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FORMULES POUR LES TRISECANTES
DES SURFACES ALGEBRIQUES

par Patrick LE BARZ

Soit X une sous-variété de P, sur un corps algébriquement clos. Le but
de cet article est d’étudier les droites trisécantes a X et de donner des
formules énumératives nouvelles, lorsque X est une surface. Par formules
énumératives, on entend donner le nombre de trisécantes a X vérifiant un
certain nombre de conditions convenables (comme par exemple de couper
un sous-espace fixé).

Face a ce probléme, deux méthodes naturelles apparaissent:

— la méthode du lieu triple;

— la méthode fonctionnelle.

1°) Disons seulement quelques mots de la premiere, puisque l’article est
consacré exclusivement a la seconde; la portée de cette derniere est moins
générale que la méthode du lieu triple, mais aussi donne-t-elle dans le cas
qui nous intéresse des résultats plus fins, car s’appliquant a une classe plus
large de surfaces (surfaces contenant des droites).

Nous allons voir que les trisécantes a X forment un «lieu triple »,
de méme que les cordes de X forment un «lieu double ». En effet, si
f: A — B est un morphisme entre variétés algébriques, le lieu double de f
est défini grosso modo comme I'ensemble des x; € A pour lesquels il existe
X, # Xx; ayant méme image f(x,) = f(x,). La formule maintenant classique
de Laksov [22] donne (la classe de) ce lieu double dans X. Voir la mono-
graphie de Fulton [7].

On définit également le lieu triple de f (grosso modo l'ensemble des
x; € A tels quil existe x,, x5 distincts et distincts de x; ayant méme image
par f). Dans [17], [18], [19], [20], Kleiman donne une formule pour
(la classe de) ce lieu triple dans X avec f supposé suffisamment général.
Des perfectionnements ont été apportés depuis par S. Colley [3] et Ran [32].
La formule analogue dans le cas différentiable est due a4 Ronga [33].




Désignons par G(1, N) la grassmannienne des droites de P¥ et soit
X < PV une sous-variété; soit 4 dans PV x G(1, N) la variété d’incidence
des (x,d) avec xed et xe X. On voit alors que les trisécantes a X
correspondent au lieu triple de pr,: A — G(1, N). Nous ne continuerons pas
dans cette voie, qui consisterait a appliquer la formule générale du lieu
triple & ce morphisme.

2°) Soit donc S dans PY une surface. La méthode que nous utilisons
dans cet article, afin d’¢tablir des formules énumératives pour les trisécantes
de S, est la méthode fonctionnelle. Cette méthode, telle que la concevaient
les Anciens, consisterait a supposer que toute formule trisécante pour S est
a priori un polyndéme en les quatre invariants n = degré S, c¢,, K? et HK
(ou H section hyperplane). Auquel cas, on trouve les coefficients d’un tel
polyndme par examen de cas particuliers simples pour S.

Bien entendu, la plus grosse difficulté de Plarticle est de justifier cette
assertion. Pour cela, on doit définir rigoureusement ce que I'on entend par
« trisécante » et « nombre de trisécantes » afin de pouvoir tenir compte de cas
dégénérés. C’est ce qu'on tentera d’expliquer dans le n° suivant.

Avant cela, nous remarquons que lorsque X < PV est une courbe C,
les formules trisécantes sont connues depuis fort longtemps:

— nombre de trisécantes 4 C = P> coupant une droite fixée,
— nombre de tangentes & C = P? recoupant C,
— nombre de trisécantes 4 C = P*.

(Cayley [2], Salmon [37]). Elles ont été initialement trouvées par la méthode
fonctionnelle (sans justification) comme fonctions du degré et du genre.
Plus tard, une autre méthode est apparue, considérant la « correspondance
trisécante » sur C x C (x et y sont en correspondance s’il existe z aligné
avec x et y), puis en montrant que cette correspondance est « a valence ».

Toutes ces formules ont été depuis peu redémontrées rigoureusement;
on pourra consulter [1], [9], [12], [23], [36].

3°) Si X est une sous-variété de PM, disons quune droite L est une
trisécante 2 X si L n X consiste en trois points, éventuellement « infiniment
voisins » comme dans le cas d’une tangente L qui recoupe X en un autre
point, ou comme dans le cas d’une tangente d’inflexion a X (auquel cas
les trois points sont confondus). En langage moderne, une trisécante est une
droite L telle que le schéma L n X soit de longueur 3.
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Pour la commodité, on dira par la suite triplet pour schéma de dimension 0
et longueur 3 et on dira qu'un triplet est aligné s’il est sous-schéma d’une
droite. De sorte que nous faisons I'identification commode:

droite trisécante a X « triplet aligné situé sur X .

C’est une identification analogue que faisait déja Severi [35] pour le probléme
du nombre des quadrisécantes d’une courbe C de P? en considérant
« la varieta irreducibile o8, T, delle quaderne di punti allineati dello spazio
¢ la varieta irreducibile co* U, delle quaderne di punti della generica C.
Le T, U son contenute nella varieta irreducibile co'?, Z, di tutte le quaderne
di punti dello spazio ». Il intersectait alors T et U dans Z.

Dans cette citation, on reconnait implicitement dans Z (pour k=4 et
N=3) le schéma de Hilbert Hilb* PY [10] paramétrant les k-uplets de P
et en T la sous-variété des k-uplets alignés, que nous noterons Al* PY.

Or tant que l'on parle de sous-schémas d’une courbe non-singuliere
(comme plus haut L n X dans L), cette notion était en fait connue impli-
citement des Anciens. C’est que pour une courbe non-singuliere, le langage
des points infiniment voisins suffit, vu que dans ce cas les notions de
sous-schéma et de diviseur coincident. C’est entre autres pourquoi dans la
suite de Iarticle, plutdt que de travailler dans le schéma de Hilbert Hilb3 PV
paramétrisant I’ensemble des triplets quelconques de P¥, on se placera dans
Pouvert Hilb? PY des triplets (que nous proposons d’appeler curvilignes)
qui sont sous-schémas d’une courbe non-singuliére. Les seuls triplets exclus
dans cet ouvert sont ceux définis par les carrés d’idéaux maximaux dans
un plan, qui correspondraient en langage classique a « des éléments du second
ordre, de courbure infinie » (voir [4]). Par ailleurs, la lissit¢ de louvert
Hilb? PY est trés facile a établir [24], tandis que celle de Hilb® PV est
plus delicate (c’est par exemple une conséquence d’un théoréme de Fogarty [5]
selon lequel Hilb? P? est non-singulier).

4°) Nous pouvons maintenant définir rigoureusement le «cycle des tri-
sécantes a S » et les « formules trisécantes pour S ».

Le schéma Hilb? P" contient la sous-variété Hilb? S des triplets curvilignes
situés sur S; il contient également la sous-variété compléte A3 PY des triplets

alignés. Alors, avec la définition que nous avons adoptée, les trisécantes 4 S
correspondent a lintersection

AP PY A Hilb3 S .
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Si Pon veut un nombre fini de tels triplets (pour des formules énumératives),
on coupe par une sous-variété Z de AI® PY de dimension complémentaire;
le cardinal de Z n Hilb? S n’est alors rien d’autre que « le nombre de tri-
sécantes a S vérifiant Z ».

Bien entendu, tout cela doit se formaliser car on peut trés bien avoir
des intersections de dimension excédentaire! De sorte qu’il vaut mieux parler
d’intersecter des classes de sous-variétés (ou de cycles); c’est-a-dire travailler
dans lanneau des classes pour [léquivalence rationnelle (grosso modo, se
ramener a ce que les sous-variétés se coupent proprement, i.e. avec la bonne
dimension). Dans ce langage, la définition correcte du « cycle des trisécantes
asS»est:

P*[Hilb? ST e A'(A® PY)

ou i: AP P ¢, Hilb? PY est Iinjection canonique et A désigne I'anneau
d’équivalence rationnelle gradué par la codimension. (On dira aussi « anneau
de Chow » pour «anneau d’¢quivalence rationnelle »). La notation [ ]
désigne comme d’habitude le cycle associé a une sous-variété.

Alors si Z dans AI®* PV a la dimension voulue, le « nombre de tri-
sécantes a S vérifiant la condition Z » se définit comme le degré du O-cycle

Z . *[Hilb? S7 .

Par exemple, si S est une surface de P° et que Z désigne la sous-variété
de AI® P> formée des triplets alignés de support un seul point (« trois points
consécutifs infiniment voisins sur une droite » dans le langage ancien), le
degré du O-cycle Z . i*[Hilb? S] est le nombre de tangentes inflexionnelles de S
et on le donne explicitement un peu plus loin.

C’est donc la définition qu'on adopte ici de « nombre de trisécantes »
et c’est de tels nombres qu'on se propose de calculer. (Ils peuvent tres bien
étre négatifs dans les cas dégénérés de surfaces ou les deux variétés en question
ne se coupent pas proprement, cest-a-dire le cas ou, contrairement a
I'attente, il y a une infinité de trisécantes vérifiant Z.)

Avec cette définition, les formules comptent d’elles-mémes avec multiplicités.
Par exemple, une droite quadrisécante a S comptera en général 4 fois
comme trisécante, puisqu’il lui correspond quatre triplets alignés situés sur S.
Le probléme d’une droite L contenue dans S est plus préoccupant: il lui
correspond co® triplets alignés situés sur la surface et I'on est obligé de
calculer I'influence dans les formules de cette composante parasite (théoreme
de lintersection résiduelle) pour avoir le nombre de « vraies » trisécantes
(voir [26]).
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5°) L’article comprend deux parties: le cas des surfaces de P*#, puis celui des
surfaces de P>, P®, P7. Esquissons la démonstration dans le cas des surfaces
de P*.

Tout d’abord (afin de pouvoir généraliser par la suite dans la deuxiéme
partie de Particle), on supposera non pas que la surface S est lisse, mais a
singularités ordinaires dans P*, ce qui signifie que S possede comme uniques
singularités & points doubles impropres; autrement dit des points ou deux
branches lisses de S se coupent transversalement. On ne suppose pas que S
est irréductible.

Grosso modo, on déforme alors S platement dans P* en un schéma
X, tel que les cycles [Hilb? ST et [Hilb? X,] soient rationnellement équi-
valents dans Hilb2 P*; d’ou I'identité des classes i*[Hilb? S] et i*[Hilb? Z]
dans Panneau A'(A* P*). Puis le schéma Hilb? £, se décompose facilement,
contrairement a Hilb? S, en trois composantes (voir § II). Chacune de ces
composantes a une contribution différente dans le degré du O-cycle
Z . i*[Hilb? ], que l'on calcule alors: pour cela, connaitre une base de
anneau de Chow de AI® P* est nécessaire. Elle est fournie par le théoréme
de Leray-Hirsch car AI® P* est fibré en P? sur la grassmannienne des droites
G(1,4). On évalue donc i*[Hilb? X,] sur cette base explicite et 'on vérifie
que dans tous les cas le degré cherché a la forme attendue, a savoir

an + a, (;l) + a; (g) + ot + d(Bn+7)

ou
n est le degré de S,

t est le nombre de points triples d’une projection générique S’ sur un
hyperplan P?,

d est le degré de la courbe double de S,
et ay, a,, as, o, B, y sont six constantes.

(On utilise d,¢ et plus loin & comme invariants des surfaces, plutdt que
¢,, K? et HK moins commodes).

Ce qui précéde permet alors, par examen de deux cas particuliers pour Z,
de prouver le

THEOREME. Soit S < P* une surface dinvariants (n,d, t) comme
ci-dessus. Alors

le nombre de tangentes recoupant S et une droite fixe est
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£,(S) = 6(d(n—2)—(:>—t);

le nombre de tangentes d’inflexion coupant un plan fixe est
t,(S) = n(n—4) 2n—1) + 6(t—d(n—4).

Exemple. Pour la surface S(2,3) = P* intersection compléte d’une
quadrique et d’'une cubique, on trouve t; = 24, ce que confirme un calcul
direct dans la grassmannienne G(1, 4). (Cet exemple n’est pas un des cas
particuliers servant a €tablir la formule pour ¢, !)

6°) Dans la deuxieme partie de larticle, on considere une surface lisse
(mais pas forcément irréductible) dans PY pour N = 5, 6, 7 et I'on introduit,
outre n, d et t comme précédemment, U'invariant & ainsi défini: c’est le nombre
de points singuliers (points doubles impropres) apparaissant dans une pro-
jection générique ¥V’ sur un P* Comme plus haut, afin de justifier la
méthode fonctionnelle, on déforme V en un certain schéma ®, de sorte
que les classes i*[Hilb? V] et i*[Hilb? ®,] soient égales. Le schéma Hilb? @,
se décompose, lui, en plusieurs composantes irréductibles; on évalue la
contribution de chacune d’elles en appliquant ce qui précéde sur les surfaces
de P* et on arrive finalement au résultat:

toute formule trisécante pour ¥ est de la forme F
n n
an + a, (2) + a; <3> + at + dPn+7y) + o(un+v)
oua,, a,, as, & B, v, u, v sont huit constantes.
L’examen de six cas particuliers pour Z conduit alors au théoréme:
THEOREME. a) Soit V < P° une surface dinvariants (n, d, t,8) comme
ci-dessus. Alors
le nombre de trisécantes coupant un plan fixe est
n
t3(V) = <3> + 2t + (n—2)(6—4d);
le nombre de tangentes recoupant S et un P> fixé est
t (V) = —n(3n*—11n+2) + 12(d(n—3)—t) — 28(n—6);
le nombre de tangentes d’inflexion est g

ts(V) = 2n(2n*—18n+25) + 12(t—8—d(n—7)).
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b) Soit V < P® une surface d’invariants (n, d, t, d). Alors

le nombre de trisécantes coupant un P* fixé est
to(V) = 4(2) — 2n + 4t — d(3n—8) + d(n—4);

le nombre de tangentes recoupant V'  est
t(V) = —4n(2n?—15n+19) — 24t + 2d(13n—-72) — 26(n—12).

¢) Soit V < P’ une surface d’invariants (n, d, t, d). Alors

le nombre de trisécantes a V est
ty(V) = 14 (’3‘) — 18 (g) + 5n + 8¢ — 8d(n—5) + d(n—8).

Exemple. Pour la surface S(2, 2, 3) = P° intersection compléte de deux
quadriques et d’une cubique, on trouve ¢, = 192 et t5 = 240, ce que confirme
un calcul direct dans la grassmannienne G(1, 5). (L& encore, cet exemple ne
sert pas a établir les formules donnant ¢, et t5!)

7°)  Mise en garde

Commengons par un exemple afin de faire comprendre cette mise
en garde. Pour C une courbe dans P* de degré 6 et genre 3, la formule
pour le nombre g de quadrisécantes [23] donne 0. Or si une telle courbe
est en plus hyperelliptique, c’est en fait une courbe de bidegré (4, 2) sur
une surface quadrique, donc elle posséde une infinité de quadrisécantes, a
savoir les génératrices! On voit donc dans ce cas quon ne peut, de g = O,
conclure a I'absence de quadrisécante; ou alors, en s’étant assuré auparavant
quil w’y en avait au plus qu'un nombre fini. Cest quen fait le nombre g
donné est un nombre d’intersection et peut donner des résultats négatifs,
nuls ou positifs dans le cas ou, contrairement a l'attente, il y a une infinité
de quadrisécantes a C. Tel est le cas des courbes de bidegré respectivement
(4, 3), (4,2) et (4, 1) sur une quadrique de P, ou l'on trouve g = —1,0, 1.

La méme mise en garde se transporte mutatis mutandis au cas des tri-
sécantes aux surfaces. Cependant, une difficulté supplémentaire tient au fait
que la surface peut contenir des droites. (On exclut cependant le cas des
surfaces réglées; voir [16], [27].) D’ou la discussion suivante.

a) La surface ne contient pas de droite

1) Si l'une des huit formules précédentes donne un nombre négatif,
il y a évidemment une infinité de trisécantes du type cherché, puisqu’il
s’agit d’'un nombre d’intersection.
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1) Si par contre I'une des formules donne un nombre nul ou positif,
on ne peut a priori rien conclure, sauf si I'on s’est assuré auparavant
qu’il ne pouvait y avoir qu'un nombre fini de trisécantes du type cherché.

Il y en a alors le nombre donné par la formule.

b) La surface contient un nombre fini de droites

Seules les formules donnant ¢5, t, et tg sont concernées; dans ce cas,
si la surface V contient une droite L, les oo triplets alignés sur celle-ci

: : 341 441
contribuent respectivement de —3(2+1), 4( ;) et ~< :) dans les

nombres d’intersection ts, t,, tg (ou [ désigne la self-intersection de L sur
V'; voir théoremes 5, 7 et 8). On peut alors utiliser les formules dans deux sens:

1) Ou bien la surface V ne possede par ailleurs pas de «vraie»
trisécante (si V' est intersection de quadriques, par exemple), auquel cas
les formules donnent des renseignements sur le nombre de droites contenues
dans L.

ii) Ou bien l'on connait le nombre de droites que contient V (et leur
self-intersection), auquel cas apres correction, les formules donnent le nombre
de « vraies » trisécantes a V.

