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FORMULES POUR LES TRISÉCANTES

DES SURFACES ALGÉBRIQUES

par Patrick Le Barz

Soit X une sous-variété de PN, sur un corps algébriquement clos. Le but

de cet article est d'étudier les droites trisécantes à X et de donner des

formules énumératives nouvelles, lorsque X est une surface. Par formules

énumératives, on entend donner le nombre de trisécantes à X vérifiant un

certain nombre de conditions convenables (comme par exemple de couper

un sous-espace fixé).

Face à ce problème, deux méthodes naturelles apparaissent:

— la méthode du lieu triple ;

— la méthode fonctionnelle.

1°) Disons seulement quelques mots de la première, puisque l'article est

consacré exclusivement à la seconde; la portée de cette dernière est moins

générale que la méthode du lieu triple, mais aussi donne-t-elle dans le cas

qui nous intéresse des résultats plus fins, car s'appliquant à une classe plus
large de surfaces (surfaces contenant des droites).

Nous allons voir que les trisécantes à X forment un « lieu triple »,
de même que les cordes de X forment un « lieu double ». En effet, si

/ : A -> B est un morphisme entre variétés algébriques, le lieu double de f
est défini grosso modo comme l'ensemble des xx e A pour lesquels il existe

x2 i=- x1 ayant même image f(x2) f(xi). La formule maintenant classique
de Laksov [22] donne (la classe de) ce lieu double dans X. Voir la
monographie de Fulton [7].

On définit également le lieu triple de f (grosso modo l'ensemble des

x1 g A tels qu'il existe x2, x3 distincts et distincts de jxq ayant même image
par /). Dans [17], [18], [19], [20], Kleiman donne une formule pour
(la classe de) ce lieu triple dans X avec / supposé suffisamment général.
Des perfectionnements ont été apportés depuis par S. Colley [3] et Ran [32].
La formule analogue dans le cas différentiable est due à Ronga [33].



Désignons par G(l, N) la grassmannienne des droites de et soit

IcPw une sous-variété; soit A dans PN x G(l, N) la variété d'incidence
des (x, d) avec x e d et x e X. On voit alors que les trisécantes à X
correspondent au lieu triple de pr2 : A G(l, N). Nous ne continuerons pas
dans cette voie, qui consisterait à appliquer la formule générale du lieu

triple à ce morphisme.

2°) Soit donc S dans P^ une surface. La méthode que nous utilisons
dans cet article, afin d'établir des formules énumératives pour les trisécantes
de S, est la méthode fonctionnelle. Cette méthode, telle que la concevaient
les Anciens, consisterait à supposer que toute formule trisécante pour S est

a priori un polynôme en les quatre invariants n degréS, c2, K2 et HK
(où H section hyperplane). Auquel cas, on trouve les coefficients d'un tel

polynôme par examen de cas particuliers simples pour S.

Bien entendu, la plus grosse difficulté de l'article est de justifier cette
assertion. Pour cela, on doit définir rigoureusement ce que l'on entend par
« trisécante » et « nombre de trisécantes » afin de pouvoir tenir compte de cas

dégénérés. C'est ce qu'on tentera d'expliquer dans le n° suivant.

Avant cela, nous remarquons que lorsque IcPN est une courbe C,

les formules trisécantes sont connues depuis fort longtemps :

— nombre de trisécantes à C c= P3 coupant une droite fixée,

— nombre de tangentes àC c P3 recoupant C,

— nombre de trisécantes à C c P4

(Cayley [2], Salmon [37]). Elles ont été initialement trouvées par la méthode

fonctionnelle (sans justification) comme fonctions du degré et du genre.
Plus tard, une autre méthode est apparue, considérant la « correspondance
trisécante » sur C x C (x et y sont en correspondance s'il existe z aligné

avec x et y), puis en montrant que cette correspondance est « à valence ».

Toutes ces formules ont été depuis peu redémontrées rigoureusement;

on pourra consulter [1], [9], [12], [23], [36].

3°) Si X est une sous-variété de PN, disons qu'une droite L est une

trisécante à X si L n X consiste en trois points, éventuellement « infiniment
voisins » comme dans le cas d'une tangente L qui recoupe X en un autre

point, ou comme dans le cas d'une tangente d'inflexion à X (auquel cas

les trois points sont confondus). En langage moderne, une trisécante est une

droite L telle que le schéma L n X soit de longueur 3.
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Pour la commodité, on dira par la suite triplet pour schéma de dimension 0

et longueur 3 et on dira qu'un triplet est aligné s'il est sous-schéma d'une

droite. De sorte que nous faisons l'identification commode :

droite trisécante àl^ triplet aligné situé sur X

C'est une identification analogue que faisait déjà Severi [35] pour le problème

du nombre des quadrisécantes d'une courbe C de P3, en considérant

« la varietà irreducibile oo8, T, delle quaderne di punti allineati dello spazio

e la varietà irreducibile oo4, U, delle quaderne di punti délia generica C.

Le T, U son contenute nella varietà irreducibile oo12, Z, di tutte le quaderne

di punti dello spazio ». Il intersectait alors T et U dans Z.
Dans cette citation, on reconnaît implicitement dans Z (pour k 4 et

N 3) le schéma de Hilbert Hilbfc [10] paramétrant les /c-uplets de P^

et en T la sous-variété des /c-uplets alignés, que nous noterons Alk PN.

Or tant que l'on parle de sous-schémas d'une courbe non-singulière
(comme plus haut L n X dans L), cette notion était en fait connue
implicitement des Anciens. C'est que pour une courbe non-singulière, le langage
des points infiniment voisins suffit, vu que dans ce cas les notions de

sous-schéma et de diviseur coïncident. C'est entre autres pourquoi dans la
suite de l'article, plutôt que de travailler dans le schéma de Hilbert Hilb3 PN

paramétrisant l'ensemble des triplets quelconques de P^, on se placera dans

l'ouvert Hilb3 P^ des triplets (que nous proposons d'appeler curvilignes)
qui sont sous-schémas d'une courbe non-singulière. Les seuls triplets exclus
dans cet ouvert sont ceux définis par les carrés d'idéaux maximaux dans

un plan, qui correspondraient en langage classique à « des éléments du second
ordre, de courbure infinie » (voir [4]). Par ailleurs, la lissité de l'ouvert
Hilb3 PN est très facile à établir [24], tandis que celle de Hilb3 P^ est

plus délicate (c'est par exemple une conséquence d'un théorème de Fogarty [5]
selon lequel Hilbd P2 est non-singulier).

4°) Nous pouvons maintenant définir rigoureusement le « cycle des tri-
sécantes à S » et les « formules trisécantes pour S ».

Le schéma Hilb3 PN contient la sous-variété Hilb3 S des triplets curvilignes
situés sur S ; il contient également la sous-variété complète Al3 P^ des triplets
alignés. Alors, avec la définition que nous avons adoptée, les trisécantes à S

correspondent à l'intersection

Al3 PN n Hilb3 S



4 P. LE BARZ

Si l'on veut un nombre fini de tels triplets (pour des formules énumératives),

on coupe par une sous-variété Z de Al3 de dimension complémentaire ;

le cardinal de Zn Hilb3 S n'est alors rien d'autre que « le nombre de tri-
sécantes à S vérifiant Z ».

Bien entendu, tout cela doit se formaliser car on peut très bien avoir
des intersections de dimension excédentaire De sorte qu'il vaut mieux parler
d'intersecter des classes de sous-variétés (ou de cycles); c'est-à-dire travailler
dans l'anneau des classes pour Véquivalence rationnelle (grosso modo, se

ramener à ce que les sous-variétés se coupent proprement, i.e. avec la bonne

dimension). Dans ce langage, la définition correcte du « cycle des trisécantes
à S » est :

z*[Hilb3 5] g A\Al3 PN)

où i : Al3 c» Hilb3 P^ est l'injection canonique et Ä désigne l'anneau

d'équivalence rationnelle gradué par la codimension. (On dira aussi « anneau
de Chow » pour « anneau d'équivalence rationnelle »). La notation [ ]
désigne comme d'habitude le cycle associé à une sous-variété.

Alors si Z dans Al3 PN a la dimension voulue, le « nombre de tri-
sécantes à S vérifiant la condition Z » se définit comme le degré du 0-cycle

Z z*[Hilb3 S]

Par exemple, si S est une surface de P5 et que Z désigne la sous-variété
de Al3 P5 formée des triplets alignés de support un seul point (« trois points
consécutifs infiniment voisins sur une droite » dans le langage ancien), le

degré du 0-cycle Z z*[Hilb3 S] est le nombre de tangentes inflexionnelles de S

et on le donne explicitement un peu plus loin.

C'est donc la définition qu'on adopte ici de « nombre de trisécantes »

et c'est de tels nombres qu'on se propose de calculer. (Ils peuvent très bien

être négatifs dans les cas dégénérés de surfaces où les deux variétés en question
ne se coupent pas proprement, c'est-à-dire le cas où, contrairement à

l'attente, il y a une infinité de trisécantes vérifiant Z.)
Avec cette définition, les formules comptent d'elles-mêmes avec multiplicités.

Par exemple, une droite quadrisécante à S comptera en général 4 fois

comme trisécante, puisqu'il lui correspond quatre triplets alignés situés sur S.

Le problème d'une droite L contenue dans S est plus préoccupant: il lui
correspond oo3 triplets alignés situés sur la surface et l'on est obligé de

calculer l'influence dans les formules de cette composante parasite (théorème
de l'intersection résiduelle) pour avoir le nombre de « vraies » trisécantes

(voir [26]).
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5°) L'article comprend deux parties : le cas des surfaces de P4, puis celui des

surfaces de P5, P6, P7. Esquissons la démonstration dans le cas des surfaces

de P4.

Tout d'abord (afin de pouvoir généraliser par la suite dans la deuxième

partie de l'article), on supposera non pas que la surface S est lisse, mais à

singularités ordinaires dans P4, ce qui signifie que S possède comme uniques

singularités 5 points doubles impropres; autrement dit des points où deux

branches lisses de S se coupent transversalement. On ne suppose pas que S

est irréductible.
Grosso modo, on déforme alors S platement dans P4 en un schéma

L0 tel que les cycles [Hilbc3 S] et [Hilbc3 E0] soient rationnellement
équivalents dans Hilb3 P4; d'où l'identité des classes z*[Hilb3 S] et z'*[Hilb3 £0]
dans l'anneau A'(Al3 P4). Puis le schéma Hilb3 X0 se décompose facilement,
contrairement à Hilb3 S, en trois composantes (voir § II). Chacune de ces

composantes a une contribution différente dans le degré du 0-cycle

Z. i*[Hilb3 5], que l'on calcule alors: pour cela, connaître une base de

l'anneau de Chow de Al3 P4 est nécessaire. Elle est fournie par le théorème
de Leray-Hirsch car Al3 P4 est fibré en P3 sur la grassmannienne des droites
G(l, 4). On évalue donc z*[Hilb3 Z0] sur cette base explicite et l'on vérifie

que dans tous les cas le degré cherché a la forme attendue, à savoir

n est le degré de S,

t est le nombre de points triples d'une projection générique S' sur un
hyperplan P3,

d est le degré de la courbe double de S',

et al9 a2i a3, a, ß, y sont six constantes.

(On utilise d, t et plus loin 8 comme invariants des surfaces, plutôt que
c2, K2 et HK moins commodes).

Ce qui précède permet alors, par examen de deux cas particuliers pour Z,
de prouver le

Théorème. Soit S c= P4 une surface d'invariants (n, d, t) comme
ci-dessus. Alors

le nombre de tangentes recoupant S et une droite fixe est

ou
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tl(S) 6(d(n — 2) —

le nombre de tangentes d'inflexion coupant un plan fixe est

t2(S) n(n — 4)(2n—ï) + 6(t — d(n — 4)).

Exemple. Pour la surface S(2, 3) c= P4 intersection complète d'une

quadrique et d'une cubique, on trouve tx 24, ce que confirme un calcul
direct dans la grassmannienne G(1, 4). (Cet exemple n'est pas un des cas

particuliers servant à établir la formule pour t1

6°) Dans la deuxième partie de l'article, on considère une surface lisse

(mais pas forcément irréductible) dans pour N 5, 6, 7 et l'on introduit,
outre n, d et t comme précédemment, l'invariant 6 ainsi défini : c'est le nombre
de points singuliers (points doubles impropres) apparaissant dans une
projection générique V sur un P4. Comme plus haut, afin de justifier la
méthode fonctionnelle, on déforme F en un certain schéma de sorte

que les classes z*[Hilb3 F] et z*[Hilb3 >0] soient égales. Le schéma Hilb3 <D0

se décompose, lui, en plusieurs composantes irréductibles; on évalue la
contribution de chacune d'elles en appliquant ce qui précède sur les surfaces

de P4 et on arrive finalement au résultat :

toute formule trisécante pour F est de la forme

a±n + a2 ^2^ (^3^ 4- &t -j- <i(ßn + y) + b{un-\-v)

où al7 a2, a3, a, ß, y, tz, v sont huit constantes.

L'examen de six cas particuliers pour Z conduit alors au théorème :

Théorème, a) Soit F ci P5 une surface d'invariants (n, d, t, Ô) comme
ci-dessus. Alors

le nombre de trisécantes coupant un plan fixe est

le nombre de tangentes recoupant S et un P3 fixé est

t4(V) -n(3n2-lln + 2) + 12(d(n-3)-t) - 25(n-6);

le nombre de tangentes d'inflexion est

t5(V) 2n(2n2 — 18n + 25) + 12(t — 5 — d(n — 7)).
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b) Soit FcP6 une surface d'invariants (n, d9 t, 8). Alors

le nombre de trisécantes coupant un P4 fixé est

t6(V)4 - 2n+ 4t -d(3n-8)+ 8(n-4) ;

le nombre de tangentes recoupant V est

t7(V) — 4n(2n2 — 15n + 19) - 241 + 2d(\3n-12) - 28(w-12).

c) Soit PcP7 une surface d'invariants (n, d, t, S). Alors

le nombre de trisécantes à V est

t8(F) 14 Q - 18 Q + 5n+ 8t 8d(n-5) + 8(n-8).

Exemple. Pour la surface S(2, 2, 3) c= P5 intersection complète de deux

quadriques et d'une cubique, on trouve t4 192 et t5 240, ce que confirme

un calcul direct dans la grassmannienne G(l, 5). (Là encore, cet exemple ne

sert pas à établir les formules donnant f4 et t5

7°) Mise en garde

Commençons par un exemple afin de faire comprendre cette mise

en garde. Pour C une courbe dans P3 de degré 6 et genre 3, la formule

pour le nombre q de quadrisécantes [23] donne 0. Or si une telle courbe

est en plus hyperelliptique, c'est en fait une courbe de bidegré (4, 2) sur

une surface quadrique, donc elle possède une infinité de quadrisécantes, à

savoir les génératrices On voit donc dans ce cas qu'on ne peut, de q 0,

conclure à l'absence de quadrisécante ; ou alors, en s'étant assuré auparavant
qu'il n'y en avait au plus qu'un nombre fini. C'est qu'en fait le nombre q
donné est un nombre d'intersection et peut donner des résultats négatifs,
nuls ou positifs dans le cas où, contrairement à l'attente, il y a une infinité
de quadrisécantes à C. Tel est le cas des courbes de bidegré respectivement
(4, 3), (4, 2) et (4, 1) sur une quadrique de P3, où l'on trouve q — 1, 0, 1.

La même mise en garde se transporte mutatis mutandis au cas des

trisécantes aux surfaces. Cependant, une difficulté supplémentaire tient au fait
que la surface peut contenir des droites. (On exclut cependant le cas des

surfaces réglées; voir [16], [27].) D'où la discussion suivante.

a) La surface ne contient pas de droite

i) Si l'une des huit formules précédentes donne un nombre négatif,
il y a évidemment une infinité de trisécantes du type cherché, puisqu'il
s'agit d'un nombre d'intersection.
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ii) Si par contre l'une des formules donne un nombre nul ou positif,
on ne peut a priori rien conclure, sauf si l'on s'est assuré auparavant
qu'il ne pouvait y avoir qu'un nombre fini de trisécantes du type cherché.

