {ye Y: Ry is a X'-foliation of codimension p} ,
Fy(Y, R) = {yeY: R(y) is a X'- foliation} ,
F(Y,R): = {yeY: A(y) is a foliation)} .

We will show:

0.3 THEOREM. F%. (Y, ?;?) is an analytic subset of Y.
By 0.3 we get:

0.4 COROLLARY.

(1) Fyx(Y, @) is an analytic subset of Y ;

(2) F(Y, ,@) is an analytic subset of Y.
Because £ is Y-flat we get the following:
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0.5 REMARK. S(QY: %) (yxX) = S(Q: R()).

In 0.5 we identify X = y x X.

Let f:Z — Y be a holomorphic mapping. Then Q! = Q% and we
obviously get:

0.6 REMARK. FL.(Z, %) = [ YF% (Y, R)).

F% (Y, @) is an analytic subset of R% (Y, ,5?). Using the hgmomorphism
57 we construct a canonical complex structure on F% (Y, %) and show:

0.7 THEOREM. The holomorphic mapping f:Z — Y induces a holomorphic
mapping F% (Z, 9?2) — F%. (Y, %) related to the canonical complex structures.

We can apply F(Y, %) with the structure given by the spaces F§. (Y, 9?).
We get the following (comp. [Dou]):

0.8 COROLLARY. Let X be compact and let H be the Douady space 9f
Q, R the universal Douady sheaf of Q. Then the complex subspace F(H, )
of H has the following property:

If Z is a complex space and & = QZ/SV” a coherent and Z-flat sheaf,
then the unique holomorphic mapping f:7Z - H with & = R, factorizes
over F(Z,%), F(H, R).

In this sense F(H, @) is a moduli space of the foliations on X.

0.9 PrOPOSITION. Let X be a connected compact manifold. Then the
following sets are complements of analytic subsets in F(Y, Z):

F(Y, %) : = {yeY: A(y) is a regular foliation},
F (Y, R): = {ye F(Y, A): A(y) is locally free},
KF(Y, R) : = {y e F(Y, %): codim S(Q: A ) = k}.

FAY, @) N 2F(Y, QV?) is the set of points y e Y such that ,Qv?(y) is a free
foliation in the sense of [B/R]. By the theorem of Frobenius-Malgrange all
foliations #(y), y € F AY, R) A 3F(Y, R) are locally integrable.

In an earlier version of this paper ([Re]) I gave a proof of 0.3 by
Banach analytic technics. With these technics G. Pourcin has gotten results
similar to those in this paper ([Pou]). Similar results were also proved by
X. Gomez-Mont ([GM]). He considers foliations defined by vector fields;
his technics are closer to those of this paper. The advantage of my approach
1S the simplicity. For 0.3, the canonical complex structure on FZ%. (Y, ?:?),
F(Y, Z) and 0.7 we need no compactness.
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§ 1. We prove 0.3: Because 0.3 is a local theorem related to Y and because
of 0.2 we may assume the following:

Y is an analytic subspace of a polycylinder P = {seC:|s| < o}" in
C™ defined by an ideal sheavf 4. We denote the coordinates of C™ by
V=01 Im)- Y = RE(Y, )

X is a polycylinder {teC:|t| < t}" in C". We denote the coordinates
of C"by x = (X;, .0 x,).SQ:B) = .

We can interprete (/r\Q)P as a submodule of /r\QPXX: (/r\Q)P consists of
all r-forms m of the form n = Y Nvy (Vs X)Xy, A oo A dx, .

1<vi<...<w.<n
We notice this by 1 = n(y, x; dx). We get (AQ)Y = (AQ)F/.# . (A Q).

We may assume, that there are forms m?,..,m?eI'(Px X, QF) generating
A everywhere. We shorten F : = F& (Y, Z#). For y° € Y we get:

y0 € F < 87(n7°(y°, x; dx); n/(y°, x; dx), ..., n/2(y°, x; dx)) = 0
forall 1< jg,j1,0ujp<4q.

We consider an arbitrary system o° o', .. o? e I'(P x X, QF). By fixing y

we define o 1
P(w"; 07, ..., @)
p+2

= 3wy, x; dx); ®'(y, x; dX), .., @°(y, x; dx)) e T(Px X, ( A Q)F).