Par exemple la surface de del Pezzo S5 = P° est intersection de qua-
driques et contient 10 droites de self-intersection — 1. On doit donc trouver

ts = —30 (puisque chacune d’elles contribue de —3 dans t5); ce résultat
sert méme dans le cours du calcul de la formule générale pour ¢ (voir § IV.2).
Mais inversement, la connaissance de ts; = —30

i) Ou bien montre qu’il n’y a pas de trisécante a S5 si Pon sait que S;
posséde 10 droites exceptionnelles,

ii) Ou bien donne le nombre de droites exceptionnelles sur Sy si 'on sait
quil n’y a pas de vraie trisécante a Ss.

8°) Application aux volumes

Les formules donnent des renseignements sur le nombre de droites
contenues dans les volumes (variétés de dimension 3), supposés intersections
de quadriques.

Par exemple, considérons un tel volume X dans P7, supposé ne contenir
qu'un nombre fini de droites; quel est ce nombre? La réponse est tg(V)
ou V est la surface X n #;, # 5 étant une hypersurface cubique transverse
a X. En effet, toute droite dans X est trisécante a V et réciproquement,

Ve
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puisque X est supposé intersection de quadriques. L’exemple le plus simple est
évidemment le volume X intersection compléte de quatre quadriques, ou I'on
trouve ainsi 512 droites (ce qu'on vérifie directement dans G(1, 7)).

De méme, si X = P% est un tel volume, le degré de la surface reglee
formée des droites dans X est donné par tg(V) ou V = X n #; comme
précédemment. '

Premiére partie: P*

I) RAPPELS ET DEFINITIONS; SCHEMAS X ET X,

19 Hilb* P¥, Al* PY ET FORMULES k-SECANTES
On rappelle rapidement les notions introduites dans [24] et [25].

a) Le corps de base est algébriquement clos de caractéristique nulle; on se
place sur C pour la commodite.

Si Hilb* PY désigne le schéma de Hilbert [10] des k-uplets de PY
(sous-schémas de dimension O et longueur k), on désignera par Hilb} PY
I'ouvert formé des k-uplets curvilignes c’est-a-dire situés sur une courbe
non-singuliére. L’ouvert Hilb* PV est en général non dense [15], mais en tout
cas non-singulier [24] de dimension Nk. Il contient 'ouvert Hﬂb’; PV des
k-uplets formeés de points distincts comme ouvert dense.

Les k-uplets de PN qui sont sous-schémas d’une droite, appelée axe
du k-uplet, sont dits alignés. Ils forment une sous-variété¢ non-singuliére
de dimension 2N + k — 2, notée A* P", de Hilb* PY. On a une fibration
naturelle, au-dessus de la grassmannienne des droites:

Axe: AFPY - G(1, N)

qui 4 un-k-uplet aligné fait correspondre son axe. La fibre-type est
Hilb* P! ~ Pk,

Exemples et notations. Un doublet est toujours aligné. Si (x, y) sont les
coordonnées de C?, le triplet d’idéal (x2, xy, y*) n’est pas curviligne; le triplet
d’idéal (x3, y+x?) est curviligne mais non aligné. On notera — un doublet
de support réduit a un point. Un triplet curviligne de support réduit 4 un

: .3 . . 3
point sera noté “ et s§'il est aligné, on le notera . Remarquons par

exemple que le quadruplet — — est aligné, mais celui-ci: — T ne Test
pas, bien qu’évidemment le réduit associé le soit!
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b) Définissons maintenant le cycle des k-sécantes d’une surface de PV,

Soit S = PY une surface et i: AI* PY ¢, Hilb* P¥ TIinjection canonique.
Comme Hilb* § s’identifie & un sous-schéma de Hilb* P¥ (par exemple [8]),
notons Hilb* S la trace de Hilb* S sur Hilb* P. Le cycle associé [Hilb¥ S]
de Hilb* PV est de dimension 2k et donc le cycle

i* [Hilb* S

appartient & A*V~2(A4[* PY) ou A" désigne Panneau de Chow, gradué par la
codimension. Soit Z un cycle fixé dans AI* P, de dimension complémentaire.
On appellera formule k-sécante pour S dans PV, une formule donnant le degré
d’un O-cycle Z.i* [Hilbk S lorsque le cycle Z est fixé.

Exemple. N = 4, k = 4; dans ce cas Z doit appartenir a A*(Al* P%).
Un exemple de formule quadrisécante pour les surfaces de P* est donc:
les quadrisécantes rencontrant une droite fixe. Dans ce cas, on prend
Z = Axe*o ou o€ A*(G(1, 4)) est le cycle de Schubert des droites coupant
une droite fixe. -

Dans la suite de cet article, on ne s’intéressera qu’aux formules tri-
sécantes pour une surface. On renvoie a [28] pour les autres cas.

2°) PLATITUDE ET EQUIVALENCE RATIONNELLE

La proposition 1 démontrée dans ce paragraphe est le ceur de larticle.
Elle permet de remplacer Hilb* S par Hilb* X, .

a) Comme d’habitude, si ¥V est un sous-schéma du schéma H, on désigne
par [ V] le cycle associé. Commengons par montrer le

LemMeE 1. Soit U wun ouvert de C contenant 0 et 1 et soit
U= U - {0}. Soit H un schéma.
On se donne un sous-schéma réduit Z de H x U quon suppose

plat sur U; soit Z son adhérence dans H x U. Si la fibre Z, est
génériquement réduite, on a I'équivalence rationnelle dans H :

[21] ~ [Zo] = [(Zo)red]-

Preuve. Vu ([14], prop. 1.4) et ([11], 1.9.5.9 et 1.9.5.10), Z est l'unique
sous-schéma relatif de H x U, plat sur U, dont la restriction a U est Z.
(De plus Z est réduit). Par définition de I'équivalence rationnelle, vu la
platitude de Z sur U, on a [Z,] ~ [Z,]. Mais Z, = Z, et [Z,] = [(Z)redl
par hypothése, ce qui démontre le lemme.
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Donnons maintenant une définition:

Définition 1. Soit U un ouvert de C et soit X/U un schéma relatif.
On dit que X/U est k-plat si le schéma de Hilbert relatif

Hilb* X/U
est plat sur U et réduit.

Remarque 1. Le cas le plus évident, qui nous intéressera principalement,
est celui ou X/U est isomorphe a un produit F x U. Dans ce cas, on a
lisomorphisme Hilb* X/U ~ (Hilb* F) x U. Ce schéma relatif étant un
produit, est plat. Il suffit donc de supposer Hilb* F  réduit, ce qui est
toujours le cas si F est non-singulier (car alors Hilb* F est aussi non-
singulier) ou bien si F est une surface a singularités ordinaires de P*
(voir Annexe 1).

On peut de maniere analogue montrer le

LemMme 2. Si X/U est un schéma relatif lisse, le schéma relatif
Hilbf X/U est également lisse, donc plat et réduit. Ainsi X /U est k-plat.

Preuve. Soit m: X — U la projection et x un point de X. Il existe
un voisinage ¥~ (disons transcendant) de x et un isomorphisme ¥~ > U’ x F
au-dessus d’un voisinage U’ de m(x), ou F est non-singulier. Alors on a
Hilbf v'/U’" ~ (Hilbk F) x U’; or Hilb* F est non-singulier, d’ou la lissité.

b) Nous pouvons maintenant énoncer et démontrer la

ProposITION 1. Soit U un ouvert de C contenant 0 et 1 et soit
U=U-— {0} Soit H = Hilb* P¥.

Soit X/U wun sous-schéma relatif de PN x U. On suppose

a) tout k-uplet curviligne dans la fibre X, est limite de k-uplets curvilignes
dans des fibres X,, avec N # 0, de X/U;

b) Hilb¥ X, est génériqguement réduit :
c) le schéma relatif X/U est k-plat (déf. 1).

Alors on a Péquivalence rationnelle dans Hilb* PV :
[Hilb; X, ] ~ [(Hilb! X,),.q] = [Hilbf X,] .

Preuve. Considérons le schéma relatif Z/U = Hilbk X/U. Par Fhypo-
thése c), Z est plat sur U et réduit. D’autre part Z est contenu dans le
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schéma relatif Hilb¥ X/U et ce dernier est fermé dans Hilb* PV x U. Par
définition de I’'adhérence, on a donc 'inclusion

7 < Hilb* X/U .

C’est une inclusion de schémas puisque Z est réduit. On en déduit 'inclusion de
schémas entre les fibres:

(1) Z, < Hilbk X, .

Maintenant lhypothése a) signifie précisément linclusion (Hilb¥ X),.q = Z.
Comme (Hilb* X,),.q est contenu dans la fibre en 0 de HilbfP" x U,
on a donc I'inclusion

(2) (Hﬂb’cc X0)rea < Z_o .
On a donc montré
(3) (Hilb¥ X ),.qa © Z, < HilbF X, .

Or I'hypothése b) assure que Hilb* X, est génériquement réduit; donc Z,,
aussi, d’apres (3). Les hypothéses du lemme 1 sont donc satisfaites pour Z
et 'on a ainsi, vu (3):

[Z,] ~ [Z,] = [Hilb; X,] = [(Hilb{ X)real -

Or par définition méme, Z, = (Hilb* X/U), = Hilb* X,. La proposition 1
est donc démontrée.

¢) Nous allons donner pour linstant comme application de cette proposition,
un corollaire technique qui peut étre sauté en premiere lecture. Par singu-
larités ordinaires d’une surface S’ dans P® nous entendons uniquement
croisements normaux, points-triples et points-pince.

PROPOSITION 2. Soit S < P3 une surface a singularités ordinaires,
de degré n. Alors pour tout cycle K dans A (AI® P3), de dimension 3,
le degré du O-cycle

K.i* [Hilb? §']

n n
an + a, <2> + a, (3)

ou a,,a,,as sontdes constantes ne dépendant que de K.

est de la forme
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(Comme toujours, i: Al P* ¢ Hilb? P? désigne I'injection canonique.)
Remarquons que Hilb> S’ est génériquement réduit par I'Annexe 2: §' n'a
que des singularités ordinaires.

Preuve. Soit M la réunion de n plans en position générale dans P°,
tous transverses a S'. Soit f, une équation de S’ et f, une équation de M.
Considérons le sous-schéma relatif X/C de P*? x C défini par I’¢quation

A=2)fo + Af2 =0

ou A parcourt C. On a bien sir X, = §' et X, = M. Soit U Touvert
maximal de C tel que X/U soit lisse au-dessus de U. Il est non vide et
on peut toujours supposer que 1 lui appartient. Le schéma X/U est k-plat
car il est lisse (lemme 2).

Soit Uy, = U v {0} et U, = U v {2}. Les lemmes 10 et 11 de ’Annexe 2
montrent que les hypothéses a) et b) de la proposition 1 sont vérifiées:
en effet localement au-dessus d’un voisinage de 0 ou 2, le schéma relatif X
est isomorphe aux schémas relatifs ® ou Il des lemmes 10 et 11. Cela
resulte de ce que S’ et M n’ont que des singularités ordinaires. On applique
alors deux fois la proposition 1, en remplagant I'une des deux fois 0 par 2
evidemment, et on trouve donc I’équivalence rationnelle:

[Hilbf X,] ~ [Hilb* X,] ~ [Hilb* X,],
solt encore

[Hilbk S'] ~ [Hilb* M].

On s’est donc ramené d montrer la proposition pour la réunion de n plans.
Soit Py, P, ... P, les plans dont la réunion est M soit k, , k, ... k, des entiers
positifs tels que k; + k, + ... + k, = 3etsoit Uy, ,, ., ensemble des triplets
simples ayant k; points sur P;. D’aprés le lemme 10 (Annexe 2) le schéma

(Hilb? M),., admet les adhérences Uk, k,...x, COMme uniques composantes
irreductibles. Appelons « type » d’une telle composante I’ensemble des k;
non nuls. Ainsi (Hilb? M), 4 est formé de

n
<3> composantes irréductibles de type {1, 1, 1},

n
2 ( 2> composantes irreductibles de type {2, 1},

n composantes irréductibles de type {3} .
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De plus, deux composantes irréductibles de méme type sont évidemment
rationnellement équivalentes dans Hilb? P?, comme on le voit en faisant
agir PGL(3) sur les triplets de plans. Ainsi,

n

[Hilb? M] = [(Hilb? M),,] = (;’) A+ (2

)B + nC
ou A, B et C sont trois cycles fixés dans 'anneau de Chow de Hilb? P3;
d’ou le résultat annoncé.

Remarque 2. Le lecteur adaptera sans peine la démonstration pour
montrer que pour tout cycle K € A" (Al P3), de dimension k, le degré du
O-cycle K .i* [Hilb* S'] est de la forme

n n
an + a, <2> + .. + a (k)

ou les a; ne dépendent que de K.

3°) DEFORMATION DE S EN X,; ETUDE DE Hilb* X,

Soit S une surface de P* La définition donnée en 1) des formules
k-sécantes pour S oblige a connaitre la classe d’équivalence de [Hilb} S]
dans ’anneau de Chow de Hilb* P*.

L’idée quon va utiliser est de construire un schéma relatif £/C avec
fibre £, = S, la fibre £, ayant pour réduit la projection §" de S sur un
hyperplan générique H. On essayera alors d’arriver a I'équivalence rationnelle
[Hilb* ST ~ [Hilbk X,] et dutiliser la proposition 1. Considérons maintenant
un schéma F. Si F est non-singulier, I'ouvert Hilb%, F des k-uplets simples
est dense dans Hilb¥ F: car un k-uplet curviligne dans F est aussi contenu
dans une courbe non-singuliére A située sur F; on le déforme alors en k
points simples sur A. (Remarquer par contre que Hilbf F n’est en général
pas dense dans Hilb* F; voir [15]).

Remarque 3. C’est justement la présence de composantes immergees dans
T, (de réduit §') qui fait qu'on a Hilb% X, (ou Hilb% §') non dense dans
Hilb X,. En fait, on verra que Hilbf S’ (qui est I'adhérence de Hilb% S
est seulement une composante irréductible de Hilbf X, lequel scinde en
plusieurs composantes. Et c’est I’évaluation de la contribution de chacune
de ces composantes dans les formules k-sécantes qui constitue I'essentiel de
la démonstration.
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a) Commengons par décrire un proceédé général de déformation d’un sous-
schéma de PV

Soit Z = P¥ un schéma réduit et Z' sa projection sur un hyperplan H
par un point générique . D’apres ([14], prop. 1.4) ou encore ([137, 11, ex. 9.8.3),
il existe un sous-schéma réduit & de PV x C, plat sur C, avec pour fibres
¥, =7 et (Zo)ea = Z. Rappelons pourquoi: On prend pour cela un
systéme de coordonnées homogeénes (Xg:X;:..:Xy) pour lequel H ait pour
équation xy = 0, le point ® étant le point (0:0:..:0:1). Le schéma a la
structure — réduite — de P’adhérence dans P¥ x C de I'image de Z x C*
par le plongement

Z x C* ¢ PY¥ x C*
(o1 Xy Xyopixy), A) o (o1 Xyt i Xyoy P AXy ) A
En général, la fibre Z, posséde des composantes immergées (voir [13], p. 260).

Remarque 4. Si on pose U = C et U = C* le schéma relatif Z/U
est plat puisqu’il est isomorphe au produit Z x U.

b) Appliquons ce qui précéde a une surface S & singularités ordinaires de P*.
On la projette génériquement en S’ sur un hyperplan H. La sous-variété S’
possede une courbe-double I', des points triples M4, .., M, et des points-
pinces P, .., P,. Il s’agit d’abord d’¢tablir la structure nilpotente de Z,,
sachant que (X,),.q4 = S'. Nous pouvons €noncer deux propositions.

ProPOSITION 3. Avec les notations précedentes, on a légalité des sous-
schémas de P*:

o =S uIlMouoMPu..uoMP

ou pour V <= P* V@ désigne le i-éme voisinage infinitésimal de V dans P*
De plus, S" = (X(),eq = Zo O H.

Dans le dessin ci-apres les nilpotents sont dans P*; on a représenté

les doublets (dans P*) par des traits courts et les triplets par des traits
courbés plus longs.

Avant d’énoncer la proposition suivante, donnons une définition. Celle-ci
est motivee par le fait, comme on I'a dit, que pour un schéma quelconque F,
Pouvert Hilb% F n’est en général pas dense dans Hilbf F.

Définition 2. Appelons k-uplet « double » (resp. « triple »), une réunion
disjointe de points simples et de doublets de support un point (resp. points
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S/

simples, doublets de support un point et triplets curvilignes de support un
point).

Alors a défaut de pouvoir déformer tout k-uplet curviligne d’un schéma F
en k-uplets simples, on peut espérer le déformer en k-uplets doubles, voire
triples. C’est justement ce qu’affirme la proposition suivante (en i) pour le
schéma X, .

PRrROPOSITION 4. Soit X/C le schéma relatif associé a une surface a
singularités ordinaires S de P* dont S’ est la projection sur hyper-
plan H.

i) Tout k-uplet curviligne dans X, de support un point-triple {M}, est limite
(pour k=4) de k-uplets triples dans X%, .