Il y en a alors le nombre donné par la formule.

b) La surface contient un nombre fini de droites

Seules les formules donnant t5, t7 et t8 sont concernées; dans ce cas,
si la surface V contient une droite L, les oo3 triplets alignés sur celle-ci

nombres d'intersection t5, tn, ts (où l désigne la self-intersection de L sur
V ; voir théorèmes 5, 7 et 8). On peut alors utiliser les formules dans deux sens :

i) Ou bien la surface V ne possède par ailleurs pas de « vraie »

trisécante (si V est intersection de quadriques, par exemple), auquel cas

les formules donnent des renseignements sur le nombre de droites contenues

dans L.

ii) Ou bien l'on connaît le nombre de droites que contient V (et leur

self-intersection), auquel cas après correction, les formules donnent le nombre
de « vraies » trisécantes à V.

Par exemple la surface de del Pezzo S5 c= P5 est intersection de

quadriques et contient 10 droites de self-intersection — 1. On doit donc trouver
t5 —30 (puisque chacune d'elles contribue de —3 dans t5); ce résultat

sert même dans le cours du calcul de la formule générale pour t5 (voir § IV.2).
Mais inversement, la connaissance de t5 — 30

i) Ou bien montre qu'il n'y a pas de trisécante à S5 si l'on sait que S5

possède 10 droites exceptionnelles,

ii) Ou bien donne le nombre de droites exceptionnelles sur S5 si l'on sait

qu'il n'y a pas de vraie trisécante à S5.

8°) Application aux volumes

Les formules donnent des renseignements sur le nombre de droites

contenues dans les volumes (variétés de dimension 3), supposés intersections

de quadriques.

Par exemple, considérons un tel volume X dans P7, supposé ne contenir

qu'un nombre fini de droites; quel est ce nombre? La réponse est t8(V)
où V est la surface X n 3, 3 étant une hypersurface cubique transverse
à X. En effet, toute droite dans X est trisécante à F et réciproquement,

contribuent respectivement de
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puisque X est supposé intersection de quadriques. L'exemple le plus simple est

évidemment le volume X intersection complète de quatre quadriques, où l'on

trouve ainsi 512 droites (ce qu'on vérifie directement dans G(l, 7)).

De même, si X c= P6 est un tel volume, le degré de la surface réglée

formée des droites dans X est donné par t6(V) où V X n 3 comme

précédemment.

Première partie : P4

I) Rappels et définitions; schémas I et I0

1°) HilbJ PA, Alk PN ET FORMULES k-SÉCANTES

On rappelle rapidement les notions introduites dans [24] et [25].

a) Le corps de base est algébriquement clos de caractéristique nulle; on se

place sur C pour la commodité.

Si Hilbk PA désigne le schéma de Hilbert [10] des k-uplets de PA

(sous-schémas de dimension 0 et longueur /c), on désignera par HilbJ PA

l'ouvert formé des k-uplets curvilignes c'est-à-dire situés sur une courbe

non-singulière. L'ouvert HilbJ PN est en général non dense [15], mais en tout
cas non-singulier [24] de dimension Nk. Il contient l'ouvert Hilbl P^ des

/c-uplets formés de points distincts comme ouvert dense.

Les /c-uplets de PiV qui sont sous-schémas d'une droite, appelée axe
du /c-uplet, sont dits alignés. Ils forment une sous-variété non-singulière
de dimension 21V + k — 2, notée Alk PN, de HilbJ PN. On a une fibration
naturelle, au-dessus de la grassmannienne des droites :

Axe : Alk ~PN G(l, N)

qui à un-/c-uplet aligné fait correspondre son axe. La fibre-type est
Hilbk P1 ~ Pk.

Exemples et notations. Un doublet est toujours aligné. Si (x, y) sont les

coordonnées de C2, le triplet d'idéal (x2, xy, y2) n'est pas curviligne; le triplet
d'idéal (x3, y Ex2) est curviligne mais non aligné. On notera - un doublet
de support réduit à un point. Un triplet curviligne de support réduit à un
point sera noté ^ et s'il est aligné, on le notera Remarquons par
exemple que le quadruplet -> est aligné, mais celui-ci: ^ j ne l'est
pas, bien qu'évidemment le réduit associé le soit
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b) Définissons maintenant le cycle des k-sécantes d'une surface de FN.

Soit S c une surface et i: AlkFN c» HilbJ l'injection canonique.
Comme Hilbfc S s'identifie à un sous-schéma de Hilbfe FN (par exemple [8]),
notons HilbJ S la trace de Hilbfc S sur HilbJ PN. Le cycle associé [HilbJ S]
de HilbJ P^ est de dimension 2k et donc le cycle

i* [Hilbck S]

appartient à Ak(N'2\Alk FN) où A' désigne l'anneau de Chow, gradué par la
codimension. Soit Z un cycle fixé dans Alk PN, de dimension complémentaire.
On appelleraformule k-sécante pour S dans PN, uneformule donnant le degré
d'un 0-cycle Z. i* [HilbJ S] lorsque le cycle Z est fixé.

Exemple. N 4, k 4; dans ce cas Z doit appartenir à Z2(Z/4 P4).

Un exemple de formule quadrisécante pour les surfaces de P4 est donc:
les quadrisécantes rencontrant une droite fixe. Dans ce cas, on prend
Z Axe*a où a g A2(G( 1, 4)) est le cycle de Schubert des droites coupant
une droite fixe.

Dans la suite de cet article, on ne s'intéressera qu'aux formules tri-
sécantes pour une surface. On renvoie à [28] pour les autres cas.

2°) Platitude et équivalence rationnelle

La proposition 1 démontrée dans ce paragraphe est le cœur de l'article.
Elle permet de remplacer HilbJ S par HilbJ £0.

a) Comme d'habitude, si V est un sous-schéma du schéma H, on désigne

par [F] le cycle associé. Commençons par montrer le

Lemme 1. Soit Ü un ouvert de C contenant 0 et 1 et soit
U 0 — {0}. Soit H un schéma.

On se donne un sous-schéma réduit Z de H x U qu'on suppose

plat sur U ; soit Z son adhérence dans H x Ü. Si la fibre Z0 est

génériquement réduite, on a l'équivalence rationnelle dans H :

[ZJ ~ [Z0] - [(Z0)red].

Preuve. Vu ([14], prop. 1.4) et ([11], 1.9.5.9 et 1.9.5.10), Z est l'unique
sous-schéma relatif de H x Ü, plat sur Ü, dont la restriction à U est Z.

(De plus Z est réduit). Par définition de l'équivalence rationnelle, vu la

platitude de Z sur Ü, on a [ZJ — [Z0]. Mais Zx Zt et [Z0] [(Z0)red]

par hypothèse, ce qui démontre le lemme.
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Donnons maintenant une définition :

Définition 1. Soit U un ouvert de C et soit X/U un schéma relatif.

On dit que X/U est k-plat si le schéma de Hilbert relatif

HilbJ X/U

est plat sur U et réduit.

Remarque 1. Le cas le plus évident, qui nous intéressera principalement,
est celui où X/U est isomorphe à un produit F x U. Dans ce cas, on a

l'isomorphisme HilbJ X/U ~ (Hilb* F) x U. Ce schéma relatif étant un
produit, est plat. Il suffit donc de supposer Hilb* F réduit, ce qui est

toujours le cas si F est non-singulier (car alors HilbJ F est aussi non-
singulier) ou bien si F est une surface à singularités ordinaires de P4

(voir Annexe 1).

On peut de manière analogue montrer le

Lemme 2. Si X/U est un schéma relatif lisse, le schéma relatif
Hilb* X/U est également lisse, donc plat et réduit. Ainsi X/U est k-plat.

Preuve. Soit n: X -> U la projection et x un point de X. Il existe
un voisinage iZ (disons transcendant) de x et un isomorphisme V ^ U' x F
au-dessus d'un voisinage U' de tt(x), où F est non-singulier. Alors on a

HilbjU' ~ (Hilb* F) x U'; or Hilbkc F est non-singulier, d'où la lissité.

b) Nous pouvons maintenant énoncer et démontrer la

Proposition 1. Soit Ü un ouvert de C contenant 0 et 1 et soit
U Ü - {0}. Soit H Hilb* P*.

Soit X/Ü un sous-schéma relatif de PN x Ü. On suppose:
a) tout k-uplet curviligne dans la fibre X0 est limite de k-uplets curvilignes

dans des fibres Xx, avec X # 0, de X/U ;

b) Hilb* X0 est génériquement réduit;
c) le schéma relatif X/U est k-plat (défi 1

Alors on a l'équivalence rationnelle dans Hilb* P^ ;

[Hilb* XJ - [(Hilb* 2f0)red] [Hilb* JT0]

Preuve. Considérons le schéma relatif Z/U Hilb* X/U. Par l'hypothèse

c), Z est plat sur U et réduit. D'autre part Z est contenu dans le
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schéma relatif HilbJ X/U et ce dernier est fermé dans Hilb* PN x U. Par
définition de l'adhérence, on a donc l'inclusion

Z c= Hilb* X/Ü

C'est une inclusion de schémas puisque Z est réduit. On en déduit l'inclusion de

schémas entre les fibres :

(1) Z0 cz Hilbc X0

Maintenant l'hypothèse a) signifie précisément l'inclusion (HilbJ X0 )red cz Z.
Comme (HilbJ X0 )red est contenu dans la fibre en 0 de HilbJ PN x Ü,

on a donc l'inclusion

(2) (HilbUoLd <=Z0.

On a donc montré

(3) (HilbJ X0)red cz Z0 cz HilbJ

Or l'hypothèse b) assure que HilbJ X0 est génériquement réduit ; donc Z0
aussi, d'après (3). Les hypothèses du lemme 1 sont donc satisfaites pour Z
et l'on a ainsi, vu (3) :

[ZJ ~ [Z0] - [HilbcfcX0] - [(HilbJ 2f0)red]

Or par définition même, Zx (HilbJ X/U)1 HilbJ Xx. La proposition 1

est donc démontrée.

c) Nous allons donner pour l'instant comme application de cette proposition,
un corollaire technique qui peut être sauté en première lecture. Par
singularités ordinaires d'une surface S' dans P3 nous entendons uniquement
croisements normaux, points-triples et points-pince.

Proposition 2. Soit S' cz P3 une surface à singularités ordinaires,
de degré n. Alors pour tout cycle K dans A* (Al3 P3), de dimension 3,

le degré du 0-cycle

K.i* [Hilb3 S"]

est de la forme

«1« + «2 {^j + Û3 Q
où ax,a2, a3 sont des constantes ne dépendant que de K.
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(Comme toujours, i : Al3 P3 c> Hilbc3 P3 désigne l'injection canonique.)

Remarquons que Hilb3 S' est génériquement réduit par l'Annexe 2 : S' n'a

que des singularités ordinaires.

Preuve. Soit M la réunion de n plans en position générale dans P3,

tous transverses à S'. Soit f0 une équation de S7 et f2 une équation de M.

Considérons le sous-schéma relatif I/C de P3 x C défini par l'équation

où X parcourt C. On a bien sûr X0 S' et X2 M. Soit U l'ouvert
maximal de C tel que X/U soit lisse au-dessus de U. Il est non vide et

on peut toujours supposer que 1 lui appartient. Le schéma X/U est /c-plat

car il est lisse (lemme 2).

Soit ÜQ U u {0} et Ü2 U u {2}. Les lemmes 10 et 11 de l'Annexe 2

montrent que les hypothèses a) et b) de la proposition 1 sont vérifiées:

en effet localement au-dessus d'un voisinage de 0 ou 2, le schéma relatif X
est isomorphe aux schémas relatifs © ou II des lemmes 10 et 11. Cela
résulte de ce que S' et M n'ont que des singularités ordinaires. On applique
alors deux fois la proposition 1, en remplaçant l'une des deux fois 0 par 2

évidemment, et on trouve donc l'équivalence rationnelle :

On s'est donc ramené à montrer la proposition pour la réunion de n plans.
Soit P1, P2 Pn les plans dont la réunion est M ; soit k1, k2 kn des entiers
positifs tels que k1 + k2 + + kn 3 et soit I/fcl>fc2fen l'ensemble des triplets
simples ayant kt points sur Pt. D'après le lemme 10 (Annexe 2) le schéma

(Hilb3 M)red admet les adhérences Uklfk2_kn comme uniques composantes
irréductibles. Appelons «type» d'une telle composante l'ensemble des kt
non nuls. Ainsi (Hilb3 M)red est formé de

(X-2)f0 + Xf2 0

[Hilbc Xo] ~ [HilbJ XJ ~ [Hilb? X2]

soit encore

[Hilbc S'] - [Hilbc M]

J composantes irréductibles de type {1, 1, 1}

2 composantes irréductibles de type {2, 1}

n composantes irréductibles de type {3}
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De plus, deux composantes irréductibles de même type sont évidemment
rationnellement équivalentes dans Hilbc3 P3, comme on le voit en faisant

agir PGL(3) sur les triplets de plans. Ainsi,

où A, B et C sont trois cycles fixés dans l'anneau de Chow de Hilb3 P3 ;

d'où le résultat annoncé.

Remarque 2. Le lecteur adaptera sans peine la démonstration pour
montrer que pour tout cycle K e A'(Alk P3), de dimension k, le degré du
0-cycle K. i* [Hilb? S"] est de la forme

Soit S une surface de P4. La définition donnée en 1) des formules
/c-sécantes pour S oblige à connaître la classe d'équivalence de [Hilb? S]
dans l'anneau de Chow de Hilb? P4.

L'idée qu'on va utiliser est de construire un schéma relatif Z/C avec

fibre Zjl S, la fibre £0 ayant pour réduit la projection S' de S sur un
hyperplan générique H. On essayera alors d'arriver à l'équivalence rationnelle

[Hilb? S] ~ [Hilb? E0] et d'utiliser la proposition 1. Considérons maintenant

un schéma F. Si F est non-singulier, l'ouvert Hilbfef F des /c-uplets simples
est dense dans Hilb? F : car un k-uplet curviligne dans F est aussi contenu
dans une courbe non-singulière À située sur F ; on le déforme alors en k

points simples sur À. (Remarquer par contre que Hilb? F n'est en général

pas dense dans Hilbfc F; voir [15]).

Remarque 3. C'est justement la présence de composantes immergées dans

Z0 (de réduit S') qui fait qu'on a Hilb^ Z0 (ou Hilb^ 5') non dense dans

Hilb? Z0. En fait, on verra que Hilb? S' (qui est l'adhérence de Hilb?t S')

est seulement une composante irréductible de Hilb? £0, lequel scinde en

plusieurs composantes. Et c'est l'évaluation de la contribution de chacune

de ces composantes dans les formules /c-sécantes qui constitue l'essentiel de

la démonstration.

[Hilb3 M] [(Hilb3 M)red] B + nC

où les a{ ne dépendent que de K.

3°) Déformation de S en Z0 ; étude de Hilb? Z0
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a) Commençons par décrire un procédé général de déformation d'un sous-

schéma de P*\

Soit Z c PY un schéma réduit et Z* sa projection sur un hyperplan H

par un point générique co. D'après ([14], prop. 1.4) ou encore ([13], III, ex. 9.8.3),

il existe un sous-schéma réduit Jf de PlY x C, plat sur C, avec pour fibres

Z et (^o)red Rappelons pourquoi: On prend pour cela un

système de coordonnées homogènes (x0 : xx :... : xN) pour lequel H ait pour

équation xv 0, le point co étant le point (0:0 :... : 0:1). Le schéma a la

structure — réduite — de l'adhérence dans Pv x C de l'image de Z x C*

par le plongement

Z x C* PY x C*

((x0 : x± :... : xN_ ±
: xN), X) i— ((x0 : xx :... : xN_ x. XxiY), X).

En général, la fibre if 0 possède des composantes immergées (voir [13], p. 260).

Remarque 4. Si on pose Ü C et U C*, le schéma relatif FFjU
est plat puisqu'il est isomorphe au produit Z x U.

b) Appliquons ce qui précède à une surface S à singularités ordinaires de P4.

On la projette génériquement en S' sur un hyperplan H. La sous-variété S'

possède une courbe-double F, des points triples M±,..., Mt et des points-
pinces Pl5..., Pv. Il s'agit d'abord d'établir la structure nilpotente de E0,
sachant que (Z0)red S'. Nous pouvons énoncer deux propositions.