We have
Y (0°; ol ..., o) = Y Ay, oy dxy, Ao Ndx, )
1€vi<...<vp+2¥n i ?
with holomorphic coefficients
Apvyer = Ay, (0%, 0 eT(P XX, 0, ).

We form the serial expansions

— 1
AV1...Vp+2 - Z AV1...VP+2;lx

leN”

with holomorphic coefficients A, . ., = Ay, .y, ,,;(@° .., ©7) e (P, O,).
With these notations we get:

The set F is defined on Y by the following (infinite) system of holomorphic
functions:
Ayyovp a7 M, MPP)
1 < josfisendy <41 < V) <o <V <nleN.

F is an analytic subset of Y.



FOLIATIONS ON A COMPLEX SPACE 195

§ 2. We refine the considerations of § 1. We can interprete 3 as a homo-
pt2

morphism of sheaves (of groups) 97: (QF)?*1 — ( A Q)F. Obviously 97 induces

p+2
a homomorphism 9%:(Q¥)?*! — ( A )*, which does not depend on the

representation of Y as a subspace of a number space. Let ¢ be the ideal
sheaf on P, defined by # and the functions A4, . .,..(n"°;n’, ., n’)
(comp. [Fr]). We apply F with the structure sheaf 5 : = 0p/ ¢ and consider
the natural injection 1: F — Y.

2.1 PROPOSITION. 5 is the maximal complex structure on F, such that
8% o | Rr )P = 0, e
(1) 8{’F,9f) | (@(F,%’))Iﬁbl = 0;
(2) if (F, 5%2 is an analytic subspace 0]: Y, such that
St 2| (R 7" =0, then (F,#) isan analytic subspace of (F, #).

Proof. (1) Let° o', .., o” € T(P x X, Q) induce elements of I'(F x X, %y).
We may assume, that there are representations

o =

Jj

)=

a; M’ mod T(Px X, #.QF).

1
Because of
p+1

AN A LANPeT(PxX, 2. (A Q)P

pt+2

we get mod I(Px X, #.( A QF):

o 1 o .
P(°; o, .., 0f) = Y Aojo - Ap;, (M5 MY, L, 7).
- j <

Therefore we get

p+2

Ay, vperi(©°; 01 L, 0P) e T(P, £), 99(0°; ©, ..., ©F) L(PxX, #.(AQF).

(2) Let # be the ideal sheaf of Op defining #. We show Ffc 7
We have

~ pt2

¥MmP;nd, o ) eT(PxX, 7.( A Q)

and therefore
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Avpovpin MM P e T(P, 7).

Now we consider an arbitrary reduced complex space X and an arbitrary
complex space Y. We again set F : = F%. (Y, gv?).

Let y° e F. We consider X'()% := X'\S(Q: @(yo)). If x°e X'(y° then
we can realize the situation of §1 related to open neighbourhoods V,
of y® and U, of x° Let #(x° denote the structure sheaf of Vo F
according to 2.1. We get #/(x%),0 = H#(x),0 for every x € U,. Because X'(y°)
is connected, we get H#(x°),0 = H#(x),0 for every x € X'(y°). Let o# be the
structure sheaf on F defined by #, : = #(x),, x € X'(y).

If # is any structure sheaf on F such that (F, 197/) is an analytic
subspace of Y we get by 0.5

SQFH): R ) = SQ: B) A (Fx X).
We set
(FxX)°:= (Fx X)\S(Q': &).

By 2.1 we get:

2.2 PROPOSITION. J# is the maximal complex structure on F, such that
30, ) | (%(F,m | (F x X)O)p+1 = 0.

We prove 0.7: We may assume that Z, X and Y, X fulfill the assumptions
of § 1 simultaneously. We denote the objects related to Z by the index Z.
Further we may assume, that f is given by a holomorphic mapping
g: P, > P with g*# < J,. We consider 0/(z, x; dx) : = 1(g(z), x; dx). Then
@' generates an element of I'(Z x X, %,) and we get

Avi...vp+2;l(njo; njla ees njp) o (f X IdX)
= A ®’°; o', .., w'?)e (P, £, .

v1...vp+2;l(

We prove 0.9: Let m: Y x X — Y be the projection then n(S(Q": ,@)) and
n(S(2)) are analytic subsets of Y. {(y, x) € ¥ x X:dim, ,(S(Q": %) N (y x X))
> dim X — k} is analytic and therefore {y € Y: codim S(Q: #(y)) < k} too.
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