Tout k-uplet curviligne dans X, de support un point-pince {P}, est
limite (pour k>=3) de k-uplets doubles dans Z.
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Tout k-uplet curviligne dans Zo, de support un point de la courbe double T
de S', est limite (pour k>=3) de k-uplets double dans X,.

ii) Tout k-uplet curviligne dans X, est limite de k-uplets curvilignes dans des
fibres X, de X/C avec M\ # Q.

iii) Hilb® £, est réduit au voisinage d’un triplet curviligne t de support un

' point-triple {M}, lorsque t & S = (Zg)ea = Zo N H.

Hilb? ¥, est réduit au voisinage d'un doublet d de support un point-
pince {P}, lorsque d & §'.

Hilb? X, est réduit au voisinage d'un doublet d de support un point

- de I', lorsque d & S

Preuves des propositions 3 et 4. 1l s’agit essentiellement, par des calculs
en coordonnées, de se ramener a I’¢tude de modeles locaux pour X,
d’abord au voisinage de la courbe double I', puis d’'un point triple M et
enfin d’'un point pince. Or cette étude pour les modeles locaux a été faite
dans [24]. Voir I’Annexe 3 pour tous les détails de calcul.

II) TRISECANTES DANS P*: LA THEORIE

Soit S une surface de P* a singularités ordinaires. Notons n son degré,
d le degré de la courbe double apparente et t le nombre de points-
triples apparents, dans une projection générique sur un P>.

On regarde le diagramme, ou les fleches sont les injections canoniques
et les dimensions sont entre parentheéses:

9  ABPP* & HiIBEP* (1)
J
Hilb3S  (6).

Le but de ce § II est de montrer la

PROPOSITION 5. Soit S une surface de P* dinvariants (n,d, 1).

Pour tout cycle Z dans AAI* P*), la formule trisécante donnant le degré
du O-cycle Z.i* [Hilb? ST est de la forme
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T(S) = an + a, <Z> + a; <z> + ot + dPn+7)

ou ay,a,,a3,% B et <y sont des constantes ne dépendant que de Z.

1°) CompPosaNTES DE Hilb? X,

a) Notons S’ la projection de S sur un P*® générique de P* S admet une
courbe double I'" avec t points-triples M, ... M, et v points-pince. En 1.3.b on
a construit un schéma relatif X/C avec X, = S et (£),qa = 5. De plus
(proposition 3), on a

(*) So=SuIMuoMPuU.uM?

ou V9 désigne le i-éme voisinage infinitésimal de V dans P*; on a
S, AP = §.

Nous allons détailler les différentes composantes du schéma (Hilb> Z),eq -

Notation 1. Notons S,; la sous-variété (localement fermée) de Hilb? P*
formée des triplets t = d U m ou

d est un doublet de P* de support un point de T,

m est un point de S — I

Soit S,, 'adhérence de S,, dans Hilb? P*.
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Notons S4 pour j = 1,2..¢ la sous-varieté de Hilb2 P* des triplets
curvilignes £ de P*, de support {M,}. Soit S; leur reéunion (disjointe).

Remarque 5. Bien sir, §2—1 et S; sont contenus dans (Hilb? Z0);eq
d’aprés la structure nilpotente méme de X, (*).

b) On ala
PROPOSITION 6.

i) (Hilb2 Xg),q estréunionde (Hilb? )4, de S,y etdes Sh(j=1,2..1).

ii) Hilb? X, est génériquement réduit le long de ces composantes.

Preuve. i) Soit t un triplet curviligne contenu dans X,. Si ¢ est contenu
dans I'hyperplan P3, comme I, n P?> = §', on a t € (Hilb? §'),.q. Si t & P>,
le support de t ne peut étre formé de trois points simples, puisque (Xp)eq = §
et ' < P3. Donc Suppt rencontre I', car en dehors de I', les faisceaux
structuraux de S’ et £, sont égaux.

Premier cas. Suppt = {a,b} avec aeI et t double en a. Si b¢Tl,
par définition, on a teS,;. Si bel, on le «bouge» en b'eS§ — I et

donc t appartient a 5—21

Deuxiéme cas. Suppt = {a} ouae!l. Sia est'un des points-triples M,
on a teS;. Si a n’est pas I'un des points M;, c’est soit un point-pince
soit un point générique de I'. Dans les deux cas, ¢ est limite de triplets
de support formé de deux points: en effet cela résulte de la proposition 4.

ii) La composante Hilb? S est génériquement réduite d’aprés les lemmes 10
et 11 de 'Annexe 2 puisque S’ = P> n’a que des singularités ordinaires.
Par ailleurs S% est génériquement réduite d’aprés la proposition 4 iii): un
triplet générique de S4 n’est pas dans H. Enfin, montrons que S,, (donc S—21)
est génériquement réduit. Soit d U m un triplet générique de S,,; ainsi le
support de d n’est pas un point triple et d ¢ H. Alors Hilb? £, est réduit
au voisinage de d par la proposition 4 iii); d’ou §,,; réduit au voisinage de
dum.

2°) CONTRIBUTION DE CES COMPOSANTES DANS T/(S)

Soit Z € A*(AI° P*) un cycle fixé. Nous allons montrer trois lemmes,
avec les notations précédentes.

LEMME 3. Le degré du O-cycle Z.i* [Hilb3 S est de la forme
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n n
an + a, (2> + aj (3)

ou ai,a, et as ne dépendent que de Z.

LEMME 4. Le degré du O-cycle Z.i*[S;] est de la forme ot ou
o ne dépend que de Z. (S, désigne la réunion disjointe des S4 pour
j=1L2.t)

LEMME 5. Le degré du O-cycle Z.i* [_.SZ] est de la forme d(Pn+v)
ou B et y ne dépendent que de Z.

a) Prouvons le lemme 3. Regardons le diagramme commutatif ou les fléches
sont les injections canoniques et les dimensions entre parentheéses:

i

9  APP* & HIRPY (12
J”L Lu

i
l

(7)  APBP3 & HiIb3IPP  (9)

L

Hilb3 S (6).

Nous voyons par examen des dimensions que Al® P* et Hilb? P? ne se coupent
pas proprement dans Hilb? P*.

Nous aurons besoin du théoréme de lintersection résiduelle [7] [17]
sous forme de la formule de Fulton-MacPherson [6], quon énoncera ainsi:

THEOREME (Fulton-MacPherson). Soit Y une sous-variété non-singuliére
de la variété nomn-singulicre X. Soit A wune sous-variété de X et
I = AnY. Considérons le diagramme commutatif ou les fleches sont les
injections canoniques:




TRISECANTES DES SURFACES ALGEBRIQUES 21

Si I est localement intersection compléte dans A et si
dm] =dmA+dmY —dmX +r,

alors pour tout cycle o dans Y, le cycle i*u,o dans A est égal a
jo(C,.T*0) ou C, est fixé dans AT(D).

| L’Annexe 7 montre que AI° P* et Hilb? P* se coupent schématiquement
' en AI®P3. Appliquons alors la formule de Fulton-MacPherson a
o = [Hilb? §'] dans 4'(Hilb? P3). Comme ici r = 1, on obtient

ifuyo = i* [Hilb? 7 = j,C

ou C = C,.* [Hilb? §'] avec C, fixé dans A'(AI° P°). Par suite, par la
formule des projections, on a dans A'(AI°> P%):

Z % [Hilb? §] = Z.j,C = j(j*Z.C,.i* [Hilb? §7).
Mais K = j*Z.C, appartient a A*(AI® P?) et donc par la proposition 2:
deg Z.i* [Hilb? '] = deg K.i™* [Hilb] S']

n n
an + a, (2) + a; (3)

ou a,, a, et a; sont des constantes. Le lemme 3 est donc prouve.

est de la forme

b) Prouvons le lemme 4. Pour cela nous avons besoin d’un lemme auxiliaire:

LEMME 6. Désignons par I/ Tintersection ensembliste de S% (défini
dans ce paragraphe en 1.a) et de AI® P* dans Hilb] P*.

Alors génériquement, S% et AP P* se coupent transversalement ; par suite
i* [S4] = [I'].

Remarquer que I’ est isomorphe & P> par le choix de I'axe du triplet
passant par M;.

Preuve du lemme 6. C’est un simple calcul en coordonnées, comme on en
fera beaucoup dans '’Annexe: soit &, un triplet aligné de support {M;},
d’axe transverse a P> (Uhyperplan qui contient S'). Dans un systéme inho-
mogene de coordonnées (x,y,z u) centré en M;, S’ a pour équations

xyz+ ..=0, u=0

et Axe &, est engendré par un vecteur de coordonnées (o, B, v, 8). Puisque
£, est supposé générique dans I/, on se raméne 4 a = B =y =& = 1
et I'idéal de &, est alors
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Iy = (X%, y—x,z—x, u—x).
Une carte de Hilb? P* en £, est donnée par
(a,b,c,a.,b,,¢c,,a,,b,,C5,0a5,bs3,C3)
correspondant a I'idéal voisin:

I = (x*+ax*+bx+c, y—x+a;x*+bx+cy, z—x+a,x*+byx+c,,
U—x+asx*+byx+cy).
Dans cette carte, AI° P* s’exprime par a, = a, = a; = 0 et S4 par

— d’une part ¢; = ¢, = ¢z = 0 car la courbe sur laquelle est le triplet
curviligne doit passer par 0,

— d’autre part a = b = ¢ = 0 car le support doit étre {0}. Cela termine
la démonstration du lemme 6.

Nous aurons besoin de rappeler la proposition suivante (montrée en [25]).
C’est une conséquence facile du théoreme de Leray-Hirsch, car

Axe: AIF PY — G(1, N)
est une fibration de fibre type P*.

ProPOSITION 7. Soit i un entier et Hy,H,..#; des hyperplans
de PY en position générale. Pour k =i, soit H;, la sous-variété de
AFPY formée des k-uplets alignés & avec & #,# @ pour 1 <p<i

Alors on a Pégalité dans Ay (Al* PY) des sous-espaces vectoriels

A(AFPY) et '690 Axe*A5’(G).[H]] .
i=

(On note Ay = A’ ® et G = G(I, N))

Dans le cas qui nous occupe (k=3); on a donc en fixant 5#,, #,, #5
trois hyperplans de P* en position générale, ’égalité:
AYAP PH
= Axe*43(G) @ Axe*A(G).[H,] ® Axe*44(G).[H,] ® Q[H;] .
Or il est bien connu par la décomposition de Schubert (voir par exemple [21])
que A(G(1, 4)) est donné par:
— A%G) = Z(0,4) & Z(1, 3) ou

-
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(0, 4) = droites passant par un point fixe 0 de P4,
{ (1, 3) = droites contenues dans un hyperplan H' de P* et coupant
une droite A’ de H'.
— A*G) = Z(1,4) & Z(2,3) ou
{ (1,4) = droites coupant une droite A” de P*,

(2, 3) = droites contenues dans un hyperplan H” de P4

_ AYG) = Z(2, 4) ot
(2, 4) = droites coupant un plan fixe © de P*.

Pour montrer 'assertion du lemme 4, il suffit de la montrer pour Z
décrivant une base de A3(41® P*). Mais on a (lemme 6) Z.i* [S4] = Z.[I].
Or dans la base énumérée ci-dessus de A(AI® P*), seul le premier cycle
Axe*(0, 4) a une intersection non vide avec [’. En effet,

[ Axe*(1,3).[I'] = 0 car M;¢ H'
Axe*(1,4).[H,].[IF] = 0 car M, ¢ #,

| Axe*(2,3).[H,].[] = 0 car M, ¢ #,
Axe*(2, 4).[H,].[I'] = 0 car M, ¢ #,
[H5].[I'] =0 car M;¢ H .

Notons alors o le degré d’intersection Axe*(0,4).[I’]. (On peut se
convaincre que c’est 1 par un calcul en coordonnées, mais c’est inutile pour
la suite). Cela correspond & l'unique triplet aligné &, dans P* de support

{M;} et daxe OM;. On a donc degAxe*0,4).i*[S{] =oa dou
t
deg Axe*(0, 4).i* [S3] = ot puisque [S3] = Y, [S4].

j=1
L’assertion du lemme 4 est prouvée pour Z décrivant une base de

A3(ADP P*), donc le lemme 4 est démontré.

¢) Prouvons le lemme 5. Nous aurons besoin comme en b), d’'un lemme
auxiliaire:

LEMME 7. Désignons par 1 lintersection ensembliste de 5—2: (défini ]
dans ce paragraphe en l.a)) et de AP P* dans Hilb> P*. Alors géné-
riqguement, S,; et AP’ P* se coupent transversalement; par suite i* [S,,]
= [I] dans A'(AI® P%).

La preuve du lemme 7 est un calcul en coordonnées comme le lemme 6:
voir I’Annexe 4.
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D’apres ce lemme, pour prouver le lemme 5, il suffit de montrer que pour
tout cycle Z dans A°(A°® P*), le degré du O-cycle Z.[I] est de la forme
dBn+v) ou P et y ne dépendent que de Z. Il suffit donc de le vérifier
pour Z décrivant une base de A AI® P*). Or une telle base a été explicitée
en b), comme conséquence de la proposition 7. On utilise donc les mémes
notations qu’en b). |

Il s’agit de voir que les degrés des O-cycles
[ 1) Axe*(0,4).[[1]
i) Axe*(1, 3).[[]
(iii) Axe*(1,4).[H,].[I]
iv) Axe*(2,3).[H,].[[I]
\ v) Axe*(2,4).[H,].[I]
vi) [Hs].[1]

vérifient I'assertion du lemme 5.

Montrons-le rapidement cas par cas, toujours avec les notations de b).
L’hyperplan de P* contenant la projection S’ est noté P>,

i) Les axes des triplets éléments de I sont dans P>, donc ne peuvent ren-
contrer un point fixe O de P* Le premier des degrés cherchés est donc O.

ii) Les axes des triplets de I sont dans le plan H n P? de P> et passent
par le point fixe A’ n P? de ce plan. Donc il y a d possibilités pour le choix
d’un point-double et il reste n — 2 autres possibilités pour le point simple.
Dans ce cas le degré cherché est d(n—?2).

On ne tient pas compte d’une multiplicité éventuelle, car cela ne change rien
a Iénoncé du lemme.

iii) Soit 0 = A"nP?>et P = #, n P> (ou #, est Phyperplan qui définit
le cycle H,). Les axes des triplets de I doivent passer par O et les triplets
avoir un point au moins sur P. Deux cas a distinguer:

— ou le point simple est sur P n S’ et le point-double a son support
sur I'. I y a donc nd choix possibles puisque deg I' = d;

— ou le point-double a pour support 'un des d points de PN T et il
reste n — 2 autres possibilités pour le point simple. (En plus, dans ce cas
la multiplicité est 2).

La somme est bien de toute fagon de la forme d(Bn+ 7).
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SI

Dans I'un comme Pautre cas de figure ci-dessus, les petits traits représentent
les doublets dans P*, de support T

iv) Soit P = H' nP3et P, = #,; n P> Les triplets doivent donc étre dans
P et avoir au moins un point sur la droite A = Pn P,. Il y a donc
n possibilités pour le point simple, d’ou dn possibilités pour le choix d’un
tel triplet.

v) Les axes des triplets de I doivent couper la droite fixe A = n n P3
et les triplets doivent avoir deux points sur #; et #,. Soit P; = #; n P>
Comme les triplets de I ne sont pas formés de trois points distincts, le
support {0} du point-double doit &tre ou sur P; ou sur P,. Supposons
qu’il soit sur P;; comme le degré de I' est d, cela donne d possibilités
de choix pour O. Mais alors la droite A et le point O engendrent un plan P.
La droite P n P, coupe S’ en n points dans P parmi lesquels est choisi le
troisieme point du triplet; donc il y a dn solutions et par symétrie entre
P, et P,, 2dn au total.

vi) Soit P, = #; n P3. Les triplets de I doivent avoir un point sur chacun
des trois plans P;, P,, P;; mais comme ces triplets ne sont pas simples,
la partie doublet est obligatoirement a support sur une des droites P; N P;.
Or aucune de ces droites ne coupe I'; 'intersection est donc O.

Le lemme 5 est ainsi démontré.
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d) Conclusion

Soit S une surface de P* & singularités ordinaires et £/C le schéma
relatif associé défini en 1.3.b. Posons U = C et U = C*. Nous allons voir
que les hypotheses de la proposition 1 sont satisfaites pour le schéma relatif
¥/C. :

Pour a), cela résulte de la proposition 4ii). Pour b), cela résulte de la
proposition 6 ii), chaque composante de Hilb® T, étant génériquement réduite.
Enfin le schéma X/C* est isomorphe au produit S x C* par construction méme
(remarque 3). Donc par la remarque 1, £/C* est k-plat, puisque S = P*
n’a que des singularités ordinaires. L’hypotheése c¢) de la proposition 1
est donc satisfaite.