Proposition 3. Avec les notations précédentes, on a l'égalité des sous-
schémas de P4 :

S0 S' u r(1) u M[2) u u M{2)

où pour V ci P4, V{l) désigne le i-ème voisinage infinitésimal de V dans P4.

De plus, S' (Z0)red Zö n H.

Dans le dessin ci-après les nilpotents sont dans P4; on a représenté
les doublets (dans P4) par des traits courts et les triplets par des traits
courbés plus longs.

Avant d'énoncer la proposition suivante, donnons une définition. Celle-ci
est motivée par le fait, comme on l'a dit, que pour un schéma quelconque F,
l'ouvert Hilbfcf F n'est en général pas dense dans HilbJ F.

Définition 2. Appelons /c-uplet « double » (resp. « triple »), une réunion
disjointe de points simples et de doublets de support un point (resp. points
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simples, doublets de support un point et triplets curvilignes de support un
point).

Alors à défaut de pouvoir déformer tout /c-uplet curviligne d'un schéma F
en /c-uplets simples, on peut espérer le déformer en k-uplets doubles, voire
triples. C'est justement ce qu'affirme la proposition suivante (en i) pour le

schéma £0.

Proposition 4. Soit E/C le schéma relatif associé à une surface à

singularités ordinaires S de P4, dont S' est la projection sur Vhyper-

plan H.

i) Tout k-uplet curviligne dans E0, de support un point-triple {M}, est limite

(pour k^4) de k-uplets triples dans E0.

Tout k-uplet curviligne dans Z0 de support un point-pince {P}, est

limite (pour k^3) de k-uplets doubles dans £0.
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Tout k-uplet curviligne dans Z0, de support un point de la courbe double T

de S', est limite (pour k^3) de k-uplets double dans E0 •

ii) Tout k-uplet curviligne dans Z0 est limite de k-uplets curvilignes dans des

fibres de L/C avec X # 0.

iii) Hilb3 Z0 est réduit au voisinage d'un triplet curviligne t de support un

point-triple {M}, lorsque t fi S' (£0)red n H.

Hilb2 Z0 est réduit au voisinage d'un doublet d de support un point-

pince {P}, lorsque d fi S'.

Hilb2 Z0 est réduit au voisinage d'un doublet d de support un point
de T, lorsque d fi S'.

Preuves des propositions 3 et 4. Il s'agit essentiellement, par des calculs

en coordonnées, de se ramener à l'étude de modèles locaux pour £0,
d'abord au voisinage de la courbe double T, puis d'un point triple M et

enfin d'un point pince. Or cette étude pour les modèles locaux a été faite
dans [24]. Voir l'Annexe 3 pour tous les détails de calcul.

II) Trisécantes dans P4: la théorie

Soit S une surface de P4 à singularités ordinaires. Notons n son degré,
d le degré de la courbe double apparente et t le nombre de points-
triples apparents, dans une projection générique sur un P3.

On regarde le diagramme, où les flèches sont les injections canoniques
et les dimensions sont entre parenthèses :

(9) Al3 P4 cfi Hilb3 P4 (12)

d

Hilb3 5 (6).

Le but de ce § II est de montrer la

Proposition 5. Soit S une surface de P4, d'invariants (;n,d,t).
Pour tout cycle Z dans A3(Al3 P4), la formule trisécante donnant le degré
du 0-cycle Z.i* [Hilb3 5] est de la forme
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T(S) axn + a2 + a3 + at + d(ßn + y)

où al9 a2, a3, a, ß et y sont des constantes ne dépendant que de Z.

1°) Composantes de Hilbc3 £0

a) Notons S' la projection de S sur un P3 générique de P4. S' admet une
courbe double F avec t points-triples M1 Mt et v points-pince. En I.3.b on
a construit un schéma relatif E/C avec S et (E0)red S'. De plus

(proposition 3), on a

où K(I) désigne le i-ème voisinage infinitésimal de V dans P4 ; on a

E0 n P3 S'.

Nous allons détailler les différentes composantes du schéma (Hilb3 E0)red.

Notation 1. Notons S21 la sous-variété (localement fermée) de Hilb3 P4

formée des triplets t d y m où

d est un doublet de P4 de support un point de T,

m est un point de S' — F.

Soit S2i l'adhérence de S21 dans Hilb3 P4.

(*) E0 S' u r(1) u M[2) u u M\2)
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Notons SJ3 pour j -1,2... tla sous-variété de Hilb3 P4 des triplets

curvilignes E, de P4, de support {Mj}.SoitS3 leur réunion (disjointe).

Remarque 5. Bien sûr, S21 et S3 sont contenus dans (Hilbc3 S0)red

d'après la structure nilpotente même de Z0 (*).

b) On a la

Proposition 6.

i) (Hilbc3 Z0)red est réunion de (Hilb3 S')TQd, de S21 et des SJ3 (j 1, 2 t).

ii) Hilb3 E0 est génériquement réduit le long de ces composantes.

Preuve, i) Soit t un triplet curviligne contenu dans £0. Si t est contenu

dans l'hyperplan P3, comme I0nP3 S", on a te (Hilb3 S")red. Si t 9^ P3,

le support de t ne peut être formé de trois points simples, puisque (£0)red S'

et S' cz P3. Donc Supp t rencontre T, car en dehors de T, les faisceaux

structuraux de S' et E0 sont égaux.

Premier cas. Supp t {a, b} avec aeT et t double en a. Si b $ F,

par définition, on a teS21. Si b e T, on le «bouge» en b' e S' — T et

donc t appartient à S21

Deuxième cas. Supp t {a} où a e F. Si a est l'un des points-triples Mj9
on a te S3. Si a n'est pas l'un des points Mj, c'est soit un point-pince
soit un point générique de F. Dans les deux cas, t est limite de triplets
de support formé de deux points: en effet cela résulte de la proposition 4.

ii) La composante Hilb3 S7 est génériquement réduite d'après les lemmes 10

et 11 de l'Annexe 2 puisque S' a P3 n'a que des singularités ordinaires.
Par ailleurs S | est génériquement réduite d'après la proposition 4 iii) : un

triplet générique de S{ n'est pas dans H. Enfin, montrons que S21 (donc S21

est génériquement réduit. Soit dum un triplet générique de S21; ainsi le

support de d n'est pas un point triple et d £ H. Alors Hilb2 £0 est réduit
au voisinage de d par la proposition 4 iii); d'où S21 réduit au voisinage de

dum.

2°) Contribution de ces composantes dans T(S)

Soit Z g A3(Âl3 P4) un cycle fixé. Nous allons montrer trois lemmes,
avec les notations précédentes.

Lemme 3. Le degré du 0-cycle Z .i* [Hilb3 S"] est de la forme
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a^n -F 0-2 + a3

où a1,a2 et a3 ne dépendent que de Z.

Lemme 4. Le degré du 0-cycle Z. i* [S3] est de la forme at où

a ne dépend que de Z. (S3 désigne la réunion disjointe des Sj3 pour
j= 1,2...t.)

Lemme 5. Le degré du 0-cycle Z .i* [S2i] est de la forme d(ßn + y)
où ß et y ne dépendent que de Z.

a) Prouvons le lemme 3. Regardons le diagramme commutatif où les flèches

sont les injections canoniques et les dimensions entre parenthèses :

Nous voyons par examen des dimensions que Al3 P4 et Hilb^ P3 ne se coupent

pas proprement dans Hilb3 P4.

Nous aurons besoin du théorème de l'intersection résiduelle [7] [17]
sous forme de la formule de Fulton-MacPherson [6], qu'on énoncera ainsi:

Théorème (Fulton-MacPherson). Soit Y une sous-variété non-singulière
de la variété non-singulière X. Soit A une sous-variété de X et

I A n Y. Considérons le diagramme commutatif où les flèches sont les

injections canoniques :

(9) Al3 P4 i Hilbc3 P4 (12)

t"
(7) Al3P3 <4. Hilb3 P3 (9)

t
Hilb3 5" (6).

A <4 x
t«

i c4 y
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Si I est localement intersection complète dans A et si

dim I dim A + dim Y - dim X + r

alors pour tout cycle oc dans Y, le cycle dans A est égal à

j#(Cr.i*oc) où Cr est fixé dans Ar(I).

L'Annexe 7 montre que Al3 P4 et Hilbc3 P3 se coupent schématiquement

en Al3P3. Appliquons alors la formule de Fulton-MacPherson à

a [Hilb3 S"] dans A'(Hilb3 P3). Comme ici r 1, on obtient

iX°c i*[Hilb3S"] j,C

où C CL.î* [Hilb3 S'] avec C1 fixé dans A1 (Al3 P3). Par suite, par la

formule des projections, on a dans A (Al3 P4) :

Z. i* [Hilb3 S"] Z jJfZ. Ci. f* [Hilb3 S']).

Mais K j*Z.C\ appartient à AfiAI3 P3) et donc par la proposition 2:

deg Z. i* [Hilb3 S'] deg [Hilb3 S']

est de la forme

apn + a2 ^ + a3 ^
où a1, a2 et a3 sont des constantes. Le lemme 3 est donc prouvé.

b) Prouvons le lemme 4. Pour cela nous avons besoin d'un lemme auxiliaire :

Lemme 6. Désignons par P l'intersection ensembliste de S{ (défini
dans ce paragraphe en l.a) et de Al3 P4 dans Hilb;? P4.

Alors génériquement, S{ et Al3 F4 se coupent transversalement ; par suite

P [Si] [P]
Remarquer que P est isomorphe à P3 par le choix de l'axe du triplet

passant par M-}.

Preuve du lemme 6. C'est un simple calcul en coordonnées, comme on en
fera beaucoup dans l'Annexe: soit E,0 un triplet aligné de support {M;},
d'axe transverse à P3 (l'hyperplan qui contient S'). Dans un système
inhomogène de coordonnées (x, y, z, u) centré en Mj, S' a pour équations

xyz + 0, u 0

et Axe est engendré par un vecteur de coordonnées (a, ß, y, 8). Puisque
é,o est supposé générique dans P, on se ramène äa=ß y 5 l
et l'idéal de est alors
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J0 (x3, y — x, z — x, u — x).

Une carte de Hilbf P4 en £,0 est donnée par

(a, b, c, a1,b1,c1,a2,b2,c2,a3,b3,c3)

correspondant à l'idéal voisin :

I (x3 + ax2 + bx + c, y — a + ö1x2 + 61x + c1, z — x + a2x2+ b2x + c2,

u — x + a3x2 + b3x + c3).

Dans cette carte, Al3 P4 s'exprime par a1 a2 a3 0 et S{ par

— d'une part c1 c2 c3 0 car la courbe sur laquelle est le triplet
curviligne doit passer par 0,

— d'autre part a b — c 0 car le support doit être {0}. Cela termine
la démonstration du lemme 6.

Nous aurons besoin de rappeler la proposition suivante (montrée en [25]).
C'est une conséquence facile du théorème de Leray-Hirsch, car

Axe : Alk PN G( 1, N)

est une fibration de fibre type Pfe.

Proposition 7. Soit i un entier et 34? l9 34? 2 34? f des hyperplans
de FN en position générale. Pour k ^ i, soit Ht la sous-variété de

Alk PN formée des k-uplets alignés E, avec £, n 34?
p ^ 0 pour 1 < p ^ i.

Alors on a Fégalité dans A'Q(Alk PN) des sous-espaces vectoriels

A lQ(Alk PN) et © Axe*A lQ \G). [if.]
j=o

(On note A'Q A' (g) et G G(l, N)).
z

Dans le cas qui nous occupe (k 3), on a donc en fixant 34? l9 3tf29 3#?
3

trois hyperplans de P4 en position générale, l'égalité :

A3Q{Al3 P4)

Axe*A q(G) © Axe*Ag(G). [iJJ © Axe*A *(G). [JJ2] © Q [H3]

Or il est bien connu par la décomposition de Schubert (voir par exemple [21])

que A\G( 1, 4)) est donné par:

— A3(G) Z(0, 4) © Z(l, 3) où
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(0, 4) droites passant par un point fixe 0 de P4,

\ (1, 3) droites contenues dans un hyperplan H' de P4 et coupant

une droite A' de H'.

— A2(G) Z(l, 4) © Z(2, 3) où

(1, 4) droites coupant une droite À" de P4,

\ (2, 3) droites contenues dans un hyperplan H" de P4.

— A'(G) Z(2, 4) où

(2, 4) droites coupant un plan fixe n de P4.

Pour montrer l'assertion du lemme 4, il suffit de la montrer pour Z
décrivant une base de A3(Al3 P4). Mais on a (lemme 6) Z. i* [SJ3] Z. [J7].

Or dans la base énumérée ci-dessus de Aq(A13 T?4), seul le premier cycle

Axe*(0, 4) a une intersection non vide avec P. En effet,

Notons alors a le degré d'intersection Axe*(0,4). [J7]. (On peut se

convaincre que c'est 1 par un calcul en coordonnées, mais c'est inutile pour
la suite). Cela correspond à l'unique triplet aligné dans P4 de support

{Mj} et d'axe OMj. On a donc deg Axe*(0, 4). i* [SJ3] a d'où

deg Axe*(0, 4). i* [S3] at puisque [53] ^ [>SJ3]

j-1
L'assertion du lemme 4 est prouvée pour Z décrivant une base de

A3(Al3 P4), donc le lemme 4 est démontré.

c) Prouvons le lemme 5. Nous aurons besoin comme en b), d'un lemme
auxiliaire :

Lemme 7. Désignons par I Tintersection ensembliste de S21 (défini
dans ce paragraphe en La)) et de Al3 P4 dans Hilbc3 P4. Alors géné-

riquement, S21 et Al3 P4 se coupent transversalement ; par suite P [S21]
[/] dans A'(Al3 P4).

La preuve du lemme 7 est un calcul en coordonnées comme le lemme 6 :

voir l'Annexe 4.

Axe*(l, 3). [I7] 0 car Mj $ H'

car Mj£
car M x

car Mj$ 34?!

car Mj^ 34?!

Axe*(l, 4). [HJ [J7] 0

Axe*(2, 3). [HJ [P] 0

Axe*(2, 4). [ff2] [P] 0

[H3] [L] « 0
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D'après ce lemme, pour prouver le lemme 5, il suffit de montrer que pour
tout cycle Z dans A3((Al3 P4), le degré du 0-cycle Z. [/] est de la forme
d(ßn + y) où ß et y ne dépendent que de Z. Il suffit donc de le vérifier

pour Z décrivant une base de Aq(A13 P4). Or une telle base a été explicitée
en b), comme conséquence de la proposition 7. On utilise donc les mêmes

notations qu'en b).

Il s'agit de voir que les degrés des 0-cycles

/ i) Axe*(0, 4). [/]
l ii) Axe*(l, 3). [/]

iii) Axe*(l, 4). [tfj.17]
iiv) Axe*(2,3).[H1].[I]

\v) Axe*(2, 4). [#2] [/]
vi) [H3].[/]

vérifient l'assertion du lemme 5.

Montrons-le rapidement cas par cas, toujours avec les notations de b).

L'hyperplan de P4 contenant la projection S' est noté P3.

i) Les axes des triplets éléments de I sont dans P3, donc ne peuvent
rencontrer un point fixe 0 de P4. Le premier des degrés cherchés est donc 0.

ii) Les axes des triplets de I sont dans le plan H' n P3 de P3 et passent

par le point fixe À' n P3 de ce plan. Donc il y a d possibilités pour le choix
d'un point-double et il reste n — 2 autres possibilités pour le point simple.
Dans ce cas le degré cherché est d(n — 2).

On ne tient pas compte d'une multiplicité éventuelle, car cela ne change rien

à l'énoncé du lemme.

iii) Soit 0 A" n P3 et P x n P3 (où est l'hyperplan qui définit
le cycle H^). Les axes des triplets de / doivent passer par O et les triplets
avoir un point au moins sur P. Deux cas à distinguer :

— ou le point simple est sur P n S' et le point-double a son support
sur T. Il y a donc nd choix possibles puisque deg F d ;

— ou le point-double a pour support l'un des d points de P n F et il
reste n — 2 autres possibilités pour le point simple. (En plus, dans ce cas

la multiplicité est 2).

La somme est bien de toute façon de la forme d(ßn + y).



