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THE VARIETY OF MODULI OF FOLIATIONS
ON A COMPLEX SPACE

by Hans-Jörg Reiffen

§ 0. Let A be a complex space. By Xs we denote the singular locus

of X. Let be a coherent analytic sheaf on X. By S(E?) we denote the

singular locus of X7, i.e. the set of points, where -X7 is not free. SiX7)

is an analytic subset of X. If X is reduced then S(X7) is thin. For a

coherent subsheaf X7' of X7 we set S(X7 : X7') : S{^) u S(X7jX7').

In the following let A be a reduced complex space. If X' is an
irreducible component of A, then we denote by r(#"? X') the rank of X7

on A'\(AsuS{X'j). Q resp. 0 is the sheaf of holomorphic 1-forms resp.
of vector fields on A. We have S(Q) As.

0.1 Definition. Let £T be a coherent subsheaf of £2 and X' an irreducible

component of A. £T is a A'-foliation, iff there is a thin analytic subset A
of A', A' n A5 c A, such that £2' | X'\A defines a regular foliation. £T is a

foliation, iff £Y is a A'-foliation for every irreducible component A' of A.
In a joint work with G. Bohnhorst (comp. [B/R]) I have developed

a general theory of foliations. The coherent foliations as they are introduced
in [B/R] correspond to those foliations used in this paper, which are full
subsheaves of £1 We call codim^ £2' : r(£2';A') the codimension of the
A'-foliation.

The following homomorphism of sheaves (of groups) is important

bp: Qp+1 -* A £2, 5p(co°; co1,..., cop) : dco° A co1 A A ciY

0.2 Remark. Let £T be a coherent subsheaf of £1 Then the following
are equivalent :

(1) £2' is a A'-foliation of codimension p;
(2) p r(Qf ; A'), 8P | (£2' | A'\AJ^+1 - 0 ;

(3) p r(£T;A'), there is a point xgA'\As, such that 0.
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For the following compilation of definitions and results the paper by
Douady [Dou] is a good reference.

In the following let 7, Z be further complex spaces, that are not
necessarily reduced. If S is a coherent analytic sheaf on 7 and / : Z -» 7
a holomorphic mapping then we denote by f*ê the analytic inverse

image of S on Z.
Let S be a coherent analytic sheaf on 7 x X. For y g 7 we denote

by S(y) the analytic restriction of ê on X y x X ; <f(y) is the analytic
inverse image of S to the injection X yxXc+YxX. If / : Z -> 7
is a holomorphic mapping then we set Sz \ (/ x idz)*<f. We have <fz(z)

<f(/(z)) for z g Z.
Let the coherent analytic sheaf ê on 7 x X be 7-flat, then r(^(y), X')

is locally constant on 7 for every irreducible component X' of X. Therefore

R*x.(Y,£)-.= {yeY:r(p}

is an open and closed subset of 7 for every p. Let 01 be a coherent
subsheaf of so that 0 : is also 7-flat. Then 01 is 7-flat too and we
have 0(y) ${y)/0{y) in a natural way. Let / : Z -» 7 be a holomorphic
mapping. Then Sz and 0lz are Z-flat and we have in a

natural way.
Let 0* be a coherent analytic sheaf on X. Then the analytic inverse

image YFY : tc*#' to the projection n: Y x X -> X is 7-flat and we have

#"y(y) #" in a natural way. In the following let I be a coherent

subsheaf of QY, such that 0 : Df is 7-flat. Let X' be an irreducible

component of X. We set :

Fvx. (7, 0t) : {y g 7: à?(y) is a X'-foliation of codimension p}

FX'(Y, 0t)\= {y g 7 : i?(y) is a X'-foliation}

F(Y,0t) : (y g 7: ä(y) is a foliation}

We will show:

0.3 Theorem. F^{Y,0t) is an analytic subset of 7.

By 0.3 we get:

0.4 Corollary.
(1) FX{Y, is an analytic subset of Y ;

(2) F(Y, i?) is an analytic subset of 7.

Because ^ is 7-flat we get the following:
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0.5 Remark. S(Qy:i)n(j/xX) S(Q: 9(y)).