La proposition 1 donne alors I’équivalence rationnelle dans Hilb? P*:
[Hilb? ST ~ [Hilb} Z,].
Or par la proposition 6 i), on a I’égalité des cycles:
[Hilb? £,] = [Hilb? 877 + [S;,] + [Ss].
D’ou pour n’importe quel cycle Z de A3(AI® P%), Dégalité des O-cycles:
Z.i* [Hilb? §] = Z.i* [Hilb? §7 + Z.i* [S,1] + Z.i* [S5].

Des lemmes 3, 4 et 5 résulte alors aussitot la proposition 5 que 'on cherchait
a prouver.

III) TRISECANTES DANS P#: LES CALCULS

Soit S une surface de P* d’invariants n, d, ¢t (notations du § II). On va
donner deux formules trisécantes pour S, supposée a singularités ordinaires
dans P*.

1°) TANGENTES A S RECOUPANT S ET UNE DROITE FIXEE.
Nous cherchons le degré du O-cycle
[2] . Axe*o, . i* [Hilb2 S]

ou comme d’habitude, i: A® P* ¢ Hilb? P* est I'injection canonique. Ici,
9 < AP P* est I'hypersurface des triplets alignés non simples et o, = (1, 4)
est le cycle de A%*(G(1,4)) des droites de P* coupant une droite fixe A,
D’aprés la proposition 5, ce nombre est de la forme
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T(S) = ayn + a, <Z> + as <;Z> + at + d(Pn+vy).

a) Avant de commencer le calcul des six coefficients, regardons le cas ou S
~est singuliére avec § points-doubles impropres. Soit O 'un de ces points.
- 1l engendre avec A un plan P recoupant S en n — 2 autres points et non pas
- n — 3 (voir IV.1.ci). Or chacune des n — 2 droites joignant O a l'un de
- ces n — 2 points est une droite coupant S suivant un triplet non simple
(car double en 0). C’est une « fausse » tangente a S. Donc il faudra, pour
avoir le nombre de « vraies » tangentes a S, retrancher de T(S) ces d(n—2)
- fausses tangentes par les points-doubles de S. Mais il faut le faire bien str
' en comptant la multiplicité.

| Un calcul montre alors (Annexe 8) que cette multiplicité est 2. Clest
- tout a fait analogue au fait que la classe d’'une courbe plane avec § points-
doubles ordinaires est n(n—1) — 28 puisqu’'on doit retrancher les droites,
~ comptant deux fois, qui passent par les points-doubles.

b) Soit alors § la réunion de S et d’un plan P générique de P*. Essayons
d’évaluer T(S). D’aprés le lemme 9 (Annexe 1) Hilb? § se décompose en
quatre composantes (réduites)

Hilb3 S
Hilb? S, x P,

S, x Hilb? P,
Hilb3 P

ou Sg =S — P et Py =P — §; la barre est I'adhérence dans Hilb? P*.
On a donc, si i: AI° P* ¢, Hilb? P* est l'injection canonique,
i* [Hilb? §]
= i* [Hilb? S + i* [Hilb? S, x Py] + i* [S, x Hilb? P,] + i* [Hilb? P] .

- Pour obtenir T(S), on intersecte avec [Z] . Axe*s, dans A(AI° P%). Le premier
- terme va donc donner par définition T(S) et le dernier T(P). Le troisiéme
terme, lui, va donner O car une droite dans P ne recoupe pas une droite
fixée générique.

Reste a voir la contribution du deuxiéme terme. Rappelons qu’on cherche
des triplets non simples. Deux cas sont & distinguer:

. — oule point-double est sur S et le point simple sur P,
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— ou deux points simples sont sur S et le point-double provient de la
rencontre avec P en 'un des points-simples.

S

Premier cas Deuxiéme cas

Dans le premier cas, le nombre cherché est n(n—1). En effet, il s’agit
du nombre de tangentes a S coupant un plan P fixé et une droite fixée.
Par la formule de Pieri, on a dans A(G(1, 4)):

(1,4).(2,4) = (0,4) + (1, 3).

Il s’agit donc du nombre de tangentes a S passant par un point fixe O
plus le rang (i;) d’une section hyperplane. Cest donc v + 28 d’une part
(i1 faut bien compter, et avec multiplicité 2, les 6 fausses tangentes a S
passant par O et 'un des & points-doubles impropres de S) et d’autre part
i, = nn—1) — 2d ([34], p. 190) car une section hyperplane de S a degré n
et d points-doubles apparents.

Soit au total n(n—1) car 2d = v + 28 (cf. Annexe 6). La multiplicité
est 1 car P est choisi générique.

Dans le deuxieme cas, vu ce quon a dit au début de ce paragraphe,
il s’agit de « fausses » tangentes a S par I'un des n points d’intersection de P
et S. Donc on doit les compter 2n(n+1—2) puisque S est de degré n + 1.

Au total, la contribution du deuxiéme terme dans T(S) est 3n(n—1).
On a donc montré la relation

TS) = T(S) + T(P) + 3n(n—1),

soit en utilisant le lemme 13 de ’Annexe 5:
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a(n+1) + a, (”;1) + ay (”§1> + ot +d) + (d+n) (Br+1)+7)

n

2> + a; <Z) + at + d(Bn+y) + a; + 3nn—1).

(Il vient T(P) = a, car alors n = 1,d = t = 0). Or le lemme 12 (Annexe 5)
~ permet d’identifier les coefficients ce qui donne:
pourd: a+ B =0,

=y =a,—a3 +6 (on afaitn = —1)
potr - a, +2+v =20 (on afaitn = 1).

Il reste a trouver trois autres équations. On remarque tout d’abord que ni
un plan, ni une quadrique de P® plongée dans P* n’ont de trisécante ren-
| contrant une droite fixe. On a donc T = 0 pour ces deux surfaces, soit
| a4, = 2a, + a, = 0. Ensuite, la surface S(2, 2), intersection compléte de deux
hyperquadriques de P*, vérifie T = 0; car pour raison de degré, une tri-
sécante est I'une des 16 droites qu’elle contient et aucune ne rencontre
. une droite fixe. Mais on connait n, d, t (Annexe 6) d’ou

4611 "I" 6(12 + 4a3 + 2(4B+'Y) — 0
+ Ces six équations ensemble forment un systéme inversible dont la solution est:

al’——o (1220 a3=_'6
o= —6 B=2©6 y = —12.

On a donc démontré (vu a)) le

THEOREME 1. Soit S une surface a singularités ordinaires de P*,
d’invariants n,d,t. Alors le degré du O-cycle

[9]. Axe*s, . i* [Hilb? §]

(nombre de tangentes & S recoupant S et une droite fixe) est

(o2

Et les & points-doubles impropres éventuels de S contribuent de 20(n—2)
dans ce nombre.
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2°) TANGENTES D’INFLEXION COUPANT UN PLAN FIXE
Nous cherchons cette fois le degré T(S) du O-cycle
[7].Axe*o, . i* [Hilb3 S].

Cette fois, 7 < AI® P° est la sous-fibration en J, — Hilb3 P! formée des
triplets alignés de support un point. (7, a la structure d’'une cubique gauche
dans Hilb® P' ~ P?). Le cycle o, de A'(G(1, 4)), encore noté (2, 4), est formé
des droites coupant un plan « fixé.

Toujours d’apres la proposition 5, le nombre T(S) est de la forme

an + a, (Z) + a;, (Z) + ot + dBn+vy).

a) Avant de chercher les six coefficients, regardons le cas ou S est singuliere
avec 0 points-doubles impropres.

Soit O l'un de ces points. Chacun des plans tangents P, (resp. P,)
a S en O coupe le plan ©n fixé en un point m, (resp. m,). Les deux

triplets alignés de support {O} et d’axe Om, (resp. Om,) sont dans S et
interviennent donc dans T(S). Cependant, ces droites sont de « fausses »
tangentes d’inflexion. L’ Annexe 8 b) montre qu’elles comptent avec multiplicité 3.
On devra donc retrancher de T(S) le nombre 66 de fagon a obtenir le
nombre de « vraies » tangentes d’inflexion. Ceci est analogue au fait que pour
une courbe plane ayant seulement & points-doubles ordinaires, on doit
retrancher 66 a 3n(n—2) pour avoir le nombre de « vrais » points d’inflexion

([34], p. 78).

b) Soit, comme en 1), § la réunion de S et d’un plan P. On obtient,
avec les mémes notations:

i* [Hilb3 §]
— i* [Hilb? §] + i* [Hilb? Sy x Py] + i* [S, x Hilb? Po] + i* [Hilb? P].

Pour obtenir T(S), on intersecte avec [Z].Axe*c,; le premier terme
va donc donner par définition T(S) et le dernier: T(P) = a,. Reste a voir
la contribution des deuxiéme et troisieme termes.

D’aprés a), elle est de 3n pour chacun d’eux. En effet, pour chaque point
d’intersection O de S et P, il y a deux triplets alignés de support {O}
coupant un plan fixe n: 'un dans TS et l'autre dans P; et chacun compte,
vu a), avec la multiplicité 3. On a donc montré la relation
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TS = T(S) + a; + 6n,

soit comme précédemment:

a,(n+1) + a, <n31> + a, (nng) + ot+d) + (d+n) (B+1)+7)

= an + a, (;) + as <r3z) + ot + dPn+7vy) + a; + 6n.

Grace a IAnnexe 5, on peut identifier comme précédemment en d et n,
- dou
o+B=0, —y=a,—az;—6 et a,+2+y =26

comme équations.
Il reste 4 en trouver trois autres. La surface S(2,2) contient 16 droites

dont aucune ne coupe un plan fixe; donc T(S(Z, 2)) = 0. D’ot comme plus
" haut: 4a, + 6a, + 4a; + 2(4p+7y) = 0. Enfin, par un calcul énumératif
simple (Annexe 9), on a T(S(2, 3)) = 60 et T(S(2, 4)) = 192 d’ou deux der-
~ ni€res équations:

6a, + 15a, + 20a; + 6(6B+7y) = 60 car on connait (n, d, t)

{é%a1 + 28a, + 56a; + 12(88+7v) = 192  pour ces surfaces (Annexe 6) .

Ces six équations ensemble forment un systéme inversible dont la solution est

a1:—3 (12=—6 a3—_—12
a =06 B= -6 vy = 24.

 On a donc démontré, vu a), le
THEOREME 2. Soit S wune surface d singularités ordinaires de P*,

i dinvariants n,d,t. Alors le degré du O-cycle [7].Axe*o,.i* [Hilb] S]
! (nombre de tangentes d’inflexion a S coupant un plan fixe) est

n(n—4) 2n—1) + 6(t—d(n—4)).

Et les & points-doubles impropres éventuels de S contribuent de 68
. dans ce nombre. |
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Deuxiéme partie: P°, P, P’

IV) TRISECANTES DANS P°

Soit V une surface non-singuliére de P°. Outre les invariants n,d, t
de V comme dans P* soit & le nombre de points-doubles impropres
apparents de V, i.e. le nombre de points-doubles impropres de la projection
V' de V sur un P* générique de P°.

Nous allons voir au paragraphe 1 que toute formule trisécante pour V
dans P° est de la méme forme que pour V' dans P*, avec un terme supplé-
mentaire 6(un+v) ou u et v sont des constantes.

On en déduira au paragraphe 2 trois formules trisécantes dans P°:
les tangentes d’inflexion de V, les tangentes & V recoupant V ainsi qu'un P>
fixé, les trisécantes a V coupant un P? fixé.

1°) RETOUR A P*

a) Soit V une surface non-singuliére de P> et projetons-la génériquement
en V' sur un hyperplan H. Par le procédé¢ de construction de I1.3.a, on
voit qu’il existe un schéma relatif ®/C avec fibres

@1 == V et ((I)O)red - V,.

On peut énoncer les deux propositions suivantes, dont les démonstrations
sont analogues — mais plus simples — a celles des propositions 3 et 4,
en ce sens quil suffit de se ramener a un modele local, comme dans
I’Annexe 3. (Ce modeéle local correspond a V formé de deux plans disjoints
dans P°, soit V' formé de deux plans transverses dans H.) Nous laissons les
détails au lecteur; on peut aussi consulter [23] ou la situation est tout a fait
analogue.
On désignera les points singuliers de V' par N;, N,, ..., N;.

PRrROPOSITION 8. Avec les notations précédentes, on a [légalité de sous-
schémas de P> :

O, =V UNPU..UNP

ou N désigne le premier voisinage infinitésimal de N; dans P°.
De plus, V' = (®y)eq = ©o N H.

o
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PROPOSITION 9. Soit ®/C le schéma relatif associé a V' comme ci-dessus.

- Alors

i) Pour k >3 tout k-uplet curviligne dans ®, de support un des points
singuliers {N} de V' est limite de k-uplets doubles dans @ (nota-
tions de la définition 2 ).

ii) Tout k-uplet curviligne dans @, est limite de k-uplets curvilignes dans des
fibres ®, de ®/C avec A # 0.

i) Hilb? ®, est réduit au voisinage d'un doublet d de support un point
singulier {N} lorsque d & V.
Ceci étant, afin d’étudier les composantes irréductibles de Hilb? @,

nous donnons la

Définition 3. Pour j = 1,2,.., 6 notons fJ_J I'adhérence dans Hilb? P°
| de la partie U; formée des triplets d U m ou

 d est un doublet de P5 de support {N i}

m est un point simple de V' — {N} .

- Bien entendu, UJ est dans (Hilb? ®@,),.q, d’aprés la structure nilpotente de @,
- donnée par la proposition 8. On a alors la

ProrosITION 10.

i) (Hilb? ®y),cq est réunion des U; et de (Hilb? V') q;

ii) Hilb? @, est génériquement réduit le long des FJ et Hilb? V'
Preuve.

i) Soit t un triplet curviligne contenu dans ®,. Si ¢t est dans H, comme
®,nH = V', on a te(Hilb} V'),.q. Si maintenant t n’est pas dans H,
le support de ¢t ne peut étre formé de trois points distincts; il contient
forcément un des points N;, car en dehors de ces points, on a 0O,
egal a 0, . D’autre part, toujours puisque t ¢ H, la multiplicité de ¢t en
Pun des N; est strictement plus grande que 1. Si le support de ¢ est réduit
a {N,}, d’aprés la proposition 91i), on a ter. Sinon, Suppt = {N;, m}
ot meV' — {N;}. Les multiplicités de ¢t en N; et m sont 2 et 1; ainsi
P teU;.

ii) Hilb? V' est en fait réduit d’aprés ’Annexe 1. Si maintenant d U m
e U; est générique, on a d ¢ H, d’ou Hilb® ®, réduit au voisinage de d
i (proposition 9 iii); par suite U; est réduit au voisinage de d U m. La pro-
§ position 10 est ainsi prouvée.
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Rappelons alors le diagramme

i

(11)  ABPS 4 HIBRPS (15

L
Hilb? v (6)

ou les dimensions sont indiquées entre parenthéses.
Une formule trisécante pour V dans P° exprime le degré du O-cycle

Z.i* [Hilb3 V]

ou Z est un cycle de A*(Al° P°) fixé. Nous allons voir en d) quil suffit
d’évaluer le degré de Z . i* [Hilb? @], soit d’aprés la proposition qui précéde :

Z *[HIb2 V'] + Y Z.i#*[U].
1<75s
b) Evaluation de Z .i* [Hilb? V"]

Cette évaluation est analogue a celle effectuée en II.2.a. Comme V'
est contenu dans P#, regardons le diagramme commutatif

(1) AP PS & HIBIPS  (15)
L L

~
1

9) AR P* & HiIBRP*  (12)

L
Hilb? V' (6)

ou les fléches sont les injections canoniques. Par '’Annexe 7, AI® P* est
intersection schématique de Al® P> et Hilb? P*.

Or Hilb? V' peut étre considéré comme sous-variété de Hilb? P*; appli-
quons alors la formule de Fulton-MacPherson (IL.2) a o = [Hilb] V'] dans
A'(Hilb? P%). On obtient

i*u,o = * [Hilb2 V'] = j,C

ou C = * [Hilb2 V'].c, avec ¢, dans AY(AI® P%). Par suite, par la formule
des projections, on a dans A'(Al® P°): )

Z.i* [Hilb? V'] = j (*Z .c, . * [Hilb2 V7).
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Mais j*Z . ¢, est un cycle fixé dans A*(AI* P*) et donc
deg j*Z .c, .i* [Hilb? V']

représente une formule trisécante pour la surface V' de P* Ce nombre
est donc (proposition 5) de la forme

an + a4 <Z> + ay (Z) + oot + dBn+y)

ol n, t et d sont les invariants de V (donc de V) et a;y, a,, a;, o, B ety
des constantes.
¢) Evaluation de Z.i* [ff—;]

Pour cela, fixons j entre 1 et & et soit N = N, U = U;. Soit I T'inter-
section U n A3 P35 dans Hilb? P3. La sous-variété I, de dimension 2, est
formée des triplets alignés de P° dont I'axe passe par N, doubles en N
et avec un troisiéme point sur V.

Leanie 8. Liintersection U n AP P?  est génériquement transverse dans
Hilb? P°.

Preuve. C’est un simple calcul en coordonnées; voir ’Annexe 4.