Dans l'un comme l'autre cas de figure ci-dessus, les petits traits représentent
les doublets dans P4, de support T.

iv) Soit P H" n P3 et P1 n P3. Les triplets doivent donc être dans

P et avoir au moins un point sur la droite À P n P1. Il y a donc

n possibilités pour le point simple, d'où dn possibilités pour le choix d'un
tel triplet.

v) Les axes des triplets de I doivent couper la droite fixe À n n P3

et les triplets doivent avoir deux points sur et j4?2. Soit Pt n P3.

Comme les triplets de I ne sont pas formés de trois points distincts, le

support {0} du point-double doit être ou sur P1 ou sur P2. Supposons

qu'il soit sur P1 ; comme le degré de F est d, cela donne d possibilités
de choix pour 0. Mais alors la droite À et le point 0 engendrent un plan P.

La droite P n P2 coupe S' en n points dans P parmi lesquels est choisi le
troisième point du triplet; donc il y a dn solutions et par symétrie entre
P1 et P2, 2dn au total.

vi) Soit Pt Jf f n P3. Les triplets de I doivent avoir un point sur chacun
des trois plans Pl9 P2, P3; mais comme ces triplets ne sont pas simples,
la partie doublet est obligatoirement à support sur une des droites Pt n P •.

Or aucune de ces droites ne coupe F ; l'intersection est donc 0.
Le lemme 5 est ainsi démontré.
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d) Conclusion

Soit S une surface de P4 à singularités ordinaires et E/C le schéma

relatif associé défini en I.3.b. Posons Ü C et U C*. Nous allons voir
que les hypothèses de la proposition 1 sont satisfaites pour le schéma relatif
Z/C.

Pour a), cela résulte de la proposition 4ii). Pour b), cela résulte de la

proposition 6 ii), chaque composante de Hilb3 X0 étant génériquement réduite.
Enfin le schéma X/C* est isomorphe au produit S x C* par construction même

(remarque 3). Donc par la remarque 1, X/C* est /c-plat, puisque S c= P4

n'a que des singularités ordinaires. L'hypothèse c) de la proposition 1

est donc satisfaite.

La proposition 1 donne alors l'équivalence rationnelle dans Hilb3 P4 :

[Hilb;? S] ~ [Hilb' Z0]

Or par la proposition 6 i), on a l'égalité des cycles :

[Hilb' Z0] [Hilb' S'] + [S^] + [S3]

D'où pour n'importe quel cycle Z de A3(Al3 P4), l'égalité des 0-cycles :

Z. i* [Hilb3 S] Z. i* [Hilb3 S"] + Z. i* [S^] + Z. i* [S3]

Des lemmes 3, 4 et 5 résulte alors aussitôt la proposition 5 que l'on cherchait
à prouver.

III) TrISÉCANTES DANS P4 : LES CALCULS

Soit S une surface de P4 d'invariants n, d, t (notations du § II). On va
donner deux formules trisécantes pour S, supposée à singularités ordinaires
dans P4.

1°) Tangentes à S recoupant S et une droite fixée.

Nous cherchons le degré du 0-cycle

[0] Axe*a2. Z* [Hilb3 S]

où comme d'habitude, i : Al3 P4 c» Hilb3 P4 est l'injection canonique. Ici,
@ a Al3 P4 est l'hypersurface des triplets alignés non simples et a2 (1, 4)

est le cycle de Z2(G(1, 4)) des droites de P4 coupant une droite fixe À.

D'après la proposition 5, ce nombre est de la forme
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T(S) a^n + a2 + a3 + at + d{ßn + y).

a) Avant de commencer le calcul des six coefficients, regardons le cas où S

est singulière avec 8 points-doubles impropres. Soit 0 l'un de ces points.

Il engendre avec À un plan P recoupant S en n — 2 autres points et non pas

n — 3 (voir IV.l.c.i). Or chacune des n — 2 droites joignant 0 à l'un de

ces n — 2 points est une droite coupant S suivant un triplet non simple

(car double en 0). C'est une « fausse » tangente à S. Donc il faudra, pour
avoir le nombre de «vraies» tangentes à S, retrancher de T(S) ces 8(n —2)

fausses tangentes par les points-doubles de S. Mais il faut le faire bien sûr

en comptant la multiplicité.
Un calcul montre alors (Annexe 8) que cette multiplicité est 2. C'est

tout à fait analogue au fait que la classe d'une courbe plane avec 8 points-
doubles ordinaires est n(n— 1) — 28 puisqu'on doit retrancher les droites,

comptant deux fois, qui passent par les points-doubles.

b) Soit alors S la réunion de S et d'un plan P générique de P4. Essayons
d'évaluer T(S). D'après le lemme 9 (Annexe 1) Hilbc3 S se décompose en

quatre composantes (réduites)

iHilb3

S

Hilb2 S0 x P0

S0 x Hilb2 P0

Hilb3 P

où S0 S — P et P0 P — S; la barre est l'adhérence dans Hilb3 P4.

On a donc, si i : Al3 P4 c> Hilb3 P4 est l'injection canonique,

i* [Hilb3 5]

i* [Hilb,? S] + i*[Hilb2S0xP0] + i* [S0 x Hilb2 P0] + i* [Hilb2 P]
Pour obtenir T{S), on intersecte avec \ß~\ Axe*a2 dans A'(Al3 P4). Le premier
terme va donc donner par définition T(S) et le dernier T(P). Le troisième
terme, lui, va donner 0 car une droite dans P ne recoupe pas une droite
fixée générique.

Reste à voir la contribution du deuxième terme. Rappelons qu'on cherche
des triplets non simples. Deux cas sont à distinguer :

— ou le point-double est sur Set le point simple sur P,



28 P. LE BARZ

— ou deux points simples sont sur S et le point-double provient de la

rencontre avec P en l'un des points-simples.

4/
Deuxième cas

Dans le premier cas, le nombre cherché est n(n— 1). En effet, il s'agit
du nombre de tangentes à S coupant un plan P fixé et une droite fixée.

Par la formule de Pieri, on a dans Ä(G( 1, 4)) :

(I5 4). (2, 4) (0, 4) + (1, 3).

Il s'agit donc du nombre de tangentes à S passant par un point fixe 0
plus le rang (i^) d'une section hyperplane. C'est donc v + 28 d'une part
(il faut bien compter, et avec multiplicité 2, les 5 fausses tangentes à S

passant par 0 et l'un des 8 points-doubles impropres de S) et d'autre part
p1 n(n — 1) — 2d ([34], p. 190) car une section hyperplane de S a degré n

et à points-doubles apparents.
Soit au total n(n— 1) car 2d v + 28 (cf. Annexe 6). La multiplicité

est 1 car P est choisi générique.

Dans le deuxième cas, vu ce qu'on a dit au début de ce paragraphe,
il s'agit de « fausses » tangentes à S par l'un des n points d'intersection de P

et S. Donc on doit les compter 2n(n+l — 2) puisque S est de degré n -f- 1.

Au total, la contribution du deuxième terme dans T(S) est 3n(n— 1).

On a donc montré la relation

T{S) T(S) + T{P) -h 3n(n — 1),

soit en utilisant le lemme 13 de l'Annexe 5 :

Premier cas
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a^n+1+ a2^ + 03 ("3 ^ + ^t + d) + (d + ") (ß(" +!) +

axn + a2 (^j + a3 ^ + at + d($n + y) + + 3n(n-l).

(Il vient T(jP) a1 car alors n 1, d t 0). Or le lemme 12 (Annexe 5)

permet d'identifier les coefficients ce qui donne :

pour d: a + ß 0

f — y a2 — a3 + 6 (on a fait n — 1)
pour n.

+ 2ß + y 0 (on a fait n 1).

Il reste à trouver trois autres équations. On remarque tout d'abord que ni

un plan, ni une quadrique de P3 plongée dans P4 n'ont de trisécante

rencontrant une droite fixe. On a donc T 0 pour ces deux surfaces, soit

ax 2ax + a2 0. Ensuite, la surface S(2, 2), intersection complète de deux

hyperquadriques de P4, vérifie T 0; car pour raison de degré, une tri-
sécante est l'une des 16 droites qu'elle contient et aucune ne rencontre
une droite fixe. Mais on connaît n, d, t (Annexe 6) d'où

4a1 + 6a2 + 4a3 + 2(4ß + y) 0

Ces six équations ensemble forment un système inversible dont la solution est :

0 a2 0 a3 — 6

a — 6 ß 6 y —12

On a donc démontré (vu a)) le

Théorème 1. Soit S une surface à singularités ordinaires de P4,
d'invariants n, d, t. Alors le degré du 0-cycle

[ß~\ Axe*<j2 • i* [Hilb3 5]

(nombre de tangentes à S recoupant S et une droite fixe) est

Et les 8 points-doubles impropres éventuels de S contribuent de 28(n-2)
dans ce nombre.
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2°) Tangentes d'inflexion coupant un plan fixé

Nous cherchons cette fois le degré T(S) du 0-cycle

\ß~\ Axe*^ i* [Hilbc3 S]

Cette fois, ZT c= Al3 P5 est la sous-fibration en 0 c Hilb3 P1 formée des

triplets alignés de support un point. {3T0 a la structure d'une cubique gauche
dans Hilb3 P1 ~ P3). Le cycle a1 de A1(G(1, 4)), encore noté (2, 4), est formé
des droites coupant un plan n fixé.

Toujours d'après la proposition 5, le nombre T(S) est de la forme

a) Avant de chercher les six coefficients, regardons le cas où S est singulière
avec 5 points-doubles impropres.

Soit 0 l'un de ces points. Chacun des plans tangents Px (resp. P2)
à S en 0 coupe le plan n fixé en un point m1 (resp. m2). Les deux

triplets alignés de support {0} et d'axe Oml (resp. Om2) sont dans S et

interviennent donc dans T(S). Cependant, ces droites sont de « fausses »

tangentes d'inflexion. L'Annexe 8 b) montre qu'elles comptent avec multiplicité 3.

On devra donc retrancher de T(S) le nombre 68 de façon à obtenir le

nombre de « vraies » tangentes d'inflexion. Ceci est analogue au fait que pour
une courbe plane ayant seulement 8 points-doubles ordinaires, on doit
retrancher 68 à 3n(n —2) pour avoir le nombre de « vrais » points d'inflexion

b) Soit, comme en 1), S la réunion de S et d'un plan P. On obtient,
avec les mêmes notations :

i* [Hilb3 S] + i* [Hilb2 S0 x P0] + i* [50 x Hilb2 P0] + ** [Hilb3 P]

Pour obtenir T(S), on intersecte avec \ß"\. Axe*ax ; le premier terme

va donc donner par définition T(S) et le dernier : T(P) a1. Reste à voir
la contribution des deuxième et troisième termes.

D'après a), elle est de 3n pour chacun d'eux. En effet, pour chaque point
d'intersection 0 de S et P, il y a deux triplets alignés de support {0}
coupant un plan fixe k : l'un dans T0S et l'autre dans P ; et chacun compte,

vu a), avec la multiplicité 3. On a donc montré la relation

([34], p. 78).

i* [Hilb3 S]
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T(5) T(S) + ax + 6n,

soit comme précédemment :

afn + 1) + ^2^2^ + "3 + oc(f + d) + (d + ri) (ß(n+ l) + y)

axn + a2 + a3 (*^J 4- at + d(ßn + y) + a1 + 6n

Grâce à l'Annexe 5, on peut identifier comme précédemment en d et n,

d'où

a + ß 0, — y a2 — a3 — 6 et a2 4- 2ß + y 6

comme équations.

Il reste à en trouver trois autres. La surface S(2, 2) contient 16 droites

dont aucune ne coupe un plan fixe ; donc T(S(2, 2)) 0. D'où comme plus
haut: 4a1 4- 6a2 4- 4a3 4- 2(4ß + y) 0. Enfin, par un calcul énumératif

simple (Annexe 9), on a T(S(2, 3)) 60 et T(S(2, 4)) 192 d'où deux
dernières équations :

6a1 4- 15a2 4- 20a3 4- 6(6ß + y) 60 car on connaît (n, d, t)

8ax 4- 28û2 4- 56a3 4- 12(8ß + y) 192 pour ces surfaces (Annexe 6).

Ces six équations ensemble forment un système inversible dont la solution est

a1 — 3 a2 — 6 a3 12

a 6 ß=—6 y 24

On a donc démontré, vu a), le

Théorème 2. Soit S une surface à singularités ordinaires de P4,

d'invariants n, d, t. Alors le degré du 0-cycle \ßT] Axe*«?!. z* [Hilb;? S]
(nombre de tangentes d'inflexion à S coupant un plan fixe) est

n(n — 4) (2n — 1) + 6(t-d(n-4)).
Et les 8 points-doubles impropres éventuels de S contribuent de 68
dans ce nombre.
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Deuxième partie: P5, P6, P7

IV) TrISÉCANTES DANS P5

Soit F une surface non-singulière de P5. Outre les invariants n, d, t
de F comme dans P4, soit ô le nombre de points-doubles impropres
apparents de F, i.e. le nombre de points-doubles impropres de la projection
V de F sur un P4 générique de P5.

Nous allons voir au paragraphe 1 que toute formule trisécante pour F
dans P5 est de la même forme que pour V dans P4, avec un terme
supplémentaire b(un + v) où u et v sont des constantes.

On en déduira au paragraphe 2 trois formules trisécantes dans P5 :

les tangentes d'inflexion de F, les tangentes à F recoupant F ainsi qu'un P3

fixé, les trisécantes à F coupant un P2 fixé.

1°) Retour à P4

a) Soit F une surface non-singulière de P5 et projetons-la génériquement
en V sur un hyperplan H. Par le procédé de construction de I.3.a, on
voit qu'il existe un schéma relatif O/C avec fibres

Oq F et (<D0 )red V'.

On peut énoncer les deux propositions suivantes, dont les démonstrations
sont analogues — mais plus simples — à celles des propositions 3 et 4,

en ce sens qu'il suffit de se ramener à un modèle local, comme dans

l'Annexe 3. (Ce modèle local correspond à F formé de deux plans disjoints
dans P5, soit V formé de deux plans transverses dans H.) Nous laissons les

détails au lecteur; on peut aussi consulter [23] où la situation est tout à fait
analogue.

On désignera les points singuliers de V par Nl9 N2,—,

Proposition 8. Avec les notations précédentes, on a l'égalité de sous-

schémas de P5 :

O0 F u N[1} u u N^
où N\1] désigne le premier voisinage infinitésimal de Nt dans P5.

De plus, V' (®0)red O0 n H.
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Proposition 9. Soit (D/C le schéma relatifassocié à V comme ci-dessus.

Alors

i) Pour k ^ 3 tout k-uplet curviligne dans <D0 de support un des points

singuliers {N}de V' est limite de k-uplets doubles dans 3>0 (nota-

tions de la définition 2).

ii) Tout k-uplet curviligne dans >0 est limite de k-uplets curvilignes dans des

fibres de O/C avec X ^ 0.

iii) Hilb2 O0 est réduit au voisinage d'un doublet d de support un point

singulier {N} lorsque d fi V.

Ceci étant, afin d'étudier les composantes irréductibles de Hilb3

nous donnons la

Définition 3. Pour j 1, 2,..., 5 notons Uj l'adhérence dans Hilb3 P5

de la partie Uj formée des triplets d u m où

d est un doublet de P5 de support {Nfi
m est un point simple de V' — {Nfi

Bien entendu, Uj est dans (Hilb3 ®0)red, d'après la structure nilpotente de ®0

donnée par la proposition 8. On a alors la

Proposition 10.

i) (Hilb3 ®o)red est réunion des Uj et de (Hilb3 V')red;

ii) Hilb3 O0 est génériquement réduit le long des Uj et Hilb3 V'.