In 0.5 we identify X y x X.

Let /:Z-> Y be a holomorphic mapping. Then Üz and we

obviously get :

0.6 Remark. Fpx, (Z, <kz) — /_1(F^ (Y, 0)).

FPX.(Y, à) is an analytic subset of RPX(Y, k). Using the homomorphism

hp we construct a canonical complex structure on FpxfY,$) and show:

0.7 Theorem. The holomorphic mapping f : Z -> Y induces a holomorphic

mapping Fpx, (Z, kz) - Fpx, (Y, <k) related to the canonical complex structures.

We can apply F(Y, 9) with the structure given by the spaces F^fY, 01).

We get the following (comp. [Dou]) :

0.8 Corollary. Let X he compact and let H be the Douady space of
Q, 01 the universal Douady sheaf of Q. Then the complex subspace F(H, 01)

of H has the following property :

If Z is a complex space and 9* — 00/9 a coherent and Z-flat sheaf

then the unique holomorphic mapping f : Z —> H with 9 9Z factorizes

over F(Z, 9\ F(H, tk).

In this sense F(H, 0t) is a moduli space of the foliations on X.

0.9 Proposition. Let X be a connected compact manifold. Then the

following sets are complements of analytic subsets in F(Y, 0t):

Fr(Y, 9) : {y g Y : ék(y) is a regular foliation},

Ff(Y, k):= {ye F(Y, k) : 9(y) is locally free},

kF(Y, &):= {ye F(Y, k) : codim S(Q : k(yj) ^ k}.

Ff(Y, 0t) n 2F(Y, <k) is the set of points y e Y such that 9(y) is a free

foliation in the sense of [B/R]. By the theorem of Frobenius-Malgrange all
foliations 9(y), y e Ff(Y, 9) n 3F(Y, 01) are locally integrable.

In an earlier version of this paper ([Re]) I gave a proof of 0.3 by
Banach analytic technics. With these technics G. Pourcin has gotten results
similar to those in this paper ([Pou]). Similar results were also proved by
X. Gomez-Mont ([GM]). He considers foliations defined by vector fields;
his technics are closer to those of this paper. The advantage of my approach
is the simplicity. For 0.3, the canonical complex structure on F^ (Y, 0l\
F(Y, 01) and 0.7 we need no compactness.
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§ 1. We prove 0.3 : Because 0.3 is a local theorem related to Y and because

of 0.2 we may assume the following :

Y is an analytic subspace of a polycylinder P {s e C : | s | < a}m in
Cm defined by an ideal sheaf J. We denote the coordinates of Cm by

y (yx*...,yj.7 RPX{Y, à).

I is a polycylinder {t g C : | t | < t}" in C". We denote the coordinates
of C by x (Xl,..., xj. S{QY : à) 0

r r r
We can interprète (AO)p as a submodule of AQPxX: (AQ)P consists of

all r-forms p of the form p £ rjVl ...Vr0A x)dxVl A A dxVr.
1 < vi < <vr^n

We notice this by p p(y, x; dx). We get (A£2)y (AÇîfjJ. (AD)p.

We may assume, that there are forms r]1, eT(P x X,QP) generating
everywhere. We shorten F : F%> (7, &). For y0 e Y we get:

y0 e F o $p(r\jo(y°, x ; dx) ; pJ1(y°, x ; dx),..., p7p(y°, x ; dx)) 0

for all 1 < q.

We consider an arbitrary system cd°, co1,..., oop g T(P x 2f, £2P). By fixing y
we define

Op(co° ; co1,..., cop)

p + 2

: 8p(co°(y, x ; dx) ; co 1(y, x ; dx),..., cop(y, x ; dx)) g T(P x X, A Q)p).

We have

Sp(©° ; CO1,cop) £ AVi_Vp+ïdxvl A A
l<Vi<...<Vp + 2^"

with holomorphic coefficients

^v,..vp + 2 - AVl^p + 2(cD0;...,œp)er(PxX,(9pxX).