Le lemme montre ainsi Iégalité i* [U] = [I] dans A°(AP® P%). Main-
tenant, pour connaitre i* [E] . Z, il suffit évidemment d’évaluer [[]. Z pour Z
décrivant une base de Ag(4° P?). Or la proposition 7 en donne une
explicitement. Soit #, et #, deux hyperplans de P° et soit [H,] et
[H,] les cycles associés dans AYAI®? P°) et A*(A° P°). On a I’égalité des
espaces vectoriels:

AYAP P°) = Axe*A§(G) @ Axe*AH(G).[H,] & Axe*4(G).[H,]
ou G = G(1, 5). Distinguons alors trois cas.
1) Ze Axe*A§(G)
Une base de A*(G) est formée des cycles de Schubert (notations de [21]):

{ (3, 4): droites contenues dans un hyperplan fixé de P>,
(2, 5): droites coupant un plan fixé P de P>.

On a alors Axe*(2,5).[I] = e(n—2) ou ¢ est un entier > 0. En effet,
PN P“ est une droite A de P* et N et A engendrent un plan © passant
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par N. Ce plan recoupe V' en n — 2 autres points. (Le plan © coupe bien
V' au voisinage de N en un triplet, premier voisinage infinitésimal de N
dans m; mais un plan voisin générique ne le coupe qu’en un doublet. Le
plan m recoupe donc ¥’ en n — 2 points et non pas n — 3). La multi-
plicité éventuelle € est en fait 1, comme il résultera de 2.a).

Par contre, on a Axe*(3,4).[I] = 0 car P'axe de tout triplet de I
passe par N, qui n’est pas dans ’hyperplan fixé.

i) ZeAxe*ALG).[H,]

Le cycle (3,5) des droites coupant un solide fixé de P> engendre
A(G). On a

Axe*(3,5) .[H,].[I] = en.

En effet, le solide coupe P* en un plan P; N et P engendrent donc un
P° dans P* Dans ce P3, il y a la courbe C = V' nP? et le plan
Hy = A, P> Bien sir, N nétant pas sur #,, n'est pas sur ).
On cherche donc les triplets doubles en N, le troisiéme point étant sur
H', n C. 1l y en a donc n, avec une multiplicité éventuelle.

ifl) Z e Axe*A43(G).[H,]
Le triplet double en N devant avoir deux points sur #, et #,
(par définition de [H,]), on a

1.[H,].[I] = 0
puisque N n’appartient ni & #; ni a #,.
Ceci prouve que pour tout Z dans Ag(AI° P%), le degré du O-cycle

I [_U_j].Z est de la forme un + v ou u et v sont des constantes ne
dépendant que de Z.

d) Conclusion. Soit V une surface non-singuliére de P° et ®/C le schéma
relatif associé (IV.1.a). Si on pose U = C et U = C*, les hypothéses de la
proposition 1 sont vérifices pour ®/C. Pour a) cela résulte de la propo-
sition 91ii). Pour b), de la proposition 10i1). Enfin ®/C* est k-piat, car
isomorphe au produit V' x C* (voir remarque 1). On peut ainsi appliquer
la proposition 1.

On a donc ’équivalence rationnelle dans Hilb? P>:
[Hilby V] ~ [(Hilb} ®p)..q] = [Hilb? @] .

D’ou, par la proposition 10, I’équivalence rationnelle
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o -
[Hilb? V] ~ [Hilb? V'] + >, [U;].
j=1
En regardant alors les évaluations faites en b) et c), il vient la

PROPOSITION 11. Soit V une surface non-singuliére de P>, dinvariants
(n,d, t,8). Pour tout cycle Z de A*APPP®), la formule trisécante donnant
le degré du O-cycle

Z . i* [Hilb? V]

est de la forme

T(V) = a;n + a, (;) + a; (;l) + ot + d(Pn+7v) + d(un+v)

ou a,,d,,..,v sontdes constantes ne dépendant que de Z.

2°)  TROIS FORMULES

a) Pour une surface V de P>, commengons par regarder le nombre de
trisécantes @V  rencontrant un plan w fixé. Par définition, ce nombre
T(V) est le degré du O-cycle Axe*o,.i* [Hilb? V] ou comme toujours

i AP P5 ¢, Hilb? PS

est l'injection canonique et o, € A%(G(1, 5)), le cycle des droites coupant un
plan fixe.

Vu la proposition 11, ce nombre est de la forme

n

T(V) = a;n + a, (2

n
) + a; <3> + at + dPn+v) + S(un+v)
ou n, d, t, d sont les invariants de V.
Soit alors ¥ la réunion de V et d’un plan P disjoint. On constate que
Hilb3 ¥ est formé de quatre « composantes » disjointes, avec des notations

| évidentes:

Hilb? V, Hilb>V x P, V x Hilb>P, Hilb? P.

Quelle va étre la contribution de chacune de ces composantes dans T(V)?
Pour la premiére et la derniere, c’est clair: cest respectivement T(V)
. et T(P) = a, (car pour P,n = 1,d = t = § = 0). La troisiéme composante
n‘apporte aucune contribution puisqu’elle est disjointe de AI° P>: un triplet
. aligné ayant deux points dans P est dans P puisque PNV = .
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Reste a trouver la contribution de la deuxiéme composante. Cest le
nombre de sécantes a V coupant a la fois les plans P et w. Mais si
o, = (2,5) est le cycle dans A(G(1, 5)) des droites coupant un plan fixe,
la formule de Pieri donne

o3 =05+ (L4 +(23).
On obtient donc Axe*o, . i* [Hilb? ¥ x P] comme somme du

[ i) nombre de sécantes & V passant par un point fixe de P>,

< ii) nombre de sécantes & V contenues dans un P* et coupant une droite
de ce P#,

| iii) nombre de sécantes 4 V contenues dans un P>,

Ces trois nombres sont respectivement :

1) 0, car cest le nombre de points-doubles impropres de la projection
de V sur un P4,

ii) d, car c’est le nombre de points-doubles de la courbe V n P* projetée
sur un P? par une droite de P* (et le lieu double I' de V projeté
sur un P? par une droite de P> est de degré d),

ii1) <;>, car il s’agit de trouver une droite passant par deux des
n points de V n P>.
Les multiplicités sont toutes 1 car P est choisi générique. Ainsi on a
TV = T(V) + a, + 8 +d + (Z), soit encore, puisque les invariants de 7
sont (lemme 13, Annexe 5)
A=n+1, d=d+n, t=t+d, 5=238+n,

la relation

a;(n+1) + a, <n—;—1> + as <n—;—1> + ot +d) + (d+n) (B(n+1)+7)

+ (8+n) (un+1)+v) = an + a, (Z) + as (Z) + at + d(Bn+7)

n
+ dun+v) + a; + 6 +d + (2)
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Mais ’Annexe 5 permet d’identifier et on obtient donc par

— identification de 0:u = 1,

— identification de d: o + B = 1.

—y—v=a, —as + 1 (h=—1)

— identification de n: {az + 28+ y+2u+v=0(@m=1).

Il reste alors a trouver quatre autres équations. On remarque d’abord que n1
un plan ni une quadrique de P*® (plongée dans P°) n'ont de trisécante
coupant un plan fixe, dou T = 0 pour ces deux surfaces. Par suite,
a, = 2a; + a, = 0.

Maintenant, soit S(2, 2) = P* Pintersection compléte de deux quadriques
et considérons-la comme plongée dans P>. On a T = 0 pour cette surface
car pour raison de degré, une trisécante est I'une des 16 droites qu’elle
contient et aucune ne coupe le plan rn fixé. De méme la surface de Veronese
(plongement de P* dans P> par (p2(2)) est intersection de quadriques et ne
contient pas de droite. On a donc aussi T = 0 pour cette surface. Leurs
invariants (n, d, t, 0) étant respectivement (4, 2, 0, 0) et (4, 3, 1, 0) (cf. Annexe 6),
on obtient les deux équations

4a;, + 6a, + 4a; + o + 12B + 3y = 0.

Jointes aux équations précédentes, on obtient un systéme inversible dont la
solution est

a1=0 a2:O a3:1 OL=2
B=—1 y =2 u=1 v

On a donc montré le
THEOREME 3. Soit V une surface de P° dinvariants (n,d,t, d).

Alors le degré du O-cycle Axe*o,.i* [Hilb? V] de A P°> (nombre de
trisécantes & ¥ coupant un plan fixe) est

(Z) + 2%+ (1=2)(5—d).

Remarque. On trouve ainsi, par exemple, 0 pour la surface intersection

complete de trois quadriques, ce qui est évident.

b) Cherchons maintenant le nombre de tangentes ¢ V recoupant V
etun P> fixé de P°. Clestle degré T(V) du O-cycle
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[9] . Axe*o, . i* [Hilb? V]

ot o, € AYG(1, 5)) est le cycle des droites coupant un P* fixé et & I’hyper-
surface de AI® P° formée des triplets non simples.
Toujours d’apres la proposition 11, ce nombre est de la forme

an + a, <;> + a; (Z) + at + dPn+vy) + o(un+v).

Comme en a), soit ¥ la réunion de V et P ou P est un plan disjoint
de V. On a Hilb? ¥ comme réunion disjointe de

Hilb? V', Hilb*V x P, V x Hilb>P, Hilb P.

Les contributions des premicre, troisiéme et quatriéme composantes dans
T(V) sont, comme en a), respectivement: T(V), 0 et T(P) = a;,.

Reste a trouver la contribution de la deuxiéme composante. Ce sont
les tangentes & ¥V coupant a la fois P et le P® fixé. Mais dans
A'(G(1, 5)), par la formule de Pieri, on a

c,.0, = (1,5 + (2,4).

De sorte que cette contribution se décompose en

— les tangentes a V coupant une droite de P>: c’est le nombre v de
points-pince d’une projection sur un P par une droite de P>,

— les tangentes a la courbe V n P* rencontrant un P? fixé de ce P*:
Cest la classe de cette courbe, donnée par n(n—1) — 2d ([34], p. 190).

Les multiplicités sont 1 car P est choisi générique. Comme on a v = 2d
— 20 (Annexe 6), on trouve donc finalement la relation
TV) = T(V) + a, + n(n—1) — 25 .

En [Pécrivant explicitement, vu que (Annexe 5) Ai=n+1, d =d + n,
t =1t+d & =8+ n on obtient en identifiant les termes
—eno:u= — 2,
—end: o+ p =0,

—yYy—v=4a, —as + 2 (n=-—1)
— enn:

a, + 20+ v+ 2u+v=0 (=1 .
Il reste donc a trouver quatre autres équations. Soit S(a, b, ¢) I'intersection
compléte de trois hypersurfaces de degrés a, b, c. Les quatre surfaces suivantes
de P> n'ont pas de trisécante rencontrant un P> fixé: S(2, 2, 1), S(2,2,2),,
la surface de Veronese et enfin la surface de del Pezzo Ss: C’est ’éclaté de P?
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en quatre points, plongé dans P par le systeme linéaire des cubiques passant
par ces quatre points; Ss est intersection de quadriques et contient 10 droites
de self-intersection — 1.

Pour raison de degré, on a T = 0 pour ces quatre surfaces. D’ou
(par I’Annexe 6) quatre nouvelles équations.

Jointes aux quatre équations précédentes, on obtient un systeme inversible

dont la solution est:

a, = 6 a, = 4 a, = —18 o= —12
B =12 vy = —36 u= —2 v

On a donc montre le

THEOREME 4. Soit V  une surface de P° dinvariants (n,d,t,d).
Alors le degré du O-cycle

[2] . Axe*o, . i* [Hilb} V]
(nombre de tangentes & V recoupant V et un P3 fixé) est
—n(3n*—11n+2) + 12(d(n—3)—t) — 28(n—¥6).

¢) Enfin, cherchons pour V dans P° le nombre de tangentes d’inflexion de V.
Pour définir précisément ce nombre, notons que dans Hilb® P* ~ P3, les
triplets de support un point forment une cubique gauche 7 ,. (Cest le
plongement de Veronese I — I° de Hilb! P* dans Hilb* P'). On a donc une
sous-fibration J de AI° P° de fibre J, et donc [7] est dans A*(G(1, 5)).

On définit le nombre de tangentes d’inflexion de V comme le degré
T(V) du O-cycle [Z ] . i* [Hilb? V] ot comme d’habitude i: AI® P° ¢, Hilb? P°
est I'injection canonique. D’aprés la proposition 11, T(V) est de la forme

a;n + a, (Z) + a; (Z) + ot + d(fn+vy) + S(un+v).

Comme précédemment, on regarde la surface ¥ = ¥ U P ou P est un plan
disjoint. Un triplet de support un point est dans V si et seulement si il est
dans V ou dans P. Donc

car T(P) = a,. En identifiant, comme en a) et b), il vient

{uzO {a2+2l3+'y+2u+v=0 (n=1)
xa+ B =0 — Y — v =a, — a4 (n=-—1) .
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Reste a trouver quatre autres équations. Or on a démontré ([26], 4.d)
qu’une droite isolée de V contribue dans T(V) de —3(2+1) ou le Z est sa
self-intersection. Les quatre surfaces S(2, 2, 1), S(2, 2, 2), Veronese et del Pezzo
Ss (vues en b) contiennent respectivement 16, 0, 0, 10 droites et elles sont de
self-intersection —1. Comme ces quatre surfaces sont des intersections de
quadriques dans P>, elles n’ont pas d’autre trisécante que les droites qu’elles
contiennent; ainsi pour ces surfaces, T est égal respectivement a
—48,0,0, —30. On obtient donc comme en b) quatre nouvelles équations.
Jointes aux quatre précédentes, on obtient un systéme inversible dont la
solution est

p=—12 y = 84 u=20 v = —12 .

On a donc démontré le
THEOREME 5. Soit V une surface de P° dinvariants (n,d, t, d).

Alors le degré du O-cycle [77].i* [Hilb? V] (nombre de tangentes d’inflexion
de V) est

2n(2n® —18n+25) + 12(t—5—d(n—7)).

De plus, si 'V contient un nombre fini de droites, la « contribution » d’une
droite de self-intersection | dans ce nombre est —3(2+1).

V) TRISECANTES DANS PY, N > 5

Naturellement, seuls les cas N = 6 et N = 7 vont nous intéresser car
au-dela, il n’y a génériquement plus de trisécante a une surface.

1°) RETOUR A P°

Nous allons voir qu’une formule trisécante pour une surface de PN, N > 5,
est de la méme forme qu’une formule trisécante pour une surface de P°.
Précisément, on a la

ProposITION 12. Soit N =6 ou N = 7. Soit V wune surface non-
singuliere de PN, n son degré, & le nombre de points-doubles impropres -
apparents au-dessus dun P* d le degré de la courbe double apparente
au-dessus d'un P> et t son nombre de points-triples.
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Alors toute formule trisécante pour V est, comme dans P>, de la forme

T(VYy = ayn + a, (;) + a; <§> + ot + d(fn+7v) + dun+v)

L ou ay,a,,ds, % B,Y,u et v sont des constantes.

Preuve. Elle consiste 4 appliquer le théoréme de Fulton-MacPherson
| comme on I'a déja fait en (IV.1.b), pour se ramener a P°.

; Soit en effet P> fixé dans PV et projetons génériquement V dans P°
- (par un point si N = 6, par une droite si N = 7). La projection est un
'~ isomorphisme de V¥ sur I'image, notée 7. Comme toujours (voir 1.3.a),
on a dans PY¥ x C un sous-schéma relatif ¥'/C (qui dans ce cas est iso-
morphe a un produit puisque ¥ n’acquiert pas de singularité par projection)
| avec V', = Vet?v, = V.

On a donc dans Hilb? P x C un sous-schéma relatif Hilb? ¥°/C iso-
~ morphe & un produit, ayant pour fibre Hilb? V en 1 et Hilb? I/ en 0.
Ainsi [Hilb? V] est rationnellement équivalent a [Hilb> V] dans Hilb? PV

Soit K un cycle fixé de 47" MAI* PY). On a

deg K .i* [Hilb? V] = deg K . i* [Hilb2 7]

- soit encore T(V) = T(V). Regardons alors le diagramme commutatif ou les
- fleches sont les injections canoniques et les dimensions sont indiquées entre
- parenthéses:

i

@N+1)  APPY & HiBEPY (3N

& L

L

(11) AP P’ & HiIB2PS (15

t Bien entendu, schématiquement AI® PN A Hilb? P’ = AP PS5, comme le
! prouve le lemme 14 de I’Annexe 7. D’aprés le théoréme de Fulton-MacPherson
(voir II.2.a), leur intersection en tant que cycle peut é&tre choisie & support
| dans 4° P°.

. Plus précisément, si « = [Hilb? V], on a i*u, o = j,Cou

C = B.i* [Hilb3 7]

;avec B dans AV7°(AP° P). (Le N—5 étant la différence entre 3N + 11 et
| ON + 16). Par suite, pour un cycle fixé K de 47~¥A> PY), il vient par la
formule des projections:
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deg K .i* [Hilb? V] = deg K .j,C = degj*K.C
= degj*K . .i* [Hilb3 V].