Preuve.

i) Soit t un triplet curviligne contenu dans <D0. Si t est dans H, comme
H V\ on a t g (Hilb3 V')XQà. Si maintenant t n'est pas dans H,

le support de t ne peut être formé de trois points distincts; il contient
forcément un des points Nj9 car en dehors de ces points, on a

égal à Ov,. D'autre part, toujours puisque t fi H, la multiplicité de t en
l'un des Nj est strictement plus grande que 1. Si le support de t est réduit
à {Nj}, d'après la proposition 9 i), on a teUj. Sinon, Supp t {Nj,m}
où m e V — {Nfi Les multiplicités de t en Nj et m sont 2 et 1 ; ainsi

teUj.
ii) Hilb3 V' est en fait réduit d'après l'Annexe 1. Si maintenant dum

Uj est générique, on a d fi H, d'où Hilb2 <D0 réduit au voisinage de d

(proposition 9 iii) ; par suite Uj est réduit au voisinage de d u m. La
proposition 10 est ainsi prouvée.
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Rappelons alors le diagramme

(11) Z/3P5 i Hilb3 P5 (15)

t
Hilbc3 (6)

où les dimensions sont indiquées entre parenthèses.
Une formule trisécante pour V dans P5 exprime le degré du 0-cycle

Z. ï* [Hilbc3 F]

où Z est un cycle de A2(Al3 P5) fixé. Nous allons voir en d) qu'il suffit
d'évaluer le degré de Z. i* [Hilb3 O0], soit d'après la proposition qui précède :

Z. i* [Hilbc3 F] + X z i* lÛjl -

b) Evaluation de Z. i* [Hilb3 F]
Cette évaluation est analogue à celle effectuée en II.2.a. Comme F

est contenu dans P4, regardons le diagramme commutatif

(11) Al3 P5 i Hilb3 P5 (15)

Ij t»

(9) 4Z3P4 <4 Hilb3 P4 (12)

t
Hilb3 V(6)

où les flèches sont les injections canoniques. Par l'Annexe 7, Al3 P4 est

intersection schématique de Al3 P5 et Hilb3 P4.

Or Hilb3 F peut être considéré comme sous-variété de Hilb3 P4 ;

appliquons alors la formule de Fulton-MacPherson (II.2) à a [Hilb3 F] dans

Z'(Hilb3 P4). On obtient

i*u*a i* [Hilb3 F]
où C f* [Hilb3 F] c1 avec cx dans A1(Al3 P4). Par suite, par la formule
des projections, on a dans A\Al3 P5) :

Z. i* [Hilb3 F] cx. f* [Hilb3 F]).
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Mais j*Z.cx est un cycle fixé dans P4) et donc

deg Ci. [Hilb3

représente une formule trisécante pour la surface de P4. Ce nombre

est donc (proposition 5) de la forme

axn -h a2 + a3 + at 4- d(ßn + y)

où n, t et d sont les invariants de V (donc de V') et al9 a2, a3, a, ß et y

des constantes.

c) Evaluation de Z i* [Uj]
Pour cela, fixons j entre 1 et 8 et soit N Nj,U U-y Soit I

l'intersection U n Al3 P5 dans Hilbc3 P5. La sous-variété /, de dimension 2, est

formée des triplets alignés de P5 dont l'axe passe par N, doubles en N
et avec un troisième point sur Y.

Lemme 8. L'intersection U n Al3 PD est génériquement transverse dans

Preuve. C'est un simple calcul en coordonnées ; voir l'Annexe 4.

Le lemme montre ainsi l'égalité /* [L/] [/] dans A9{Aï5 P5).

Maintenant, pour connaître P [Lr] Z, il suffit évidemment d'évaluer [/] Z pour Z
décrivant une base de Aq(A13 P3). Or la proposition 7 en donne une

explicitement. Soit ± et Jf2 deux hyperplans de P3 et soit [Hx] et

\_H2J les cycles associés dans A1{Al3 P5) et A2(Al3 P5). On a l'égalité des

espaces vectoriels:

Aq{A13 P5) Axq*Aq{G) © Axe*Zq(G). [ifj © Axe*riQ(G). [iî2]
où G G(l, 5). Distinguons alors trois cas.

i) Z g Axe*Zg(G)

Une base de A2(G) est formée des cycles de Schubert (notations de [21]):

j (3, 4) : droites contenues dans un hyperplan fixé de P5,

\ (2, 5) : droites coupant un plan fixé P de P5.

On a alors Axe*(2, 5). [/] s(n —2) où s est un entier > 0. En effet,
P n P4 est une droite A de P4 et N et A engendrent un plan n passant

Hilb3 P5.
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par N. Ce plan recoupe V en n — 2 autres points. (Le plan n coupe bien
V au voisinage de N en un triplet, premier voisinage infinitésimal de N
dans 7i ; mais un plan voisin générique ne le coupe qu'en un doublet. Le

plan tu recoupe donc V en n — 2 points et non pas n — 3). La
multiplicité éventuelle s est en fait 1, comme il résultera de 2.a).

Par contre, on a Axe*(3,4). [/] 0 car l'axe de tout triplet de /
passe par N, qui n'est pas dans l'hyperplan fixé.

ii) Z e Axe*Ag(G). [HJ
Le cycle (3,5) des droites coupant un solide fixé de P5 engendre

Aq(G). On a

Axe*(3, 5). [JEfJ [/] - en

En effet, le solide coupe P4 en un plan P; N et P engendrent donc un
P3 dans P4. Dans ce P3, il y a la courbe C V' n P3 et le plan

n P3. Bien sûr, N n'étant pas sur Jfl5 n'est pas sur
On cherche donc les triplets doubles en N, le troisième point étant sur

n C. Il y en a donc n, avec une multiplicité éventuelle.

iii) Z g Axe*Ag(G). [#2]
Le triplet double en N devant avoir deux points sur et

(par définition de [ff2]), on a

l.[tf2].[J] 0

puisque A n'appartient ni à ni à Jf2.
Ceci prouve que pour tout Z dans Aq(A13 P5), le degré du 0-cycle

z* [ Uj ]. Z est de la forme un + v où u et v sont des constantes ne

dépendant que de Z.

d) Conclusion. Soit V une surface non-singulière de P5 et <D/C le schéma

relatif associé (IV.l.a). Si on pose Ü C et U C*, les hypothèses de la

proposition 1 sont vérifiées pour O/C. Pour a) cela résulte de la proposition

9 ii). Pour b), de la proposition 10 ii). Enfin <D/C* est fc-plat, car
isomorphe au produit V x C* (voir remarque 1). On peut ainsi appliquer
la proposition 1.

On a donc l'équivalence rationnelle dans Hilb3 P5 :

[Hilbc3 V] ~ [(Hilb3 4>0)red] [Hilb3 <t0]

D'où, par la proposition 10, l'équivalence rationnelle
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[Hilbc3 F] ~ [Hilb3 F'] + £ [F,].
7=1

En regardant alors les évaluations faites en b) et c), il vient la

Proposition 11. Soit V une surface non-singulière de P5, d'invariants

(n, d, t9 8). Pour tout cycle Z de A2(Al3 P5), la formule trisécante donnant

le degré du 0-cycle

Z. i* [Hilbc3 F]

est de la forme

T(F) a,n + a2 ^ + a3 Q + a d($n + y) + ô(un + u)

où a1,a2,v sont des constantes ne dépendant que de Z.

2°) Trois formules

a) Pour une surface V de P5, commençons par regarder le nombre de

trisécantes à V rencontrant un plan n fixé. Par définition, ce nombre

T(V) est le degré du 0-cycle Axe*a2. i* [Hilbc3 F] où comme toujours

i : Al3 P5 Hilb3 P5

est l'injection canonique et cr2 e A2(G(1, 5)), le cycle des droites coupant un

plan fixe.

Vu la proposition 11, ce nombre est de la forme

T(V) - apn + a2 + a3 + a t A d(ßn + y) + 5(un + v)

où n, d, t, 5 sont les invariants de V.

Soit alors V la réunion de V et d'un plan P disjoint. On constate que
Hilb3 V est formé de quatre « composantes » disjointes, avec des notations
évidentes :

Hilb3 V Hilb2 V x P Fx Hilb2 P Hilb3 P

Quelle va être la contribution de chacune de ces composantes dans T(F)?
Pour la première et la dernière, c'est clair: c'est respectivement T(F)

et T(P) a1 (car pour P, n 1, d t 8 0). La troisième composante
n'apporte aucune contribution puisqu'elle est disjointe de Al3 P5 : un triplet
aligné ayant deux points dans P est dans P puisque P n F 0



38 P. LE BARZ

Reste à trouver la contribution de la deuxième composante. C'est le

nombre de sécantes à 7 coupant à la fois les plans P et n. Mais si

a2 (2, 5) est le cycle dans Ä(G( 1, 5)) des droites coupant un plan fixe,
la formule de Pieri donne

ai - (0, 5) + (1, 4) + (2, 3).

On obtient donc Axe*a2. i* [Hilb2 V x P] comme somme du

i) nombre de sécantes à V passant par un point fixe de P5,

ii) nombre de sécantes à V contenues dans un P4 et coupant une droite
de ce P4,

iii) nombre de sécantes à 7 contenues dans un P3.

Ces trois nombres sont respectivement :

i i) 8, car c'est le nombre de points-doubles impropres de la projection
[ de 7 sur un P4,

\ ii) d, car c'est le nombre de points-doubles de la courbe 7 n P4 projetée
\ sur un P2 par une droite de P4 (et le lieu double F de 7 projeté
I sur un P3 par une droite de P5 est de degré d),

y iii) car il s'agit de trouver une droite passant par deux des

n points de 7 n P3.

Les multiplicités sont toutes 1 car P est choisi générique. Ainsi on a

T(V) T(V) + a1 + 8 + d 4- sencore, puisque les invariants de V

sont (lemme 13, Annexe 5)

n n + 1 K — d + n, t t + d, S 8 + n,

la relation

a^n+1) + a2^
^

^ + a3 ^
^

^ + a(t-\-d) + (d + n) (ß(n+ l) + y)

+ (b + ri)(u(n+ l) + t>) a {n + a2 + a3 ^ + a t + J(ßn + y)

+ S(un + v) + a1 + 8 + ^ + fj.
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Mais l'Annexe 5 permet d'identifier et on obtient donc par

— identification de 8 : u 1,

— identification de d: oc + ß 1.

— identification de n :

Il reste alors à trouver quatre autres équations. On remarque d'abord que ni

un plan ni une quadrique de P3 (plongée dans P5) n'ont de trisécante

coupant un plan fixe, d'où T 0 pour ces deux surfaces. Par suite,

ax — 2a1 + a2 0.

Maintenant, soit S(2, 2) e P4 l'intersection complète de deux quadriques
et considérons-la comme plongée dans P5. On a T 0 pour cette surface

car pour raison de degré, une trisécante est l'une des 16 droites qu'elle
contient et aucune ne coupe le plan n fixé. De même la surface de Veronese

(plongement de P2 dans P3 par ùp2(2)) est intersection de quadriques et ne
contient pas de droite. On a donc aussi T 0 pour cette surface. Leurs
invariants (n, d, t, 8) étant respectivement (4, 2, 0, 0) et (4, 3, 1,0) (cf. Annexe 6),

on obtient les deux équations

f4Q- i 4- 6a2 4a 3 -f- 8ß + 2y 0

(4ax -f- 6a2 4" 4a3 + oc + 12ß -)- 3y 0.

Jointes aux équations précédentes, on obtient un système inversible dont la
solution est

On a donc montré le

Théorème 3. Soit V une surface de P5 d'invariants (n, d, t, 8).

Alors le degré du 0-cycle Axe*cr2 i* [Hilb3 F] de Al3 P5 (nombre de
trisécantes à F coupant un plan fixe) est

Remarque. On trouve ainsi, par exemple, 0 pour la surface intersection
complète de trois quadriques, ce qui est évident

b) Cherchons maintenant le nombre de tangentes à V recoupant V
et un P3 fixé de P5. C'est le degré T(F) du 0-cycle

a2 — 0 a2 — 1 oc — 2

y 2 u 1 v -2.
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[ß] Axe*^ z* [Hilbc3 F]

où g1 e v41(G(l, 5)) est le cycle des droites coupant un P3 fixé et Çè l'hyper-
surface de Al3 P5 formée des triplets non simples.

Toujours d'après la proposition 11, ce nombre est de la forme

Q-iïi + ci2 ^2^ U3 (^j + czt + J(ßn + y) + 5(un-\-v).

Comme en a), soit F la réunion de F et P où P est un plan disjoint
de F. On a Hilb3 F comme réunion disjointe de

Hilb3 F Hilb2 F x P Fx Hilb2 P Hilb3 P

Les contributions des première, troisième et quatrième composantes dans

T(F) sont, comme en a), respectivement: T(F), 0 et T(P) a1.
Reste à trouver la contribution de la deuxième composante. Ce sont

les tangentes à F coupant à la fois P et le P3 fixé. Mais dans

A\G{ 1, 5)), par la formule de Pieri, on a

a,. a2 (1, 5) + (2, 4).

De sorte que cette contribution se décompose en

— les tangentes à F coupant une droite de P5 : c'est le nombre v de

points-pince d'une projection sur un P3 par une droite de P5,

— les tangentes à la courbe FnP4 rencontrant un P2 fixé de ce P4 :

c'est la classe de cette courbe, donnée par n(n — 1) — 2d ([34], p. 190).

Les multiplicités sont 1 car P est choisi générique. Comme on a v 2d

— 25 (Annexe 6), on trouve donc finalement la relation

T(F) T(F) + a1 + n(n— 1) - 25

En l'écrivant explicitement, vu que (Annexe 5) n n + 1, 3. d + n,

t t + d, S 5 + n, on obtient en identifiant les termes

— en 5 : u — 2,

— en d : a + ß 0,

f— y — v a2 — a3 + 2 (n= — 1)
— en ïi : ^

[$2 T 2ß + y + 2u + v ~ 0 (n= 1)

Il reste donc à trouver quatre autres équations. Soit S(a, b, c) l'intersection

complète de trois hypersurfaces de degrés a, b, c. Les quatre surfaces suivantes

de P5 n'ont pas de trisécante rencontrant un P3 fixé: 5(2,2,1), 5(2, 2, 2)„
la surface de Veronese et enfin la surface de del Pezzo 55 : c'est l'éclaté de P2
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en quatre points, plongé dans P5 par le système linéaire des cubiques passant

par ces quatre points; S5 est intersection de quadriques et contient 10 droites

de self-intersection — 1.

Pour raison de degré, on a T 0 pour ces quatre surfaces. D'où

(par l'Annexe 6) quatre nouvelles équations.

Jointes aux quatre équations précédentes, on obtient un système inversible

dont la solution est :

(a1 6 a2 — 4 a3 —18 oc —12

|ß 12 y -36 u -2 v 12

On a donc montré le

Théorème 4. Soit V une surface de P5 d'invariants (n, d, t, 5).

Alors le degré du 0-cycle

[0] Axe*a1. i* [Hilb3 F]

(nombre de tangentes à F recoupant F et un P3 fixé) est

— n(3n2 — lin+ 2) + 12(d(n — 3) — t) — 28(n —6).

c) Enfin, cherchons pour F dans P5 le nombre de tangentes d'inflexion de F.

Pour définir précisément ce nombre, notons que dans Hilb3 P1 ~ P3, les

triplets de support un point forment une cubique gauche BT (C'est le

plongement de Veronese /1— I3 de Hilb1 P1 dans Hilb3 P1). On a donc une
sous-fibration BT de Al3 P5 de fibre 3T0 et donc \ß"\ est dans A2(G( 1, 5)).

On définit le nombre de tangentes d'inflexion de V comme le degré

T(V) du 0-cycle \ß"\ i* [Hilb3 F] où comme d'habitude i : Al3 P5 Hilb3 P5

est l'injection canonique. D'après la proposition 11, T(F) est de la forme

(n\ (n\
axn + a2

^
+ 03 I3) + at + ^n + ^ + ^un + ^ *

Comme précédemment, on regarde la surface F F u P où P est un plan
disjoint. Un triplet de support un point est dans F si et seulement si il est
dans F ou dans P. Donc

T(V) T(F) +

car T(P) ax. En identifiant, comme en a) et b), il vient

fu 0 (a2 + 2ß + y + 2u -h v 0 (n 1)

[oc + ß 0 y - v a2 - a3 (n= — l).
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Reste à trouver quatre autres équations. Or on a démontré ([26], 4.d)

qu'une droite isolée de V contribue dans T(V) de —3(2 + /) où le Z est sa

self-intersection. Les quatre surfaces 5(2, 2, 1), 5(2, 2, 2), Veronese et del Pezzo

5 5 (vues en b) contiennent respectivement 16, 0, 0, 10 droites et elles sont de

self-intersection —1. Comme ces quatre surfaces sont des intersections de

quadriques dans P5, elles n'ont pas d'autre trisécante que les droites qu'elles
contiennent ; ainsi pour ces surfaces, T est égal respectivement à

— 48, 0, 0, — 30. On obtient donc comme en b) quatre nouvelles équations.
Jointes aux quatre précédentes, on obtient un système inversible dont la
solution est

On a donc démontré le

Théorème 5. Soit V une surface de P5 d'invariants (n, d, t, 8).