We form the serial expansions

^Vi...Vp + 2 — X ^V1 ...Vp+2;lX
leNn

with holomorphic coefficients ^vl_Vp + 2;i ^Vl_Vp + 2;i(œV--? ®p) g T(P, 0p).
With these notations we get :

The set F is defined on Y by the following (infinite) system of holomorphic
functions :

Avl...Vp+2.,(r[j0'V1,-, V*);
1 < 9,1 < V! < < vp+2 < n, eN".

F is an analytic subset of 7.
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§ 2. We refine the considerations of § 1. We can interprète 0P as a homo-
p + 2

morphism of sheaves (of groups) Qp: (Qp)p + 1 -» A Q)p. Obviously &p induces

p+2
a homomorphism Of : (QF)P + 1

-> A )Y, which does not depend on the

representation of Y as a subspace of a number space. Let Jf be the ideal
sheaf on P, defined by J and the functions AVlm„v ;l(r\jo; r[j\ r\jp)

(comp. [Fr]). We apply F with the structure sheaf 34? : (9P// and consider
the natural injection i : F 7.

2.1 Proposition, X? is the maximal complex structure on F, such that
Q(F,3f) I (^(F,^))P+1 — 0? l-e-

(1) &km\$(F,*))p+1 - 0;

(2) if (F, X?) is an analytic subspace of Y, such that
I (ß{F,&))P + 1 then (F, St) is an analytic subspace of (F, 3#?).

Proof (1) Let œ°, co1,..., ®p e F(P x X, £3) induce elements of F(F x X, tkH).
We may assume, that there are representations

E akj V m°d F(P xX, / .Qp).
j= i

Because of

p+1
T)-'0 A T|-" A A iy" e T(P xI,/.( A £2)p)

p + 2

we get mod F(P xI,/.( A fi)p) :

&p(co° ; co1,..., ©0 L a0j0... SP(V» ; V) •

Therefore we get

; CO1,..., cop) e r(P, /), S"(co0 ; ©,..., to") eT(PxX,f. (FQf)
(2) Let / be the ideal sheaf of (9P defining if. We show / c=

We have

fip(r|jo; ri-''',..., if*) eT(PxX,f. A Q)p)

and therefore
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^vl...vP+2)z(V°; V1, -, Vp) e r(p, /).
Now we consider an arbitrary reduced complex space X and an arbitrary

complex space 7. We again set F : F&, (7, 01).

Let y°eF. We consider X'(y°) : Z,vyS(Q : i£(y0)). If x° e 2f'(y°) then

we can realize the situation of § 1 related to open neighbourhoods V0

of y° and U0 of x°. Let XF(x°) denote the structure sheaf of V0 n F
according to 2.1. We get XF(x°)y0 J*F{x)y0 for every x e U0. Because X'(y°)
is connected, we get JF(x°)y0 XF(x)yo for every x e X'(y°). Let XF be the

structure sheaf on F defined by XF
y

: XF(x)y, x e X'(y).
If XF is any structure sheaf on F such that (F, XF) is an analytic

subspace of Y we get by 0.5

; à{Ft^)) S{QY : à) n (F x X)

We set

(F x X)° : {F x X)\S{QY : à).

By 2.1 we get:

2.2 Proposition. XF is the maximal complex structure on F, such that

(FxX)°Y+1 0.

We prove 0.7 : We may assume that Z, X and 7, X fulfill the assumptions
of § 1 simultaneously. We denote the objects related to Z by the index Z.
Further we may assume, that / is given by a holomorphic mapping

g: Pz -> P with g*J c= Jz. We consider o7(z, x; dx) : x; dx). Then
oF generates an element of T(Z x X, 0t^ and we get

^v,..vp + 2;i(V°; V1, -, Vp) ° (/ xidx)

^Vl...vp + 2;/(®j0; Û)J\ -, CDjp) E r(Pz, /z)
We prove 0.9 : Let n : 7 x I ^ 7 be the projection then : ^)) and
7c(S(i^)) are analytic subsets of 7. {(y, x) e 7 x X : dim(y>JC)(5(Qr : M) n (y x X))
> dim X — k} is analytic and therefore {ye 7: codim : &(y)) < fc} too.
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