Mais comme j*¥*K . est un cycle fixé dans A%(Al° P°), ce degré représente
une formule trisécante pour ¥ dans P°, par définition méme (voir IL.1).
D’apres la proposition 11, il est donc de la forme

n n
an + a, <2> + as (3> + at + dPn+vy) + d(un+v)
puisque les invariants de ¥ sont évidemment les mémes que ceux de V.
D’ou la proposition 12.

2°) TRISECANTES DANS P°

a) Commencons par chercher pour une surface V de P®, le nombre de tri-
sécantes a 'V rencontrant un P* fixé. Ce nombre T(V) est par définition
le degré du O-cycle Axe*o,.i* [Hilb? V] ou i: AI° P® ¢, Hilb? P® est
linjection canonique et o, € A}(G(1, 6)) est le cycle des droites coupant un P*
fixé de P°.

D’apres la proposition 12, ce nombre est de la forme

T(V) = an + a, <Z> + as (:) + of + d(Pn+vy) + d(un+v).

Soit ¥ la réunion de V et d’un plan P disjoint. On a (vu ’Annexe 5) les
invariants de V:

A=n+1, d=n+d, t=t+d, 6=08+n.

D’autre part, Hilb? ¥ est formé des quatre composantes disjointes Hilb3 V,
Hilb? V x P, V x Hilb? P et Hilb? P. La contribution de la premiére et la
derniére dans T(¥) est respectivement T(V) et T(P) = a, (puisque n = 1,
d =t =0 = 0 pour P). La troisieme a une contribution nulle, puisqu’un
triplet aligné ayant deux points dans P est dans P, donc ne peut couper V.

Reste & trouver la contribution a T(¥7) de la deuxiéme composante
Hilb? ¥V x P. Il s’agit des sécantes & V coupant P et un P* Par la formule
de Pieri, on a dans A(G(1, 6)):

G,.(2,6) = (2,5 + (1,6).

De sorte que, 4 équivalence rationnelle prés, la contribution a T(¥) de
Hilb? V x P se décompose en
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— les sécantes a V rencontrant une droite de P,
— les sécantes & ¥ dans un P? fixé et y rencontrant un plan.

Dans le premier cas, leur nombre est 3 puisquil s’agit du nombre
de points-doubles d'une projection sur un P* par une droite. Dans le
deuxiéme cas, il s'agit du nombre de points-doubles de la courbe ¥V N P>
projetée sur un P2 par un plan de P° Cest donc d: le degré de la courbe
double T de la surface V' projetée sur un P°. Grace & la généricite¢ de P,
les multiplicités sont bien 1. On a donc en conclusion:

T(V)=T(V)+ 8 +d+ a,.

Comme d’habitude, on trouve par identification (lemme 12) de

d: u =1,
d: 2+ B =1,

— Y — U = a, — d; (n=—1)
i {ag+25—!—‘/—:—2u+t'-——0 (n=1) .

Il reste maintenant a trouver quatre autres équations. Si on deésigne par
S(a. b. ¢, d) I'intersection complete de quatre hypersurfaces de degrés a, b, ¢, d
dans P®, on voit que S(2,2. 1. 1), S(2. 2.2, 1) et S(2,2, 2,2) n'ont pas de tri-
sécante pour raison de degré. De plus, seule la premiere contient des droites,
en nombre fini: 16. On a donc T = 0 pour ces trois surfaces puisqu’elles
n'ont pas de trisécante rencontrant un P* fixé,

De méme, la surface de Veronese dans P>, plongée dans P®, n’a pas de
trisécante car elle est intersection de quadriques dans P> et elle ne contient
pas de droite non plus. Pour elle aussi, T = 0. On obtient ainsi quatre
nouvelles equations. Jointes aux précédentes, elles forment un systéme inver-
sible dont la solution est

a = —2 a, =0 a; = 4 x =4
p=— v =8 u=1 vt = —4.,

On a donc démontré le

THEOREME 6. Soit V  une surface de P® dinvariants (n, d, t, 0).
Alors le degré du O-cycle Axe*o,.i* [Hilb? V] (nombre de trisécantes a V
rencontrant un P* fixé) est

4<§> — 2n+ 4t — d(3n—8) + 8(n—4).
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b) Cherchons maintenant, toujours pour une surface V de P®, le nombre de
tangentes @ V  recoupant V. Cette fois, ce nombre T(V) est le degré
du O-cycle [2].i* [Hilb2 V] ou @ est Phypersurface de Al P® formée des
triplets non simples.

Toujours d’apres la proposition 12, ce nombre est de la forme

an + a (Z) + a; (g) + at + dPn+vy) + d(un+v).
Soit ¥ = ¥V U P ou P est un plan disjoint de V, comme en a). La contri-
bution de la composante Hilb? V x P de Hilb? ¥V dans T(V) est alors le
nombre de tangentes a V coupant un plan fixe. C’est donc le nombre v
de points de ramification dans une projection générique sur un P3 par un
plan de P°, correspondant aux v points-pince de la surface projetée. Or on a
(Annexe 6) v = 2(d—9). D’ou comme précédemment,

T(V) = T(V) + a; + 2(d—79).

Comme en a), par identification grace au lemme 12, on obtient quatre
équations.

Maintenant, des quatre surfaces vues précédemment: S(2,2,1, 1),
S(2,2,2,1), S(2, 2,2, 2) et Veronese, les trois dernicres ne contiennent pas de
droite et n’ont pas de trisécante. On a donc T = 0 pour ces trois sur-
faces, d’ou trois nouvelles équations. Par contre, S(2, 2, 1, 1) contient 16 droites
de self-intersection — 1. Or on a montré ([26], 4.€) quune droite isolée dans

3+1
V, de self-intersection [ € Z, contribue de 4( ;) dans le nombre T(V).

Pour S(2,2, 1, 1), on a donc T = 64. D’ou une derniere €quation.
Le systéme de huit équations ainsi obtenu est inversible et on trouve
a, = —24 a, = 72 a; = —43 o= —24
B = 26 vy = —144 u= —2 v

On a donc montré le

THEOREME 7. Soit V  une surface de P°® dinvariants (n,d,t,d).
Alors le degré du O-cycle [2].i* [Hilb? V] (nombre de tangentes a V
recoupant V) est:

—4n2n% — 15n+19) — 24t + 2d(13n—"72) — 28(n—12).

De plus, si V contient un nombre fini de droites, la « contribution» _ -

: : 341
d’une droite de self-intersection le Z dans ce nombre est 4 5 ]
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3°) TRISECANTES DANS P’

Dans ce cas, il 'y a quune formule & chercher, car en général il n’y
a quun nombre fini de trisécantes pour une surface V' de P’. Nous nous
intéressons donc au degré T(V) du O-cycle i* [Hilb? V] ou comme d’habitude
i: A3 P7 ¢, Hilb2 P7 est Iinjection canonique. D’apres la proposition 12, ce
degré est de la forme

an + a, (Z) + as (Z) + ot + d(Bn+v) + S(un+v).

Comme dans le cas de P® (paragraphe 2), soit ¥ la réunion de V et
d’'un plan P disjoint. Pour les mémes raisons que précédemment, on a

TV) = T(V) + a, + 8.

En effet, § est la contribution de la composante Hilb?2 V x P de Hilb? ¥
dans T(V): cest le nombre de sécantes a V rencontrant un plan P, soit
le nombre de points-doubles & de la projection de V sur un P* (Les
multiplicités sont 1 car P est générique).

Il vient alors une identité entre n,d, t, 0 puisquon connait (lemme 13)
les invariants de V. Grace au lemme 12, par identification, on obtient quatre
équations liant les coefficients a,, a, .. v. Il reste a trouver quatre autres
équations. Soit S(a, b, ¢, d, e) I'intersection complete de cinq hypersurfaces de
degrés a, b, ¢, d, e dans P’. Aucune des quatre surfaces suivantes n’a de tri-
sécante dans P7, pour raison de degré, et aucune ne contient de droite:
S(2,2,2,1,1), S2,2,2,2,1), S(2, 2,2, 2,2) et la surface de Veronese (plongée
dans P7). On a donc T = 0 pour ces quatre surfaces, d’ou (puisqu’on
connait leurs invariants) quatre autres équations.

Jointes aux quatre équations précédentes, on obtient un systéme inversible
dont la solution est

a1:5 a2=_18 a3:14 O(=8
B=—8 vy = 40 u=1 v = —8

Par ailleurs, on a vu ([26], 4f) qu'une droite isolée de V, de self-
: : . 441
intersection [ € Z, contribue de — ( ;_ ) dans le nombre T(V).

On a donc dénombré le

THEOREME 8. Soit V une surface de P’ dinvariants (n, d, t, d).
Alors le degré du O-cycle i* [Hilb? V] (nombre de trisécantes a V) est
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Sn— 18 (Z) + 14 (Z) + 8t — 8d(n—5) + 5(n—8).

Si de plus 'V contient un nombre fini de droites, la « contribution »

4+1
d’une telle droite de self-intersection leZ a ce nombre est —( :)

Remarque. On peut par exemple vérifier que la surface S(2, 2,2, 2, 3)
de P7 possede 512 trisécantes, ce que donne un calcul direct dans la
grassmannienne G(1, 7).

VI) ANNEXE

Nous avons regroupé dans cette annexe tous les calculs auxiliaires qui auraient alourdi
le cours du texte. 1l s’agira la plupart du temps de calculs en coordonnées locales.

1°) Hilb*Q

Ce paragraphe sert a étudier Hilb? S lorsque S = P* est une surface dont les
singularités sont ordinaires, i.e. localement réunion de deux branches lisses transverses.
(Voir 1.2.a.)

Soit Q dans C* la réunion de deux plans P, et P, se coupant en lorigine.

LEMME 9. a) Tout k-uplet curviligne &, de support {0} contenu dans Q est
limite dans (Hilb* Q)..q de k-uplets formés de points distincts. En particulier Hilb* Q
est génériquement réduit car Hilb’; Q est dense (et réduit ).

b) Hilbk Q est en fait réduit.

Preuve. Soit (x, y, z, u) un systetme de coordonnées pour lequel P, est donné par
x =y =0et P, par z = u = 0. De sorte que I'idéal de Q est

J = (x,9) N (z,u) = (xz, yz, xu, yu) .

Montrons a). Soit &, dans Q un k-uplet curviligne avec Supp &, = {0}. Mais &,
est contenu dans une courbe non-singuliere I'. Celle-ci est « transverse » soit a P,
soit a P,; supposons I' transverse a P;; quitte a faire une transformation linéaire
sur x et y, I' peut étre paramétrée par
y = ox), z = B(x), u = yx),
ou a, B,y sont dans lidéal maximal de C [[x]]. L’idéal de &, dans C [[x, ¥, Z, u]]
est donc
IO = (-xk: y——oc(x), zZ— B(x)a u—'Y(X)) s

Comme on a linclusion &, < @, soit encore I, > J, il vient xp(x) et xy(x) multiples
de x*. En supprimant par ailleurs les termes de degré supérieur a k, I'idéal se réécrit:
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Iy = (x5 y—A(x), z—Box* 1, u—yox* 1)

ou A est un polyndome de degré < k — 1, nul en O.
Considérons pour ¢t # 0 I'idéal de Ocs défini par

L= (x(F = 71, y— A(), 2= Bl ™1 =57 1), u—pp(xF I 7).

Cest lidéal de la réunion du point simple de coordonnées (0,0, —Bot* ™%, — 7yt~ 1)
dans P; et de k — 1 points simples distincts (et distincts du précédent) dans P, car
z = u = 0 pour ces points-la.

Clairement I, - I, si t —» 0, d’ou I’assertion a).

Montrons b). On se raméne comme toujours & Supp &, = {0}. Une carte de Hilb* C*
en I, est donnée par

@1y, @y, Ars by, by, Cpy e )
correspondant a I'idéal
I = (F4ax* "+ . +a,y—AX)+a' x* 1 +. . +ayp,
z—Box* T 4 b X T by, u—yoxF T e X 4 4 ¢p)
voisin de
Iy = (X", y—A(x), z—Box* "1, u—yoxF71).

Comment s’exprime Hilb} Q dans cette carte? D’aprés [8], on doit exprimer I'inclusion
I > J, ou J est l'idéal de Q, ce qui revient &:

xzel < (by—Bo)x* + byx* ' + . + bxel

xuel < (c;—v)x* + cpx* 1 + .+ cxel

vzelwaizel = ayb;—Bo)x* ™' + apb,x* 2 + .. + ajb el

ywelwawel < ac;—vo)x 1 + aje,x* ™2 + .. + aje, el

Ceci donne les relations

b, = (by—Bo)ay ¢, = (e —~7Yo0)ay
by = (by—Bo)a, ¢z = (c;—70)a,
by = (b1 —Bo)ax-1 Crkr = (c1—Yo) -
0 = (by—Bo)a 0 = (¢c;—7vo)
ainsi que
{a;c(bl_BO) = a, = .. = aib, =0
a,(cl—'YO) = a;cC2 = .. = a;cck == O

En r_er’nplacant bz,b32... by et cy,c¢3,...c; par leurs valeurs (ce qui correspond a
considérer un graphe), il ne reste que I'idéal

(ak(bl —Bo), awlby —Bo), al(¢1—"Yo)s a;c(cl—YO)) .

Cf}t kidéal de C[a,ay,cy,b;] est réduit, que B, et Yo soient nuls ou non. Donc
Hilb} Q est réduit.




50 P. LE BARZ

2°) Hilb* @, et Hilb* I1,

Ce paragraphe est utile pour la proposition 2 (voir 1.2.c.)
Nous définissons deux schémas relatifs ®/C et II/C comme sous-schémas relatifs
de C* x C (rapporté aux coordonnées (x, y, z, t)) par les idéaux

I0) = (xyz—t) et III) = (> —x*z—1).

Les schémas ®/C* et II/C* sont lisses tandis que les fibres ®, et II, sont respec-
tivement la réunion des trois plans de coordonnées de C> ainsi que la surface
appelée « parapluie de Whitney ».

LEMME 10. a) Hilb% ©, est dense dans Hilbi ®,. En particulier Hilbk @, est
génériquement réduit.

b) Tout k-uplet curviligne contenu dans ©, est limite de k-uplets curvilignes
contenus dans ©, avec t # 0.

Preuve. Soit £, un k-uplet curviligne dans ®,. On se rameéne comme toujours
au cas ou Supp &, est un point.

Regardong le cas ou Sup.p Cp = {O} Comme &, est par hypothese situé sur une
courbe non-singuliere I', quitte a faire une permutation entre x,y et z, une para-
métration en 0 de I est

y = ox) z = B(x)

ol o et B sont dans 'idéal maximal de C [[x]]. L’idéal I, de &, dans C [[x, y, z]]
est donc (x*, y—a(x), z— B(x)). On peut encore I’écrire

Iy = (xX, y—A(x), z— B(x))

ou A et B sont des polyndmes des degrés < k — 1, en éliminant les multiples de x*.
Notons a (resp. b) la valuation en 0 de A (resp. B). On a bien sir a < k — 1
etbh <k — L

Comme on doit avoir 'inclusion I, o I(®,) = (xyz), puisque §, < ®,, cela entraine
xA(x)B(x)e I,, soit 1 + a+ b = k (ce qui est toujours vérifie¢ si k = 3). Soit b,
I’entier positif tel que 1 + a + b; = k.

Montrons a). Soit A(x) = x*4,(x), B(x) = x"*B;(x) ou 4, et B, sont deux polyndmes.
Pour s # 0 dans C, notons I I'idéal de C [x, y, z] donné par:

I, = (x(x*—(25)%) (xb* —51), y—(x*—(25)%) A4(x), z—(x"* —s"")B,(x)) .

S

Cest I'idéal de la réunion de k points simples situé¢s chacun sur au moins 'un
des trois plans de coordonnées de C°.

De plus, I, —» I, dans Hilb* C* si s » 0 dans C. D’ou l'assertion a), car les cas
ou Supp &, est situé sur 'un des axes de coordonnées ou méme a lintérieur d’un
des plans de coordonnées sont beaucoup plus simples; on ne les traitera pas.

Montrons b). 1l est facile de voir qu'un point simple quelconque de ®, est limite
d’un point simple de ©, avec ¢t # 0. Ceci prouve I'inclusion

Hilb% ©, < Hilbk @/C*

la barre désignant I'adhérence dans Hilbf C°. A fortiori, on a Hilb% @,
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< Hilb% ©/C*. Mais d’apres a), on a Hilb* ®, contenu dans Hilb% @, ; il en résulte
donc P'inclusion

Hilb* ®, < Hilb%, ©/C*

ce qu’on cherchait a prouver. Le lemme 10 est donc démontré.
Montrons maintenant le

LemMe 11. a) Hilb% I, est dense dans Hilbf I1,. En particulier Hilbf IT,
est géneriquement réduit.

b) Tout k-uplet curviligne dans TI, est limite de k-uplets curvilignes dans II,
avec t # 0.

Preuve.

Montrons a). L’assertion est claire pour k = 1 et facile pour k = 2. Soit donc
k > 3 et montrons par récurrence sur k que Hilb% IT, est dense dans Hilbf IT,.