Alors le degré du 0-cycle \ß"\ i* [Hilbc3 V~\ (nombre de tangentes d'inflexion
de V) est

De plus, si V contient un nombre fini de droites, la « contribution » d'une

droite de self-intersection l dans ce nombre est — 3(2 + /).

Naturellement, seuls les cas N 6 et N 7 vont nous intéresser car
au-delà, il n'y a génériquement plus de trisécante à une surface.

1°) Retour à P5

Nous allons voir qu'une formule trisécante pour une surface de PN, N > 5,

est de la même forme qu'une formule trisécante pour une surface de P5.

Précisément, on a la

Proposition 12. Soit N 6 ou N 7. Soit V une surface non-

singulière de PN, n son degré, 8 le nombre de points-doubles impropres

apparents au-dessus d'un P4, d le degré de la courbe double apparente
au-dessus d'un P3 et t son nombre de points-triples.

a2 —48 a3 24

y 84 u 0

a 12

v — -12

2n(2rc2 — 18n + 25) + \2{t-h-d{n-l)).

V) Trisécantes dans PN, N > 5
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Alors toute formule trisécante pour V est, comme dans P5, de la forme

7(F) axn + a2 + a3 + d(ßn+y) + 8(un + v)

où a1, a2, a3, a, ß, y,11 et f sont des constantes.

Preuve. Elle consiste à appliquer le théorème de Fulton-MacPherson

comme on l'a déjà fait en (IV.l.b), pour se ramener à P5.

Soit en effet P5 fixé dans PN et projetons génériquement V dans P5

(par un point si N 6, par une droite si N 7). La projection est un

isomorphisme de V sur l'image, notée V. Comme toujours (voir 1.3.a),

on a dans PN x C un sous-schéma relatif y/C (qui dans ce cas est

isomorphe à un produit puisque V n'acquiert pas de singularité par projection)
avec yl V et y Q V.

On a donc dans Hilb3 P^ x C un sous-schéma relatif Hilbc3 y/C
isomorphe à un produit, ayant pour fibre Hilb3 F en 1 et Hilb3 V en 0.

Ainsi [Hilbc3 F] est rationnellement équivalent à [Hilb3 F] dans Hilb3 PN.

Soit K un cycle fixé de A7~N(Al3 P^). On a

deg K. i* [Hilb3 F] deg K i* [Hilb3 F]

soit encore T(F) T(F). Regardons alors le diagramme commutatif où les
flèches sont les injections canoniques et les dimensions sont indiquées entre
parenthèses :

(2N + 1) Al3 PN i Hilb3 PN (3N)

tj' t"
(11) ^;3P5 i Hilb3 P5 (15)

Bien entendu, schématiquement Al3 Pv n Hilb3 P5 Al3 P5, comme le
prouve le lemme 14 de l'Annexe 7. D'après le théorème de Fulton-MacPherson
(voir II.2.a), leur intersection en tant que cycle peut être choisie à support
dans Al3 P5.

Plus précisément, si a [Hilb3 F], on a i*«*a où

C ß. i* [Hilb3 F]

avec ß dans AN s(Al3P5).(Le N —5étantla différence entre 3 + 11 et
2 N + 16). Par suite, pour un cycle fixé de A7~N(Al3 P'Y), il vient par la
formule des projections :
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deg K i* [Hilb3 F] deg K.j^C dQgj*K.C
deg j*K. ß. i* [Hilbc3 F]

Mais comme j*K. ß est un cycle fixé dans A2{Al2 P5), ce degré représente

une formule trisécante pour F dans P5, par définition même (voir 1.1).

D'après la proposition 11, il est donc de la forme

a^n + a2 ^2^ (^3^) ^ d{$n-\-y) ^(wn + p)

puisque les invariants de F sont évidemment les mêmes que ceux de F.

D'où la proposition 12.

2°) Trisécantes dans P6

a) Commençons par chercher pour une surface F de P6, le nombre de tri-
sécantes à V rencontrant un P4 fixé. Ce nombre T(F) est par définition
le degré du 0-cycle Axe*ax. z* [Hilbc3 F] où i : Al3 P6 c» Hilb3 P6 est

l'injection canonique et oq e A1{G{ 1, 6)) est le cycle des droites coupant un P4

fixé de P6.

D'après la proposition 12, ce nombre est de la forme

T(F) axn + a2 + a3 + at + d(ßn + y) + 8(un + i;).

Soit F la réunion de F et d'un plan P disjoint. On a (vu l'Annexe 5) les

invariants de F :

n n -h 1 d n + d, t t -f- d, B 5 n

D'autre part, Hilb3 F est formé des quatre composantes disjointes Hilb3 F,
Hilb2 F x P, F x Hilb2 P et Hilb3 P. La contribution de la première et la

dernière dans T(V) est respectivement T(F) et T{P) a1 (puisque n 1,

^ t 5 0 pour P). La troisième a une contribution nulle, puisqu'un
triplet aligné ayant deux points dans P est dans P, donc ne peut couper F.

Reste à trouver la contribution à T(F) de la deuxième composante
Hilb2 F x P. Il s'agit des sécantes à F coupant P et un P4. Par la formule
de Pieri, on a dans A\G{ 1, 6)) :

^.(2,6) (2, 5) + (1, 6).

De sorte que, à équivalence rationnelle près, la contribution à T(F) de

Hilb2 F x P se décompose en
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— les sécantes à V rencontrant une droite de P6,

— les sécantes à V dans un P5 fixé et y rencontrant un plan.

Dans le premier cas. leur nombre est 5 puisqu'il s'agit du nombre

de points-doubles d'une projection sur un P4 par une droite. Dans le

deuxième cas. il s'agit du nombre de points-doubles de la courbe KnP3
projetée sur un P2 par un plan de P3. C'est donc d : le degré de la courbe

double T de la surface V projetée sur un P3. Grâce à la généricité de P,

les multiplicités sont bien 1. On a donc en conclusion:

T(V) T(V) + 8 + d + a±.

Comme d'habitude, on trouve par identification (lemme 12) de

5 : u — 1

d: 7. -h ß 1

f — y — v a 2 — a3 (n — 1)

1^2 Ht 2ß + y -f- 2u + r 0 (?7 1)

Il reste maintenant à trouver quatre autres équations. Si on désigne par
S(a. b. c, d) l'intersection complète de quatre hypersurfaces de degrés a, h, c, d

dans P6. on voit que 5(2. 2, 1, 1), 5(2, 2, 2, 1) et 5(2, 2, 2, 2) n'ont pas de tri-
sécante pour raison de degré. De plus, seule la première contient des droites,

en nombre fini: 16. On a donc T 0 pour ces trois surfaces puisqu'elles
n'ont pas de trisécante rencontrant un P4 fixé.

De même, la surface de Veronese dans Pu plongée dans P6, n'a pas de

trisécante car elle est intersection de quadriques dans P3 et elle ne contient

pas de droite non plus. Pour elle aussi, T 0. On obtient ainsi quatre
nouvelles équations. Jointes aux précédentes, elles forment un système inversible

dont la solution est

{a1 —2 a2 0 a3 4 ex 4

[ß — 3 y — 8 u 1 v — 4.

On a donc démontré le

Théorème 6. Soit V une surface de P6 d'invariants (n, d, t, 5).

Alors le degré du 0-cycle Axe*Gj. i* [Hilb3 7] (nombre de trisécantes à V
rencontrant un P4 fixé) est

4f
J - 2n + 4r — d(3n — 8) + 8(h —4).
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b) Cherchons maintenant, toujours pour une surface F de P6, le nombre de

tangentes à V recoupant F. Cette fois, ce nombre T(F) est le degré
du 0-cycle [~ß] z* [Hilbc3 F] où Q) est l'hypersurface de Al3 P6 formée des

triplets non simples.

Toujours d'après la proposition 12, ce nombre est de la forme

axn + a2 (^j + a3 + at + d(ßn + y) + b(un + v).

Soit F F u P où P est un plan disjoint de F, comme en a). La contribution

de la composante Hilb2 F x P de Hilb3 F dans T(F) est alors le

nombre de tangentes à F coupant un plan fixe. C'est donc le nombre v
de points de ramification dans une projection générique sur un P3 par un
plan de P6, correspondant aux v points-pince de la surface projetée. Or on a

(Annexe 6) v 2(d — 8). D'où comme précédemment,

T(V) T(V) + fll + 2(d — 8).

Comme en a), par identification grâce au lemme 12, on obtient quatre
équations.

Maintenant, des quatre surfaces vues précédemment : 5(2,2, 1, 1),

5(2, 2, 2, 1), 5(2, 2, 2, 2) et Veronese, les trois dernières ne contiennent pas de

droite et n'ont pas de trisécante. On a donc T 0 pour ces trois
surfaces, d'où trois nouvelles équations. Par contre, 5(2, 2, 1, 1) contient 16 droites
de self-intersection — 1. Or on a montré ([26], 4.e) qu'une droite isolée dans

V, de self-intersection l g Z, contribue de ^ans nombre T(V).

Pour 5(2, 2, 1, 1), on a donc T 64. D'où une dernière équation.
Le système de huit équations ainsi obtenu est inversible et on trouve

a1 — 24 a2 72 a3 — 48 a — 24

ß 26 y -144 u -2 v 24

On a donc montré le

Théorème 7. Soit V une surface de P6 d'invariants (n, d, t, 8).

Alors le degré du 0-cycle [ß~]. i* [Hilb3 F] (nombre de tangentes à F
recoupant F) est:

— 4rc(2n2 — 15n+19) - 241 + 2ù(13n-72) - 28(n-12).

De plus, si V contient un nombre fini de droites, la « contribution » -

d'une droite de self-intersection l e Z dans ce nombre est 4
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3°) TRISÉCANTES DANS P7

Dans ce cas, il n'y a qu'une formule à chercher, car en général il n'y

a qu'un nombre fini de trisécantes pour une surface V de P7. Nous nous

intéressons donc au degré T(V) du 0-cycle i* [Hilb2 V~\ où comme d'habitude

i: Al3 P7 c> Hilb2 P7 est l'injection canonique. D'après la proposition 12, ce

degré est de la forme

aYn + a2 + oct + d(ßn + y) + 5(un + v).

Comme dans le cas de P6 (paragraphe 2), soit V la réunion de V et

d'un plan P disjoint. Pour les mêmes raisons que précédemment, on a

T(V) T(V) + a1 + 5

En effet, 8 est la contribution de la composante Hilb2 V x P de Hilb2 V
dans T(V): c'est le nombre de sécantes à V rencontrant un plan P, soit

le nombre de points-doubles 8 de la projection de V sur un P4. (Les

multiplicités sont 1 car P est générique).

Il vient alors une identité entre n, d, t, 8 puisqu'on connaît (lemme 13)

les invariants de V. Grâce au lemme 12, par identification, on obtient quatre
équations liant les coefficients al9a2 v. Il reste à trouver quatre autres

équations. Soit S(a, b, c, d, é) l'intersection complète de cinq hypersurfaces de

degrés a, b, c, d, e dans P7. Aucune des quatre surfaces suivantes n'a de tri-
sécante dans P7, pour raison de degré, et aucune ne contient de droite:
5(2, 2, 2, 1, 1), 5(2, 2, 2, 2, 1), 5(2, 2, 2, 2, 2) et la surface de Veronese (plongée
dans P7). On a donc T 0 pour ces quatre surfaces, d'où (puisqu'on
connaît leurs invariants) quatre autres équations.

Jointes aux quatre équations précédentes, on obtient un système inversible
dont la solution est

a1 5 a2 —18 a3 14 a 8

ß -8 y 40 u — 1 v — 8

Par ailleurs, on a vu ([26], 4.f) qu'une droite isolée de F, de self-

(43intersection l e Z, contribue de - [' dans le nombre T(V).

On a donc dénombré le

Théorème 8. Soit V une surface de P7 d'invariants (n, d, t, ô).
Alors le degré du 0 -cyclei*[Hilbc3 F] (nombre de trisécantes à F) est
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5n - 18 [fj+ 14 (jj + 81- 8d(n-5) + 8(n-8).

Si de plus V contient un nombre fini de droites, la « contribution »

d'une telle droite de self-intersection le Z à ce nombre est —

Remarque. On peut par exemple vérifier que la surface S(2, 2, 2, 2, 3)

de P7 possède 512 trisécantes, ce que donne un calcul direct dans la

grassmannienne G( 1, 7).

VI) Annexe

Nous avons regroupé dans cette annexe tous les calculs auxiliaires qui auraient alourdi
le cours du texte. Il s'agira la plupart du temps de calculs en coordonnées locales.

1°) HilbJ Q

Ce paragraphe sert à étudier Hilbc3 S lorsque S c= P4 est une surface dont les

singularités sont ordinaires, i.e. localement réunion de deux branches lisses transverses.
(Voir I.2.a.)

Soit Q dans C4 la réunion de deux plans P1 et P2 se coupant en l'origine.

Lemme 9. a) Tout k-uplet curviligne de support {0} contenu dans Q est
limite dans (Hilb^ g)reci de k-uplets formés de points distincts. En particulier HilbJ Q
est génériquement réduit car Hilb^ Q est dense (et réduit).

b) HilbJ Q est en fait réduit.

Preuve. Soit (x, y, z, u) un système de coordonnées pour lequel Px est donné par
x y 0 et P2 par z u 0. De sorte que l'idéal de Q est

J (x, y) n (z, u) (xz, yz, xu, yu).

Montrons a). Soit dans Q un /c-uplet curviligne avec Supp {0}. Mais
est contenu dans une courbe non-singulière T. Celle-ci est « transverse » soit à P1
soit à P2 ; supposons F transverse à P1; quitte à faire une transformation linéaire
sur x et y, F peut être paramétrée par

y oc(x), z ß(x), u y(x),

où a, ß, y sont dans l'idéal maximal de C [[x]]. L'idéal de dans C [[x, y, z, u]]
est donc

I0 (xk, y — a(x), z — ß(x), u — y(x)).

Comme on a l'inclusion c g, soit encore I0 => J, il vient xß(x) et xy(x) multiples
de xk. En supprimant par ailleurs les termes de degré supérieur à k, l'idéal se réécrit:
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Io {xk,y-A(x),z-$0xk \u-y0xk *)

où A est un polynôme de degré < fc — 1, nul en 0.

Considérons pour t 0 l'idéal de &C4 défini par

It [x(x^^-tk-%y-A{x),z-ß0(xk~1-tk-1)iu-y0{xk-1-tk-1)).
C'est l'idéal de la réunion du point simple de coordonnées (0,0, — ß0ffc_1, — Yo*fc _1)
dans Pt et de k — 1 points simples distincts (et distincts du précédent) dans P2 car
z u 0 pour ces points-là.

Clairement It -> I0 si t - 0, d'où l'assertion a).

Montrons b). On se ramène comme toujours à Supp {0}. Une carte de Hilbk C4
en J0 est donnée par

(a1, ••• ak,a[,... ai, b1}... bk,cl9... ck)

correspondant à l'idéal

I (x/c + a1xfe_1 -K.. + ak, y — + + + ai,
z — ßcpcfc-1 + 61xfc~1 + + &*, u — y0xi_1 Ac^"1 + + ck)

voisin de

/o (**> J>-4(x), z-ß0x*~\ w-y0xfc_1).

Comment s'exprime HilbJ Q dans cette carte? D'après [8], on doit exprimer l'inclusion
/ 3 /, où J est l'idéal de Q, ce qui revient à :

XZE I o{b1-f>0)xk + b2xk~1 + + bkxel
xue I o (c1 — y0)xk + c2xk-1 + + ckx e I
yz e I o a'kz e I o a'k(b1 — fi0)xk~1 + akb2xk~2 + + a'kbkel
yuel o a'kuel o a'k(c1 — yQ)xk~1 + akc2xk~2 + + akck e I.