Soit &, un k-uplet curviligne situé dans Il,; on se raméne comme d’habitude a
Supp &, formé d’un seul point. Comme dans le lemme 10, seul le cas Supp &,
= {0} est délicat et on s’y place donc.

1) Puisque &, est situé sur une courbe non-singuliére I', supposons-la dans un premier
temps transverse au plan Oxy. L’idéal I, de &, est alors

Iy = (7%, y—A(z), x— B(2))

ou A et B sont des polynémes de degré < k — 1, nuls en 0, comme on I'a vu de
maniere analogue dans le lemme 10. Puisque I, > I(Il,) vu que &, < Il,, et comme
I(ITy) = (y*—x?z), on a nécessairement A%(z) — B*(z).z e I,. Ceci entraine

A*(z) — B*(2).z multiple de z*

et par suite val(4) > 2 car k > 3. On écrit donc
Iy = (2%, y—2%A4,(2), x—zB,(2))

ou A, et B, sont deux polyndmes vérifiant:
(%) z*A%(z) — z’°B%(z).z multiple de z*.

Posons pour s # 0:

I, = (2" %(z—s)%, y—z2(z—5)A,(2), x—(z—5)By(2)) .
On a bien sir I, > I(I1,) car vu (%), le polyndme
z(z—5)*A3(z) — (z—s)*B¥z).z est multiple de 2~ }(z—s)? .
L'idéal I; correspond a un k-uplet dans IT, formé d’un doublet sur I'axe des z

et d'un (k—2)-uplet disjoint, de support le point de coordonnées (—sB4(0), 0, 0).
De plus, I, — I, lorsque s — 0.

Mais chacun de ce doublet et de ce (k— 2)-uplet est lui-méme limite respectivement

de .2 et k — 2 points simples dans Il,, par 'hypothése de récurrence. Ainsi £, est
limite de k points simples comme on le voulait.

ii) Si maintenant &, est situé sur une courbe non-singuliere I' tangente au plan Oxy,
cette courbe est nécessairement tangente a I'axe des x (sinon comme &, est dans
I'n1l,, on aurait k = long &, < 2). On peut donc prendre comme idéal de &,:
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Io = (x*, y—x%4,(x), z—x*B;(x))
ou A; et B; sont des polynémes. Comme I, o I(Il,) = (y*—x?z), on a donc
(sk) x*4% — x*B, multiple de x* .
Posons pour s # 0:
Iy = (X7 2(x—s)?, y—x(x—5)A1(x), z—(x—s5)>B;(x)).

On a I; o I(I1,) car vu (), le polyndme x?(x —s)*(4 2 — B, ) est multiple de x*~%(x —s)?.
On conclut comme en 1i).

Montrons b). Preuve analogue au b) du lemme 10.

3°) MODELES LOCAUX POUR X,

Il s’agit de prouver les propositions 3 et 4 énoncées en 1.3 et qui donnent la
structure nilpotente du schéma Z,. On en reprend donc les notations.

Soit S = P* une surface a singularités ordinaires.

a) Commengons par étudier le schéma X, au voisinage d’un point triple M de §'.
Au point M correspondent trois points a, b,c de S se projetant en M €S’ sur H,
par o. Soit (x, y, z, u) un systéme de coordonnées inhomogénes de P* pour lequel H
est hyperplan u = 0 et ® le point a linfini sur laxe des u. On peut prendre
M = (0,0,0,0) et a =1(0,0,0,u;), b =(0,0,0,u,), ¢ =1(0,0,0,us) avec les u;
distincts.

On peut également choisir les coordonnées de telle sorte que les trois plans
tangents a S' en M (correspondants a a,b,c) soient donnés par les équations

Ainsi, des équations locales de S en a, b et ¢ sont:
{x = (Pl(y: Z) {y = (PZ(X) Z) {Z = (p3(X, y)
u = Vy(y, 2) u = Yy(x, 2) u = Ys(x, y)

avec ¢, V; € C[[S, T1], val ¢; = 2 et V(0) = u;. Comme dans [23], p. 173, I'idéal
du schéma X est alors

(x—=@1, u=M1) N (Y=, u=A2) N (=3, u—=A3).
Effectuons le changement de coordonnées (au voisinage de 0);
X=x—¢, Y=y—0,, Z=z—03, U=u.
On arrive a I'idéal
J =X, U=A8;)n (Y, U=AB,) N (Z, U—AB3)

ou §;e C[[X,Y,Z, U]]. Lidéal J est bien sr aussi le produit de ces trois idéaux,
car X, Y, Z et U sont des coordonnées.
Pour A = 0, I'idéal de la fibre est

X, U)n(Y,U)n(ZU).

I .

i
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Cet idéal est celui du schéma 7, étudié en [24] (p. 125). On a un isomorphisme
de germes:

(ZOaP) = (9—090)
Or on a vu (loc. cit. p. 126) 'égalite de schemas:

To =T o)ea ¥V vy {0}(2)'

SIS

]
X

~ AW, ;". wplede AN
=0 W TN

Les traits courts représentent des
doublets et les traits longs des tri-
- T™M  plets, cela dans C*.

Ceci prouve déja la proposition 3 au voisinage d’un point triple. De méme, les
assertions 4 1) et 41iii) de la proposition 4 sont prouvées puisqu’on les a vues pour
T o (loc. cit. prop. 5 et 7).

Enfin, prouvons Iassertion 4 ii), toujours au voisinage d’un point triple. On se
raméne comme en loc. cit. p. 130, a considérer le triplet curviligne &, d’idéal

Io = (U X +Us(U), Y + UB(U), Z+ Uy(U))
ot a, B, y e C[[U]]. On le déforme alors en I'idéal

I, = (U=%8,) (U—=48,) (U—A03), X +(U—10,)(U),
Y +(U —28,)B(U), Z +(U —105)7(V))

qui contient I'idéal J; pour A # 0, cet idéal correspond a la réunion de trois points
simples (car les 0,0) sont distincts), chacun sur une des branches de X,. De plus
I, > I, si A >0 (la déformation étant plate). L’assertion ii) de la proposition 4
est ainsi prouvée.

b) Cette fois-ci, P est un point-pince de S’, provenant par la projection sur Ihyper-
plan H, du point a € S. Nous allons ¢tudier X, au voisinage de P.

Soit (x, y, z, u) des coordonnées inhomogénes de P* pour lesquelles P = (0, 0, 0, 0),
g = (0,0,0, 1), le point ® par lequel on projette étant le point a Iinfini sur I'axe
es u.

D’apres Mather ([31], prop. 2), on peut choisir la projection © de S sur I’hyper-
plan H de sorte que n soit localement stable. Le fait que m soit localement stable
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en a montre ([31] p. 179) que pour certains systémes de coordonnées locales (s, t)
de Senaet(X,Y,Z)de H en P, le morphisme 7 est donné par

() i (s, t) — (s, st, t2).

Considérons alors le nouveau systéeme de coordonnées (X, Y, Z, u) dans un voisinage
de I'axe des u de P* et soit

(X(s, 1), Y(s, t), Z(s, ¢), u(s, t))

les coordonnées d’un point de S. Par définition de la projection m sur H, par
(%), on a

X(s,t)y =s, Y(s,t) =st, Zst)=t>.
Ecrivons par ailleurs u(s, t) = 1 + (s, t) avec ¢ dans lidéal maximal de C [[s, t]].
Comme S est non singuliére en a, on a nécessairement E;—(f(O) # 0.
Ainsi une représentation paramétrique locale de S en a est-elle:
X=X, Y=Xt, Z=¢t*, u=1+0¢X,0.
Si ’on écrit
o(X,t) = tafX, t) + B(X, 1)

ou o et B (dans Iidéal maximal de C[[X,t]]) ne contiennent que des puissances
paires de t, il vient aussi la représentation paramétrique de S au voisinage de a:

X=X, Y=Xt, Z=1¢t*, u=1+tdX,2) + (X, 2)
ou o, B’ e C [[X, Z]]. Enfin, si I'on écrit
(X, Z) = ay(Z) + Xa'(X, Z)

0
avec dy(0) # 0 car Ectp—(O) # 0, on a également la représentation paramétrique:

X=X, Y=2Xt, Z=12, u=1+toy(2) + Y&'(X, Z) + B(X, Z).

De 1.3.a, il ressort que X/C* est le schéma donné dans C* x C* (de coordonnées
(X,Y,Z, u \) avec A # 0) par la représentation paramétrique, au voisinage de l'axe
des u:

Y = Xt, Z=1=* u= Ml+ta(2)+ Yo" (X, Z)+p(X, Z))

et X = X,A = A
Effectuons le nouveau changement de coordonnées

U = %ZZ) (u—A—AYa'(X, Z)—AB(X, Z))  (on a ae(0)#0)

et X =X, Y=Y,Z=2Z,=>Adans C[[X,Y,Z u ]l
Dans ce dernier systéme, on a U = At d’ou la représentation paramétrique de
2/C*:

XU U?
Z:— U=U, }\.=}\4.

X=X, Y=——"', s
A A?
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11 est alors aisé de voir que I'adhérence dans C* x C a pour ideéal:
J = (Y2=X2Z,XU—-L\Y,U*=\Z, YU—-AXZ).

Ces équations sont en effet nécessaires; réciproquement, nous voyons qu’un poi'nt
(Xo, Yo, Zo, Ug) de la fibre en 0 (donc verifiant Y2—X,Zy=0 et Uy=0) est limite
de points dans des fibres au-dessus de A # 0. On remarque pour cela que

si Xo # 0: si Xo = 0:
X, X, 0 0
Y, = lim Y, 0 = lim 0
A—0 A—0
ZO ZO Zo ZO
0 }\'YO/XO O 7"7'0

ou r est une racine de Z,.

Ce qui précéde montre I'isomorphisme, au-dessus de C, entre les schémas relatifs
Y/C et 2/C, le schéma 2 ayant été introduit en [24], p. 131. La proposition 3
et les assertions i) et ii) de la proposition 4 sont donc prouvées au voisinage d’un
point-pince, puisquon a démontré 'analogue pour les schémas 2 et 2, (loc. cit.
prop. 9 et 10).

Il reste 2 montrer I'assertion iii) de la proposition 4. Soit donc d, un doublet
transverse 4 H = {u = 0}, contenu dans £,. Son idéal est

I, = (u?, x—owm, y—Bu, z—vyu),
ou o, B, v € C. Une carte de Hilb* C* en d,, est alors donnée par
(a,b,a,,by,a,,b,,as,bs)
correspondant a 'idéal voisin:
I = W4au+b, x—ou+au+b,,y—Butaut+b,, z—yu+azu+by).

Dire que le doublet est contenu dans £, revient a affirmer linclusion I = J. Or
u*el équivaut & a = b = 0. On en déduit b, = b, = 0. Réciproquement, si
a=b=b;, =b, =0 0naJcl Ilsetrouve quon a alors obtenu des équations
du sous-schéma Hilb* 2, dans Hilb? C*. (Voir [24], p. 124 et 131). Ainsi Hilb? 2,
est lisse, donc réduit.

¢) Etudions maintenant X, au voisinage de la courbe double I' de S'. On se
convainc facilement que Z/C est isomorphe au produit C x (Z/C) ou & est le schéma
relatif introduit en [24], p. 121 et qui servait de modéle local pour I'étude des
multisécantes aux courbes. Les assertions analogues se transportent donc mutatis
mutandis, le facteur C supplémentaire ne jouant que peu de réle. (Voir loc. cit.
propositions 2, 3 et 4.)

D’a'p.rés a), b) et c) qui précédent, nous avons donc démontré complétement les
propositions 3 et 4 énoncées en 1.3.b.

4°) LES LEMMES 7 ET 8

a) Prouvons le lemme 7 énoncé en I1.2.c.

Soit &, un triplet d, U m, ou do est un doublet de support un point de la
courbe double I' et m, un point de S situé sur Axed,. Si Suppd, = {0}, soit
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(x, y, z, u) un systéme de coordonnées inhomogénes centré en 0; on peut choisir ’axe
des z tangent a I" en O et my = (1,1,0,0) dans ce systétme. De sorte que I'idéal
de dy dans C[x,y,z, u] est (x?, y—x, z,u). Une carte de Hilb> P* en &, = dy U my
est alors donnée par d’une part les coefficients de I'idéal voisin

(x*+ax+b, y—x+a;x+by,z+a,x+b,, u+asx+b;)
pour un doublet d voisin de d, et d’autre part par
(I1+o, 1+B,7,9)

pour un point simple m voisin de m.
Dans cette carte, 4> P* s’exprime trés simplement: on doit avoir m € Axe d, soit

B—a+a(l+a)+b; =7+ a(l+a) +b, =8+ as(1+a) + by =0.

Par ailleurs, pour exprimer S,;, on doit avoir:

— la condition que Axed rencontre I'. Un calcul élémentaire (par exemple [29],
p. 252, prop. 20.b) montre que l'application linéaire tangente a cette condition
s’obtient en demandant a Axed de rencontrer la tangente en 0 a I, soit
(puisqu’ici c’est 'axe des z): by = b, = b; = 0;

— de plus, d doit étre un point-double, soit la condition d’annulation du discriminant
a’> — 4b = 0;

— enfin, le point m doit étre sur §’; écrivons @(x—1,y—1,z) = 0 (avec 0,0 #0)
une équation locale de S’ en my = (1, 1, 0) dans P? et soit donc

ox—1,y—1,z) =u=20

les équations de S’ dans P* Dire que le point m est sur S’ sexprime ainsi par

oo, B,v) = & = 0.
On vérifie rapidement que les équations linéaires tangentes a ces 9 équations
sont indépendantes et ceci prouve le lemme 7.

b) Prouvons maintenant le lemme 8 énoncé en IV.1.c.

Soit m un point générique de V' tel que la droite Nm ne soit pas tangente
a V' en m et que le plan T,V soit transverse a P et Q, ou P et Q désignent
les deux plans tangents aux deux composantes de V' en N. Apres choix d’un
hyperplan a Plinfini de P°, soit (x, y, z, u, v) un systéme inhomogéne centré en N tel
que ’hyperplan P* contenant ¥’ soit donné par {v=0} et les points
m donné par (0, 1,0, 1,0)
T,.V' n P donné par (1,0,0,0,0)
T, V' n Q donné par (0,0,1,0,0).

Un systéme d’équations de T,V est alors

x+y+z—1=y—u=v=0.

Considérons le triplet ¢t d’axe Nm, double en N, simple en m et montrons que
intersection AI® P° n U est transverse en t. Le choix de ¢ étant générique dans U,
le lemme sera démontré.

Or au voisinage de N, le triplet t est formé par le doublet d, d’idéal (u?, x, z, y —u, v).
Une carte de Hilb? P° en d est donc donnée par les coefficients de I'idéal voisin:
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(%) W +au+d, x+bu+b, z+cu+c, y—u+du+d,v+eut+e).
D’autre part, des équations locales de V' en m = (0, 1,0, 1, 0) sont
u=y+oxy—1

z=1—y—x+Vxy-1)
v=20

ot @ et ¥ sont dans C[[X, Y]], de valuations > 2. Un point voisin de m sera
repéré par

(*%) (0, 1+B,v,1+9,¢).

On obtient ainsi, avec (x) et (xx), une carte de Hilb®> P°> en t. Dans cette carte,
AP P® S’exprime par

o+ b1+ +b =0 B—8+d1+4+d) +d =0
Yy +c1+d) +c =0 e+ e(l+d)+€e =0

car le troisiéme point doit étre sur laxe du doublet. Par ailleurs U est donne,
par définition méme, par les équations

a=d=b=c=d=¢€¢ =0
qui concernent le point-double (il doit étre de support {N}) et par

6=B+(P((X>B): 'Y=_0(_B+\l/(0(>B)a e =0

qui concernent le point simple (il doit €tre sur V).

Les relations linéaires tangentes a ces 13 équations sont indépendantes, ce qui
termine la démonstration du lemme 8.

5°) IDENTIFICATION

Les deux lemmes ci-aprés servent a trouver des relations entre les coefficients

de polynémes que sont les nombres d’intersection cherchés; voir III.1.b, IIL.2.b,
IV.2.a, etc.

LEMME 12. Soit P un polynéme a 4 variables. On suppose pour toute surface a
singularités ordinaires de P* dinvariants (n,d,t,8) que P(n,d,t,8) = 0. Alors P
est identiquement nul.

Preuve. Soit S la surface de P* réunion d’un nombre fini de surfaces S; d’inva-
riants (n;, d;, t;, §;). Les invariants de S sont alors, comme on le vérifie facilement:

n=>yn
d:Zdi+ Y. nn;

i<j
t = Z ti + Z dinj + z ninjnk
i iF+j i<j<k
8 =338+ nn;.
i i<j

Regardons maintenant le cas particulier de la surface S réunion dans P* de
— p plans,
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— g surfaces quadriques

— rsurfaces cubiques } (dans certains hyperplans de P#)
— s surfaces S(2, 2), dont les invariants sont (4, 2, 0, 0).