Ceci donne les relations

b2 (^i-ßo)^i c2 (c1—y0)a1
k>3 {bi ß0)a2 l c3 (c1 — y0)a2

bk - (ii-ßoK-i / (Cj-Yo
0 (bi—ß0)ü»; i 0 (cx—

ainsi que

fak(^i — ßo) akb2 akbk 0

V(ci-Yo) a'^i - akck 0

En remplaçant b2,b3,... bk et c2, c3,... ck par leurs valeurs (ce qui correspond i
considérer un graphe), il ne reste que l'idéal

(<*k(h i - ßo a'k(b i - ß0 ak{cx - yQ a'k(cx- y0

de ^ tak>ak> ci, bx] est réduit, que ß0 et y0 soient nuls ou non. Donc
HilbJ Q est réduit.
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2°) Hilbî ©o et Hilb* n0

Ce paragraphe est utile pour la proposition 2 (voir I.2.c.)
Nous définissons deux schémas relatifs 0/C et n/C comme sous-schémas relatifs

de C3 x C (rapporté aux coordonnées (x, y, z, t)) par les idéaux

7(0) (xyz — t) et 7(11) (y2 — x2z — t).

Les schémas 0/C* et n/C* sont fisses tandis que les fibres 0O et n0 sont
respectivement la réunion des trois plans de coordonnées de C3 ainsi que la surface
appelée « parapluie de Whitney ».

Lemme 10. a) Hilb^ ©0 est dense dans Hilb* 0O • En particulier HilbJ 0O est
génériquement réduit.

b) Tout k-uplet curviligne contenu dans ©0 est limite de k-uplets curvilignes
contenus dans 0t avec t ^ 0.

Preuve. Soit £,0 un fc-uplet curviligne dans ©0. On se ramène comme toujours
au cas où Supp est un point.

Regardons le cas où Supp {0}. Comme est par hypothèse situé sur une
courbe non-singulière F, quitte à faire une permutation entre x, y et z, une para-
métration en 0 de T est

y a(x) z ß(x)

où a et ß sont dans l'idéal maximal de C [[x]]. L'idéal 70 de dans C [[x, y, z]]
est donc (xk, y — a(x), z—ß(x)). On peut encore l'écrire

I0 (xk, y-A(x), z-
où A et Bsont des polynômes des degrés — 1, en éliminant les multiples de xk.

Notons a (resp. b) la valuation en 0 de ZI (resp. B). On a bien sûr a < k — 1

et b ^ k — 1.

Comme on doit avoir l'inclusion 70 7(©0) (xyz), puisque c 0O, cela entraîne
xA{x)B{x)eI0, soit 1 + a + b ^ k (ce qui est toujours vérifié si k 3). Soit b1

l'entier positif tel que l+a + b1 k.

Montrons a). Soit A(x) xGZL1(x), B(x) x^R^x) où A1 et B1 sont deux polynômes.
Pour s # 0 dans C, notons Is l'idéal de C [x, y, z] donné par :

Is (x(xa-(2sr)(x^-sbi), y-{xa-(2s)a) A.ixl z-ix^-s^B^x)).
C'est l'idéal de la réunion de k points simples situés chacun sur au moins l'un
des trois plans de coordonnées de C3.

De plus, 7S - 70 dans Hilbfc C3 si s 0 dans C. D'où l'assertion a), car les cas
où Supp est situé sur l'un des axes de coordonnées ou même à l'intérieur d'un
des plans de coordonnées sont beaucoup plus simples; on ne les traitera pas.

Montrons b). Il est facile de voir qu'un point simple quelconque de ©0 est limite
d'un point simple de Qt avec t # 0. Ceci prouve l'inclusion

Hilb^ ©o c= Hilb^ O/C*

la barre désignant l'adhérence dans Hilb£ C3. A fortiori, on a Hilb^ ©0
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c Hilbk^ 0/C*. Mais d'après a), on a HilbJ 0O contenu dans Hilb^ 0O ; il en résulte
donc l'inclusion

Hilbk 0O c= Hilb^ 0/C*

ce qu'on cherchait à prouver. Le lemme 10 est donc démontré.
Montrons maintenant le

Lemme 11. a) Hilb^ IT0 est dense dans HilbkIÏ0. En particulier Hilbk II0
est génériquement réduit.

b) Tout k-uplet curviligne dans Iï0 est limite de k-uplets curvilignes dans Ilf
avec t # 0.

Preuve.

Montrons a). L'assertion est claire pour k 1 et facile pour k 2. Soit donc
k ^ 3 et montrons par récurrence sur k que Hilb^ II0 est dense dans HilbJ no.

Soit un fc-uplet curviligne situé dans Il0; on se ramène comme d'habitude à

Supp ^o formé d'un seul point. Comme dans le lemme 10, seul le cas Supp
{0} est délicat et on s'y place donc.

i) Puisque est situé sur une courbe non-singulière F, supposons-la dans un premier
temps transverse au plan Oxy. L'idéal IQ de est alors

I0 (zk,y-A(z),x-B(z))
où A et B sont des polynômes de degré < k — 1, nuls en 0, comme on l'a vu de
manière analogue dans le lemme 10. Puisque I0 I(H0) vu que c= no, et comme
/(n0) (y2 — x2z), on a nécessairement A2(z) — B2(z) .zel0. Ceci entraîne

A2(z) — B2(z) z multiple de zk

et par suite val(A) > 2 car k ^ 3. On écrit donc

I0 (zk, y — z2A1(z), x-zB^z))
où A1 et B1 sont deux polynômes vérifiant:

(*) z4A 2(z) — z2B l(z). z multiple de zk.

Posons pour s # 0 :

Is (zk~2(z-s)2, y-z(z~s)A1(z),
On a bien sûr Is /(n0) car vu (*), le polynôme

z2(z - s)2A i(z) - (z — s)2B i(z). z est multiple de zk ~ 2(z — s)2

L'idéal Is correspond à un /c-uplet dans Il0 formé d'un doublet sur l'axe des z
et d'un (k — 2)-uplet disjoint, de support le point de coordonnées (—sB^O), 0, 0).
De plus, Is ^ I0 lorsque s -* 0.

Mais chacun de ce doublet et de ce (k — 2)-uplet est lui-même limite respectivement
de 2 et k - 2 points simples dans no, par l'hypothèse de récurrence. Ainsi est
limite de k points simples comme on le voulait.

ii) Si maintenant est situé sur une courbe non-singulière F tangente au plan Oxy,
cette courbe est nécessairement tangente à l'axe des x (sinon comme est dansr n no, on aurait k long ^ 2). On peut donc prendre comme idéal de :
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I0 (xk, y — x2A1(x), z — x2B1(x))

où A% et B1 sont des polynômes. Comme I0 I(Tl0) (y2 — x2z\ on a donc

(**) x4A\ — x4B1 multiple de xk.

Posons pour s 7^ 0 :

Is (xk~2{x — s)2 y — x(x — z — (x — s^B^x)).

On a Is Z3 /(II0) car vu (**), le polynôme x2(x — s)2(A \ — By) est multiple de xk~2{x — s)2.

On conclut comme en i).

Montrons b). Preuve analogue au b) du lemme 10.

3°) Modèles locaux pour Z0

Il s'agit de prouver les propositions 3 et 4 énoncées en 1.3 et qui donnent la
structure nilpotente du schéma Z0. On en reprend donc les notations.

Soit 5cP4 une surface à singularités ordinaires.

a) Commençons par étudier le schéma £0 au voisinage d'un point triple M de S'.

Au point M correspondent trois points a, b, c de S se projetant en M e S' sur H,
par co. Soit (x, y, z, u) un système de coordonnées inhomogènes de P4 pour lequel H
est l'hyperplan u 0 et © le point à l'infini sur l'axe des u. On peut prendre
M (0,0,0,0) et a (0, 0, 0, wt), b (0, 0, 0, u2\ c — (0,0,0, w3) avec les ut
distincts.

On peut également choisir les coordonnées de telle sorte que les trois plans
tangents à S' en M (correspondants à a, b, c) soient donnés par les équations

x 0 (y 0 (z 0

u 0 0 \u 0

Ainsi, des équations locales de S en a, h et c sont :

(x (Pi(y,z) (y q>2{x,é \z (p3(x, y)

u \|/i(y, z) lu z) lu y)

avec <pf, \|/j- e C [[5, T]], val cp, ^ 2 et \|/£(0) ut. Comme dans [23], p. 173, l'idéal
du schéma X est alors

{x — cp!, u — X\(/J n (y — cp2, u — Aa|/2) n (z —cp3, w —7a|/3).

Effectuons le changement de coordonnées (au voisinage de 0) ;

X x (pi 7 y — cp2 Z z — (p3 U — u.

On arrive à l'idéal

j (x, tz-xe,) n (y, c-xe2) n (z, i/-x,e3)

où 0f e C [[X, y, Z, U]]. L'idéal J est bien sûr aussi le produit de ces trois idéaux,
car X, y, Z et C sont des coordonnées.

Pour X 0, l'idéal de la fibre est

(X, U) n (y, U) n (Z, C).
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Cet idéal est celui du schéma étudié en [24] (p. 125). On a un isomorphisme

de germes :

(X0,P)*o,o).

Or on a vu (loc. cit. p. 126) l'égalité de schémas :

Ceci prouve déjà la proposition 3 au voisinage d'un point triple. De même, les

assertions 4 i) et 4 iii) de la proposition 4 sont prouvées puisqu'on les a vues pour
F0 {loc. cit. prop. 5 et 7).

Enfin, prouvons l'assertion 4 ii), toujours au voisinage d'un point triple. On se

ramène comme en loc. cit. p. 130, à considérer le triplet curviligne d'idéal

J0 (U3,X+Uol(U), Y+U$(U),Z+Uy(U))

où a, ß, y e C [[17]]. On le déforme alors en l'idéal

({U-XQ1)(U-XQ2){U-XQ3),X + {U-XQ1MU),
Y+{U- XQ2)ß(l7), Z + (17 -Xd3 )y(U))

qui contient l'idéal J; pour X ^ 0, cet idéal correspond à la réunion de trois points
simples (car les 0£(O) sont distincts), chacun sur une des branches de De plus
Ix -> 70 si X -y 0 (la déformation étant plate). L'assertion ii) de la proposition 4

est ainsi prouvée.

b) Cette fois-ci, P est un point-pince de S\ provenant par la projection sur l'hyper-
plan H, du point ae S. Nous allons étudier Z0 au voisinage de P.

Soit (x, y, z, u) des coordonnées inhomogènes de P4 pour lesquelles P (0, 0, 0, 0),
a (0, 0, 0, 1), le point co par lequel on projette étant le point à l'infini sur l'axe
des u.

D'après Mather ([31], prop. 2), on peut choisir la projection n de S sur l'hyper-
plan H de sorte que n soit localement stable. Le fait que n soit localement stable



54 P. LE BARZ

en a montre ([31] p. 179) que pour certains systèmes de coordonnées locales (s, t)
de 5 en a et (X, Y, Z) de H en P, le morphisme n est donné par

(*) 7i : (s, t) (s, st, t2).

Considérons alors le nouveau système de coordonnées (X, Y, Z, u) dans un voisinage
de l'axe des u de P4 et soit

(X(s, t), 7(s, t\ Z(s, t), u(s, t))

les coordonnées d'un point de S. Par définition de la projection n sur H, par
(*), on a

X(s, t) s Y(s, t) st, Z(s, t) — t2

Ecrivons par ailleurs u{s, t) 1 + cp(s, t) avec cp dans l'idéal maximal de C [[s, t]J.
dep

Comme S est non singulière en a, on a nécessairement — (0) # 0.
ot

Ainsi une représentation paramétrique locale de S en a est-elle :

X X, Y Xt, Z t2, u 1 + <p(X, t).

Si l'on écrit

cp(X, t) toc(X, t) + ß(X, t)

où a et ß (dans l'idéal maximal de C [[X, t]]) ne contiennent que des puissances
paires de t, il vient aussi la représentation paramétrique de S au voisinage de a:

x X, y Xt, Z t2 u 1 + ta'(X, Z) + ß'(X, Z)

où a', ß'eC [[X, Z]]. Enfin, si l'on écrit

a'(X, Z) a0(Z) + Xa"(X, Z)

dep
avec ao(0) ^ 0 car — (0) ^0, on a également la représentation paramétrique :

dt

X X, Y Xt, Z t2 m 1 + toc0(Z) + ya"(X, Z) + ß'(X, Z).

De I.3.a, il ressort que Z/C* est le schéma donné dans C4 x C* (de coordonnées
(X, 7, Z, u, X) avec X ^ 0) par la représentation paramétrique, au voisinage de l'axe
des u :

Y Xt, Z t2 u X(1 + tai0(Z) + y<x"(X, Z) + ß'(X, Z))

et X X, X X.

Effectuons le nouveau changement de coordonnées

U -3— (u - X-XYa"(X,Z)- 'k$(X, Z)) (on a oc0(0) # 0)

et X - .V. Y Y, Z Z,XXdansC [[X, Y, Z, u, Â.]].
Dans ce dernier système, on a U Xtd'où la représentation paramétrique de

2/C* :

xu U2
x x, y —~, z=* xx x.

X X2
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Il est alors aisé de voir que l'adhérence dans C4 x C a pour idéal :

j (Y2-X2Z,XU-XY, U2-X2Z, YU-XXZ).

Ces équations sont en effet nécessaires; réciproquement, nous voyons qu'un point

(X0, Y0, Z0, U0) de la fibre en 0 (donc vérifiant Yl~XoZo 0 et U0 0) est limite
de points dans des fibres au-dessus de X # 0. On remarque pour cela que

si V0 # 0: siX0 0:

•* (l) •*
où r0 est une racine de Z0.

Ce qui précède montre l'isomorphisme, au-dessus de C, entre les schémas relatifs

Z/C et ^/C, le schéma & ayant été introduit en [24], p. 131. La proposition 3

et les assertions i) et ii) de la proposition 4 sont donc prouvées au voisinage d'un

point-pince, puisqu'on a démontré l'analogue pour les schémas et (loc. cit.

prop. 9 et 10).

Il reste à montrer l'assertion iii) de la proposition 4. Soit donc d0 un doublet
transverse à H {u 0}, contenu dans é?0 • Son idéal est

I0 (m2, x — au, y — ßu, z — yu),

où a, ß, y e C. Une carte de Hilb2 C4 en d0 est alors donnée par

(a, b, u!, bx, a2, b2, a3, b3

correspondant à l'idéal voisin :

/ (w2 + au + h, x — au-\-a1u-\-bl, y — ßw + a2w + fr2, z — ju + a3u + b3).

Dire que le doublet est contenu dans revient à affirmer l'inclusion I =3 J. Or
u2 e I équivaut à a b 0. On en déduit b1 b2 0. Réciproquement, si

a b bx b2 0, on a J c= L II se trouve qu'on a alors obtenu des équations
du sous-schéma Hilb2 dans Hilb2 C4. (Voir [24], p. 124 et 131). Ainsi Hilb2
est lisse, donc réduit.

c) Etudions maintenant £0 au voisinage de la courbe double T de S'. On se
convainc facilement que Z/C est isomorphe au produit C x (âT/C) où 3C est le schéma
relatif introduit en [24], p. 121 et qui servait de modèle local pour l'étude des
multisécantes aux courbes. Les assertions analogues se transportent donc mutatis
mutandis, le facteur C supplémentaire ne jouant que peu de rôle. (Voir loc. cit.
propositions 2, 3 et 4.)

D'après a), b) et c) qui précèdent, nous avons donc démontré complètement les
propositions 3 et 4 énoncées en I.3.b.

4°) Les lemmes 7 et 8

a) Prouvons le lemme 7 énoncé en II.2.C.

Soit un triplet d0 u m0 où d0 est un doublet de support un point de la
courbe double T et m0 un point de S' situé sur Axe d0. Si Supp d0 {0}, soit
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(x, y, z, u) un système de coordonnées inhomogènes centré en 0 ; on peut choisir l'axe
des z tangent à T en 0 et m0 (1, 1, 0, 0) dans ce système. De sorte que l'idéal
de d0 dans C [x, y, z, u] est (x2, y — x, z, u). Une carte de Hilb3 P4 en £,0 d0 u ra0
est alors donnée par d'une part les coefficients de l'idéal voisin

(x2 + ax + b, y — x4-%x + £>i, z + a2x + b2,u-\-a3x + b3)

pour un doublet d voisin de d0 et d'autre part par

(1+a, 1 + ß, y, 5)

pour un point simple m voisin de ra0.
Dans cette carte, Al3 P4 s'exprime très simplement : on doit avoir m e Axe d, soit

ß - a + a1(l + a) + bx y + a2(l+a) + è2 8 + a3(l+a) + b3 0.