D’apres ce qui précéde, les invariants de S sont donc:

n=p+2q+3r+4s,

p q r s
d =2 4 9 16 4
s + (2> + <2> + <2> + (2) + 2pq + 3pr + 4ps

+ 6gr + 8¢gs + 12rs,

_ 14 q r S P q
{ = (3) + 8<3> + 27 (3) + 64<3> + (2> (2g+3r+4s) + 4<2>(p+3r+4s)

+ 9<;> (p+2q+4s) + 16<;>(P+2q+3r) + bpar + Spgs + 12prs + grs,

=) ) o) le) ey nw s

Soit ¢: C* — C* l'application qui a (p, g, 1, s) associe (n, d, t, §) définis par les quatre
formules qui précédent. Par hypothése, pour toute surface S de P* d’invariants
(n,d,t,9), on a P(n,d,t,0) égal a 0. En particulier, pour la surface précédente;
ce qui signifie que le polyndme P,¢ s’annule sur N*. On a donc P, = 0. Mais
comme on le vérifie aisément, la différentielle d,¢p est inversible; par suite P est nul
dans un ouvert non vide de C*, donc identiquement nul.

LEMME 13. Soit S une surface de P* d’invariants (n,d,t,d). Soit S =SuUP
la réunion de S et dun plan transverse. Alors les invariants de § sont
A=n+1L,d=d+nt=t+d0=238+n

Preuve. On regarde dans ce qui précede les invariants d’une réunion S, U S,

Remarque. Les lemmes 12 et 13 sont encore valables si on remplace les invariants
(n,d, t,d) par (n,d,t, h) ou h est le nombre de points-doubles apparents (sur un P?)
de la courbe double apparente I' (sur un P?) de la surface. En effet, h est donné par

M = dd—n+2) — & — 3t
(voir [28],§ V) et pour S = SU P,onaalors h = h + dn—2).

6°) INVARIANTS DES SURFACES

Nous donnons ici les invariants des surfaces servant de cas particuliers pour établir
les formules.
Pour une surface S lisse de P¥, nous avons les invariants ¢,, K? et HK ou

¢, est la caractéristique d’Euler-Poincaré topologique,
K est le diviseur canonique,
H est le diviseur hyperplan.

Par rapport a ces invariants d,t et & sont donnés par les formules classiques
(sin = degré S):




TRISECANTES DES SURFACES ALGEBRIQUES 59

2d = n(n—4) — HK
28 = n(n—10) + ¢, — K* — 5HK
6t = n(n*—12n+44) + 4K* — 2¢c, — 3HK(n—38).
Ceci peut se voir par exemple en appliquant les formules du lieu double [22]

et triple [17]. .
On peut également donner les formules en utilisant ies invariants classiques

(Hos His Has Vo)t
2d = n(n—1) — p,;, 20 =nn—1) — p; — v,
6t = n(n—1) (n—2) — 3np, + 22, +2u,+v,)
et bien sr n = py, v = v, (voir [34]).
Ceci permet de dresser les tableaux suivants; un symbole tel que S(iy, ..., i)

désigne Pintersection compléte de k hypersurfaces de degrés i, .., i, dans P**? (voir
[34]). Les surfaces considérées dans P* ont 6 = 0 car lisses.

surface n d t surface n d t o
S@2,2) c P4 4 2 0] S2,2,2CP° 8 16 8 4
52,3) c P* 6 6 0| S2,2,3) CP’ 12 42 48 12
S$(3,3) Cc P4 9 18 6 | S2,2,2,2) C P® 16 88 208 40
S@2,4) C P4 8 12 0| 82,2,2,2,2) CP? 32 416 2880 256
S(3,4) c P* 12 36 24| S2,2,2,2,3) C P’ 48 984 11376 648
Veronese C P* | 4 3 1 | del Pezzo S5 C P3 5 5 | 1

7°)  QUASITRANSVERSALITE

Le lemme suivant sert, en utilisant la théorie de Fulton-MacPherson, a construire
un cycle fixé dans AI°P", de codimension (2n+1+3N) — 2N+1+43n) = N — n.
Voir I11.2.a, IV.1.b, V.1.

~ LemME 14. Soit P" un sous-espace linéaire de PY. Alors dans Hilb3 PV,
Pintersectionde AI* PN er Hilb? P" est schématiquement Al P*. Onale diagramme
commutatif ou les dimensions sont entre parenthéses :

@N+1)  ABPY & Hilb? PY  (3N)

U U

(2n+1) AP P" A Hilb? P" (3n)
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Preuve. On va voir que AI° P¥ et Hilb? P" se coupent quasitransversalement dans
Hilb? P¥. Soit pour cela (x, x,, X3, ... xy) un systéme de coordonnées inhomogénes
pour lequel P" est donné par Xy = Xy_; = .. = Xy_,+; = 0 et soit &, un k-uplet
aligné dans P". On peut supposer que Axe&, est 'axe des x; Iidéal I, de &,
est donc

Iy = (p(x), x5, X3 .. Xy)
ou p est un polynéme de degré 3. Une carte de Hilb? PY en &, est donc donnée par
les coefficients de I'idéal
I = (p(x)+ax®+bx+c, xa4+a,x> +byx+cyy oy xy+ayx>+byx+cy) .
Dans cette carte, AI® PY s’exprime par
a, = az = ..ay =0

et Hilb? PY par g, = b, =¢; =0 avec N —n + 1 <i < N. Dou lassertion de
quasitransversaliteé.

Remarque. Le résultat est évidemment analogue pour A PV si k > 3.

8°) CALCUL DE MULTIPLICITES

a) Soit S une surface de P* avec un point-double impropre O et soit m, un point

simple quelconque de S. Supposons que la droite Om, coupe une droite générique
fixte A (on prendra AnT,S = @). Si l'on regarde le triplet aligné d, u m,

d’axe Om, ou d, est le doublet de support {0}, ce triplet est évidemment contenu
dans S. Quelle est sa multiplicité dans le nombre T(S) des tangentes a S recoupant
S et ladroite A? (Voir IIL.1).

Soit pour ce calcul, un systeme de coordonnées inhomogenes (x, y, z, t) centré en O,
avec my = (1, 1, 1, 1), les plans tangents aux deux branches de S en O étant donnés
par x = y = Oet z = t = 0. L’idéal de d, dans C [[x, y, z, t]] est alors

(x%, y—x,z—x,t—X).
Un doublet d voisin de d, est repéré par I'idéal

(x> +ax+b,y—x+a,x+b,,z—x+a,x+b,, t—x+asx+b;).

De méme, un point m voisin de m, est repéré par (1+ug, l+uy, 1+u,, 1+u;)
On obtient ainsi une carte de Hilb? P* en le triplet d, U my.
Dans cette carte, AI° P* s’exprime évidemment par

(1) uy —ug + ay(l+ug) + b, =0

car le point simple m doit étre sur Axed. De plus, la sous-variété & de AI® P*
s’exprime par

) @ — 4b = 0

puisque d doit avoir pour support un seul point.
Par ailleurs, la condition pour I’axe de rencontrer A signifie que m reste dans
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le plan fixe P engendré par O et A. On peut par exemple prendre z = x et t =y
pour équations de ce plan. D’ou les conditions supplémentaires:

(5) Uy = U,y
et
(6) Uy = Us.

Enfin, exprimons Hilb® S dans cette carte.
Pour ce qui est du doublet d: on doit avoir l'inclusion d’idéaux I(d) o I(S). Soit

xX+.=y+.=0
et z+.=t4+..=0

les équations des deux branches de S en 0, les ... signifiant des termes d’ordre au
moins 2. L’idéal I(S) est dans C [[x, y, z, t]1] :
(xz+ .., xt+.., yz+.., yt+..)

les ... signifiant des termes d’ordre au moins 3.

Regardons par exemple la condition xz + .. e I(d). On doit avoir alors puisque
z + (a,—)x + b, € I(d), 1a relation

byx + (a,—1)x* + .. = f(x) (b+ax+x?)
ou f e C[[x]]. Si f =3 fix!, on obtient en identifiant:

Désignons I'idéal maxunal de C[[ab,a,,b,,a,,b,, as,b;]] par m et écrivons
f=g+m pour f — g e m*. La troisiéme relation obtenue montre: 1 + fo € met donc,
par la premiere:

(7) b=0.

La deuxiéme donne ainsi:

(8) b, = —a+ m?.
Méme raisonnement avec xt + ...; on obtient b = 0 et
9) by = —a+md.
Regardons la condition yz + ... € I(d). On a

yz = ((a;—=1Dx+by) ((a;—1)x+b,) modulo I(d).
D’ou la relation

(@, —1)x+by) ((ay—1)x+b,) + termes d’ordre > 3 = g(x) (b+ax+x3?).
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En identifiant :
bib, = gob
bi(az—1) + by(a,—1) = gib + goa
(a,—1)(a;—1) = g,b + g1a + go .

de la troisiéme relation vient g, = 1 + m, doit vu que b = 0 et b, = — a + m?,
par la deuxiéme relation: — b, — b, = a + m?, soit
(10) bl = m2 .

Idem avec yt + ...

Pour ce qui est du point simple m: soit z = 1«~+ o(x—1,y—1) et t =1
+ Y(x—1,y—1) des équations locales de S au voisinage de my, = (1,1,1,1). La
condition que le point m est sur S est alors simplement

(11) u, = @(ug, u,)
et
(12) uz = Ylug, uy) .

Les 12 équations précédentes forment alors un idéal dont il est facile de voir que
la longueur est 2. En effet, comme b = 0 et a®> — 4b = 0, on obtient a? = 0.
Par ailleurs les 11 autres équations ont des relations linéaires tangentes indépendantes.
(En effet, le déterminant

% J¢
0x dy
oV N,
0x dy

est non nul en m, car les deux plans T,, S et P sont transverses).
La multiplicité cherchée est donc 2.

b) Soit S une surface de P*. On regarde maintenant le nombre T(S) des tangentes
d’inflexion coupant un plan fixe m. Cest par définition (II1.2) le degré du O-cycle

T(S) = deg [7]. Axe*o, . [Hilb? S]

dans Hilb? P* ou o, est le cycle des droites coupant un plan fixe.
Si § admet un point-double impropre O avec deux branches S, et S,, supposons

que T recoupe 3TOS2 en P. Alors la droite OP coupe S en O suivant un triplet 6,
de la forme . Nous voulons calculer la contribution de ce triplet dans T(S).

Mais seulement sa contribution parasite, car il west pas exclu que la droite OP
puisse étre une vraie tangente d’inflexion de la branche S,, auquel cas 6,
compterait légitimement comme intersection entre Hilb} S, et 7. Evidemment,
ce ne sera pas le cas génériquement; mais c’est cependant le cas dans le calcul
effectué en III pour la surface § = S U P.

Pour éclairer cette situation, regardons plutét les tangentes d’inflexion d’une courbe
C dans P. Leur nombre est défini comme le nombre d’intersection

T(C) = deg [77].[Hilb? C]
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dans Hilb? P? ou < est la sous-variété de Al° P? des triplets de la forme 3.
Ce nombre est comme on sait [28] 3n(n—2) ou n = deg C. Cependant, le cas ou
C est singuliére est a interpréter. Examinons en effet un croisement normal O de C
et soient C,,C, les deux branches de C en ge point. La tangente a C, en O
coupe C suivant le triplet 0, de la forme - et ce triplet devra étre compté
avec multiplicité 3. Si h est le nombre de points-doubles de C, on aura donc le
nombre correct

3n(n—2) — 6h

de tangentes d’inflexion (car il y en a deux « fausses » par point-double).

Supposons maintenant que O soit un point d’inflexion de la branche C,. Le
triplet 6, devra étre compté deux fois dans T(C): une fois comme « vraie » tangente
d’inflexion de C, avec multiplicité 1 et une fois comme dans ce qui précede (et
avec multiplicité 3). Cela vient en effet de ce que le germe de Hilb? C en 6,
est formé des deux composantes

Hilb3C, et Hilb2C? x C?

ou C; est C; — {0}, la barre désignant I'adhérence dans Hilb? P2 (la derniére
composante est formée des limites de triplets ayant deux points sur C, et un
point sur C, ).

Exemple: Si C est la réunion de deux droites L, et L,, on a évidemment
T(C) = 0 (en déformant en une conique lisse) ce qu’on voit aussi en écrivant

0=-3-3+3+3,

car ce sont les contributions respectives de

Hilb® L,, Hilb3L,, Hilb>L? x LY, Hilb? L3 x L?

(on a en effet T(droite) = — 3 puisquici n = 1).

Donc dans le calcul de lintervention parasite de 0, (qu'on va effectuer maintenant )
seule la composante Hilb> C§ x C9 doit intervenir dans son intersection avec I .
Bien sir il n’y a qu'elle dans un cas générique, encore une fois.

Pour effectuer le calcul de la multiplicit¢ de 6, dans J n Hilb?> CY x C?
plagons-nous dans des coordonnées locales (x, y) pour lesquelles

{Cz a pour équation y = f(x), feC[[x]] valf =2
C, a pour équation y = 4(y), geCllyl] valg=2.

Lideéal de 6, est (x, y) et une carte de Hilb>P? en 6, est donnée par les
coefficients de I'idéal voisin

=
=

I(0) = (x*+3ax*+3bx+c, y+a'x>+b'x+¢).

Dans cette carte, A’ P? s'exprime évidemment par

(1) a=0
€t sa sous-variété  par
) b = a?
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(Dans toute la suite on fait donc a’ = 0).
Si m est un point simple de C;, de coordonnées (g(v),v), il faut et il suffit
pour que m soit dans 6 que I'on ait

) J90)° + 3ag(v)* + 3bg(v) + ¢ = 0
v+ bgl)+c =0
Ces deux équations, vu (2) et (3) sont équivalentes a
/ %
a+g@)? =0
@) (a+g0) =0
v+ bglv)+c =0

Par le théoréme des fonctions implicites, la derniére équation donne v = V(b/, ¢'),
la partie linéaire de V étant ¢

Exprimons maintenant que le doublet d, complémentaire du point simple m dans
0 est situé sur C,. On a, vu (*):

x> + 3ax® + 3bx + ¢ = (x—g(v)) (x* +(3a+g(v))x + 3b+ 3ag(v) +(g(v))?) .
Posons
{3A = 3a + g(v) = 3a + gV(b', c)
3B = 3b + 3ag(v) + g(v)* = 3b + 3agV(b, c) + (gV (b, ¢))*.
L’idéal de d est alors

J = (x*+3A4x+3B, y+b'x+¢)

et dire que d est dans C, revient a demander I'inclusion J > (y— f(x)), soit demander:
(%) f(x) + b'x + ¢’ multiple de x> + 34x + 3B dans C [[x]].

Si on écrit f(x) = fox*> 4+ f3x* + .., il est facile de voir, par identification dans
C [[x]] quon obtient

{b’ = 3/,A+ 3B+ M? (5
¢ = f,B + BM (6)

ou M est l'idéal maximal de C [[¥/, ¢, 4, B]].

Ainsi lidéal défini par les relations (1) a (6) est de multiplicité 3: les équations
(1), (2), (3), (5), (6) définissent en effet une courbe non-singuliére I" dans les coor-
données (a, b, ¢, @', b', ¢') et ’équation (4) définit un triplet curviligne sur I'.

Le calcul analogue pour les points-doubles impropres d’une surface S de P*
est laissé au lecteur.

9°) TANGENTES D’INFLEXION DE S(2, 3) ET S(2, 4)

Soit # une hypersurface de degré 3 ou 4 dans P* et soit G = G(1,4). Soit
[F]e A*G) ou F est 'ensemble des droites contenues dans une hyperquadrique Q
de P*. i

Soit [X] e A*(G) ou X est I’ensemble des drsoites coupant s suivant un triplet
> s deg # = 3 ou bien suivant un quadruplet — - si deg # = 4.
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Les calculs qui suivent ont lieu dans A'(G) avec les notations de [21]. Tout
d’abord, on a

[F].(1,3) = 4 (nombre de droites dans une quadrique de P?
et coupant une droite fixe),

[F].(0,4) = 0 (un point générique de P* n’est pas sur Q).

Il en résulte [F] = 4(1, 3) par dualite. ’
Cherchons [F].[X].(2, 4) qui représentera donc le nombre m de droites tangentes
d’inflexion a S = # n Q recoupant un plan fixe. On a

m=[F].[X].2,4 =4[X].2,4).(1,3).
Or par la formule de Pieri, on a
2,4).(1,3) = (1,2) + (0,3).
D’autre part, suivant que deg # = 3 ou4,ona

[X].(1,2) = 9 ou 24 (tangentes d’inflexion d’une cubique ou quartique plane)
[X].(0,3) = 6 ou 24 (tangentes d’inflexion d’une surface cubique ou quar-
tique de P* passant par un point fixe: [34], p. 199
et 203).
m=4.94+4.6 =060 si deg# =3
Donc .
m=4.24 +4.24 =192 si deg# =4

Désignant le nombre de tangentes d’inflexion d’une surface de P* coupant un plan fixe
par T, on a donc T(S(2,3)) = 60 et T(S(2,4) = 192. (1l faut vérifier que les
multiplicités sont bien 1).
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