Par ailleurs, pour exprimer S21, on doit avoir:

— la condition que Axe d rencontre T. Un calcul élémentaire (par exemple [29],
p. 252, prop. 20.b) montre que l'application linéaire tangente à cette condition
s'obtient en demandant à Axe d de rencontrer la tangente en 0 à T, soit
(puisqu'ici c'est l'axe des z): b1 b2 b3 0;

— de plus, d doit être un point-double, soit la condition d'annulation du discriminant
a2 - 4b 0;

— enfin, le point m doit être sur S'; écrivons cp(x— 1, y— 1, z) 0 (avec do(p^0)
une équation locale de S' en ra0 (1, 1, 0) dans P3 et soit donc

cp(x — 1, y — 1, z) u 0

les équations de S' dans P4. Dire que le point m est sur S' s'exprime ainsi par
cp(a, ß, y) 8 0.

On vérifie rapidement que les équations linéaires tangentes à ces 9 équations
sont indépendantes et ceci prouve le lemme 7.

b) Prouvons maintenant le lemme 8 énoncé en IV.I.e.

Soit m un point générique de V tel que la droite Nm ne soit pas tangente
à F' en m et que le plan TmV soit transverse à P et Q, où P et Q désignent
les deux plans tangents aux deux composantes de V en N. Après choix d'un
hyperplan à l'infini de P5, soit (x, y, z, u, v) un système inhomogène centré en N tel
que l'hyperplan P4 contenant V soit donné par {^ 0} et les points

!ra
donné par (0, 1,0, 1, 0)

TmV' n P donné par (1, 0, 0, 0, 0)

TmV o Q donné par (0, 0, 1, 0, 0).

Un système d'équations de TmV' est alors

x + y + z — 1 y — u v 0

Considérons le triplet t d'axe Nm, double en N, simple en m et montrons que
l'intersection Al3 P5 n U est transverse en t. Le choix de t étant générique dans U,
le lemme sera démontré.

Or au voisinage de N, le triplet t est formé par le doublet d, d'idéal (u2, x, z, y —u, v).

Une carte de Hilb2 P5 en d est donc donnée par les coefficients de l'idéal voisin :
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(*) (u2 + au + a', x + bu + b\ z + cu + &', y—u + du + d', v + eu + e).

D'autre part, des équations locales de F' en m (0, 1, 0, 1, 0) sont

!u
y + cp(x, y-i)

z=l-y-xA \|/(x, y — 1)

v 0

où (p et \|/ sont dans C £[2^, Y"]], de valuations ^ 2. Un point voisin de m sera

repéré par

(**) (oc, 1 + ß, y, 1 + S, g).

On obtient ainsi, avec (*) et (**), une carte de Hilb3 P5 en t. Dans cette carte,
Al3 P5 s'exprime par

a + b(l + 8) + b' 0 fß — 8 + d( 1 + 8) + d' — 0

y + c(l + 8) + c! 0 [s + e(l+S) + ef 0

car le troisième point doit être sur l'axe du doublet. Par ailleurs U est donné,

par définition même, par les équations

a a' b' c' d' e' — 0

qui concernent le point-double (il doit être de support {N}) et par

8 ß + cp(oc, ß), y - oc - ß + \|/(a, ß), g 0

qui concernent le point simple (il doit être sur F').
Les relations linéaires tangentes à ces 13 équations sont indépendantes, ce qui

termine la démonstration du lemme 8.

5°) Identification

Les deux lemmes ci-après servent à trouver des relations entre les coefficients
de polynômes que sont les nombres d'intersection cherchés; voir III.Lb, III.2.b,
IV.2.a, etc.

Lemme 12. Soit P un polynôme à 4 variables. On suppose pour toute surface à
singularités ordinaires de P4 d'invariants (n, d, t, 8) que P(n, d, t, 8) 0. Alors P
est identiquement nul

Preuve. Soit S la surface de P4 réunion d'un nombre fini de surfaces St d'invariants

(ni9 dif tif 8f). Les invariants de S sont alors, comme on le vérifie facilement:

I »
1 l*

\ d Y, di+ y n,rtj
< i i<j

11Z fi + E dini + Z
i i ifj i<j<k
\8 Z 5i + Z "."j •

i i<j
Regardons maintenant le cas particulier de la surface S réunion dans P4 de

— p plans,
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— q surfaces quadriques
— r surfaces cubiques f (dans certains hyperplans de P4)

— s surfaces 5(2, 2), dont les invariants sont (4, 2, 0, 0).

D'après ce qui précède, les invariants de 5 sont donc :

n p + 2q + 3r + 4s,

!d
2s +(2)+ 4 (2)+ 9 (2)+16 (2)+ 2pq + + 4ps

+ 6qr + 8 qs + 12rs

' - (I) + 8(') + ''G) + "G) + (2) (2^3"3," + 4ï) + 4(^ + 3^4,)

+ 9 {p + 2q + 4s) + 16 (p + 2q + 3r) + 6pqr + 8pqs + 12prs + 24qrs

5 (^j + 4 + 9 + 16 + 2pq + 3pr + 4ps + 6qr + &qs + 12rs.

Soit cp : C4 ^ C4 l'application qui à {p, q, r, s) associe (u, d, t, 8) définis par les quatre
formules qui précèdent. Par hypothèse, pour toute surface 5 de P4 d'invariants
(n, d, t, 8), on a P(n, d, t, 8) égal à 0. En particulier, pour la surface précédente ;

ce qui signifie que le polynôme P0cp s'annule sur N4. On a donc P0cp 0. Mais
comme on le vérifie aisément, la différentielle d0cp est inversible; par suite P est nul
dans un ouvert non vide de C4, donc identiquement nul.

Lemme 13. Soit S une surface de P4 d'invariants (n, d, t, 8). Soit S S u P
la réunion de S et d'un plan transverse. Alors les invariants de S sont
n n + l, 3 d + n, t t + d, 5 8 + n.

Preuve. On regarde dans ce qui précède les invariants d'une réunion 5X u S2
où Sj S et S2 P.

Remarque. Les lemmes 12 et 13 sont encore valables si on remplace les invariants
(n, d, t, 8) par (n, d, t, h) où h est le nombre de points-doubles apparents (sur un P2)
de la courbe double apparente F (sur un P3) de la surface. En effet, h est donné par

2h d(d — n + 2) — 8 — 31

(voir [28], § Y) et pour S S u P, on a alors K h + d(n — 2).

6°) Invariants des surfaces

Nous donnons ici les invariants des surfaces servant de cas particuliers pour établir
les formules.

Pour une surface S lisse de PN, nous avons les invariants c2, K2 et HK où

c2 est la caractéristique d'Euler-Poincaré topologique,

K est le diviseur canonique,

H est le diviseur hyperplan.

Par rapport à ces invariants d, t et 8 sont donnés par les formules classiques
(si n degré S) :
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2d n(n-4) - HK
25 n(n-10) 4- c2 - K2 - 5HK
6t n{n2-12n + 44) + 4K2 - 2c2 - 3HK(n-8).

Ceci peut se voir par exemple en appliquant les formules du lieu double [22]
et triple [17].

On peut également donner les formules en utilisant les invariants classiques
(4o> ^2, v2):

2d n(n— 1) — Pi 25 n(n— 1) — — v2

61 n(n—l)(n — 2) — 3n[i1 + 2(2[i1 +2p2 + v2)

et bien sûr n p0, v v2 (voir [34]).
Ceci permet de dresser les tableaux suivants; un symbole tel que S(it,..., ik)

désigne l'intersection complète de k hypersurfaces de degrés dans pfe + 2 (voir
[34]). Les surfaces considérées dans P4 ont 5 0 car lisses.

surface n d t surface n d t 5

S(2,2) C P4 4 2 0 S(2, 2, 2) C P5 8 16 8 4

S(2, 3) C P4 6 6 0 S(2, 2, 3) C P5 12 42 48 12

S(3,3) C P4 9 18 6 S(2, 2, 2, 2) C P6 16 88 208 40

S(2, 4) C P4 8 12 0 S(2, 2, 2, 2, 2) C P7 32 416 2880 256

S(3, 4) C P4 12 36 24 S(2, 2, 2, 2, 3) C P7 48 984 11376 648

Veronese C P4 4 3 1 del Pezzo S$ C P5 5 5 1 1

7°) Quasitransversalité

Le lemme suivant sert, en utilisant la théorie de Fulton-MacPherson, à construire
un cycle fixé dans Al3 PN, de codimension (2rc+l + 3iV) - (2iV+l+3rc) N - n
Voir III.2.a, IV.l.b, V.l.

Lemme 14. Soit P" un sous-espace linéaire de PN. Alors dans Hilb^ PN,
l intersection de Al3 P^ et Hilb^ P" est schématiquement Al3 P". On a le diagramme
commutatif où les dimensions sont entre parenthèses :

(21V+ 1) ,4/3P" o Hilb3 PN (31V)

t t
(2n+1) Al3P"Hilbc3 P" (3n)
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Preuve. On va voir que Al3 PN et Hilb2 P" se coupent quasitransversalement dans
Hilb2 PA. Soit pour cela (x, x2, x3,... xN) un système de coordonnées inhomogènes
pour lequel P" est donné par xN xN_1 «= xjV_n+1 0 et soit un /c-uplet
aligné dans P". On peut supposer que Axe £0 est l'axe des x ; l'idéal I0 de
est donc

I0 {p(x),x2,x3...xN)

où p est un polynôme de degré 3. Une carte de Hilb2 PN en est donc donnée par
les coefficients de l'idéal

I (p{x) + ax2 + bx + c, x2 + a2x2 + b2x + c2,..., xN +aNx2+ bNx + cN).

Dans cette carte, Al3 PN s'exprime par

Ci 2 ^3 ••• &N — 0

et Hilbc PN par a-t bt c-x 0 avec N — n + 1 ^ i ^ TV. D'où l'assertion de

quasitransversalité.

Remarque. Le résultat est évidemment analogue pour Alk PN si k > 3.

8°) Calcul de multiplicités

a) Soit S une surface de P4 avec un point-double impropre 0 et soit m0 un point
simple quelconque de S. Supposons que la droite Om0 coupe une droite générique
fixée À (on prendra À n TmoS 0). Si l'on regarde le triplet aligné d0 u ra0

d'axe Om0 où d0 est le doublet de support {0}, ce triplet est évidemment contenu
dans S. Quelle est sa multiplicité dans le nombre T(S) des tangentes à S recoupant
S et la droite A? (Voir III.l).

Soit pour ce calcul, un système de coordonnées inhomogènes {x, y, z, t) centré en 0,
avec m0 (1, 1, 1, 1), les plans tangents aux deux branches de S en 0 étant donnés

par x y 0Qtz t 0. L'idéal de d0 dans C [[x, y, z, t]] est alors

(x2, y — x, z — x, t — x).

Un doublet d voisin de d0 est repéré par l'idéal

(x2-l-ax + b, y — x + a^ + bi, z — x + a2x-\-b2, t-x-\-a3x + b3).

De même, un point m voisin de m0 est repéré par (1 + u0, 1 +ul,, 1 + u2, 1 + u3).
On obtient ainsi une carte de Hilb2 P4 en le triplet d0 u m0.

Dans cette carte, Al3 P4 s'exprime évidemment par

(1) Ui — Uq + cq(l ~\~Uq) + b± 0

(2) u2 — Uq -j- cf2(l-+ Wo) -j- b2 0

(3) u3 — Uq + <23(1+110) + £>3 0

car le point simple m doit être sur Axe d. De plus, la sous-variété Q) de Al3 P4

s'exprime par

(4) a2 - 4b 0

puisque d doit avoir pour support un seul point.
Par ailleurs, la condition pour l'axe de rencontrer A signifie que m reste dans
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le plan fixe P engendré par 0 et À. On peut par exemple prendre z x et t y
pour équations de ce plan. D'où les conditions supplémentaires :

(5) u0 u2

et

(6) u1 u3

Enfin, exprimons Hilb3 S dans cette carte.
Pour ce qui est du doublet d: on doit avoir l'inclusion d'idéaux 1(d) ^ I(S). Soit

x + y + 0

et z + t + 0

les équations des deux branches de S en 0, les signifiant des termes d'ordre au
moins 2. L'idéal I(S) est dans C [[x, y} z, t]] :

(xz +..., xt +..., yz +..., yt +...)

les signifiant des termes d'ordre au moins 3.

Regardons par exemple la condition xz + e 1(d). On doit avoir alors puisque
z + (a2— ljx + b2 e 1(d), la relation

b2x + (a2 — l)x2 + /(x) (b + ax + x2)

où / e C [[x]]. Si / £ ftxl. on obtient en identifiant:
i

(0 fob
lb2 ffo + fQa

\ a2 — 1 f2b + f2a + /0

Désignons l'idéal maximal de C[^la,b, a1>b1, a2,b2, a3,b3f] par m et écrivons
/ g + mk pour f — g e mk. La troisième relation obtenue montre : 1 + fQ e m et donc,
par la première :

(7) b 0

La deuxième donne ainsi :

(8) b2 — a + m2

Même raisonnement avec xt + ; on obtient fi 0 et

W fi3 — a + m3

Regardons la condition yz + e 1(d). On a

yz ((a1-l)x + fi1)((a2-l)x + fi2) modulo 1(d).

D'où la relation

{(a1 — l)x + fii) ((a2 — l)x + fi2) -f- termes d'ordre ^ 3 g(x) (b + ax + x2).
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En identifiant :

bflb2 Qob

fti(a2-l) + b2(a2-1) gtb + g0a

(ai — 1) (a2 — l) ^ + g^a + g0

de la troisième relation vient g0 1 + m, d'où vu que b 0 et b2 — a + m2,

par la deuxième relation: — bx — b2 a 4- m2, soit

(10) b1 m2

Idem avec yt +

Pour ce qui est du point simple m: soit z 1 + (p(x — 1, y— 1) et t — 1

+ \|/(x — 1, y — 1) des équations locales de S au voisinage de m0 (1,1,1,1). La
condition que le point m est sur S est alors simplement

(11) «2 <p("o»"1)

et

(12) 1*3 11/(1*0,^).

Les 12 équations précédentes forment alors un idéal dont il est facile de voir que
la longueur est 2. En effet, comme b 0 et a2 — 4b 0, on obtient a2 0.

Par ailleurs les 11 autres équations ont des relations linéaires tangentes indépendantes.
(En effet, le déterminant

d(p dcp

ôx dy

d\|/ 0\|f

dx dy

est non nul en m0 car les deux plans TmoS et P sont transverses).
La multiplicité cherchée est donc 2.

b) Soit S une surface de P4. On regarde maintenant le nombre T(S) des tangentes
d'inflexion coupant un plan fixe n. C'est par définition (III.2) le degré du 0-cycle

T(S) deg [iT] Axe*a1. [Hilbc3 S]

dans Hilb3 P4 où est le cycle des droites coupant un plan fixe.
Si S admet un point-double impropre 0 avec deux branches ^ et S2, supposons

que 7i recoupe T0S2 en P. Alors la droite OP coupe S en O suivant un triplet 0O

de la forme Nous voulons calculer la contribution de ce triplet dans T(S).

Mais seulement sa contribution parasite, car il n'est pas exclu que la droite OP
puisse être une vraie tangente d'inflexion de la branche S2, auquel cas 0O

compterait légitimement comme intersection entre Hilb3 S2 et ZT. Evidemment,
ce ne sera pas le cas génériquement ; mais c'est cependant le cas dans le calcul
effectué en III pour la surface S S u P.

Pour éclairer cette situation, regardons plutôt les tangentes d'inflexion d'une courbe
C dans P. Leur nombre est défini comme le nombre d'intersection

T(C) deg |;<n [Hilb;? C]
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3
dans Hilbc3 P2 où 2T est la sous-variété de Al3 P2 des triplets de la forme -.
Ce nombre est comme on sait [28] 3n(n — 2) où n deg C. Cependant, le cas où
C est singulière est à interpréter. Examinons en effet un croisement normal 0 de C

et soient C1} C2 les deux branches de C en ce point. La tangente à C2 en 0
coupe C suivant le triplet 0O de la forme et ce triplet devra être compté
avec multiplicité 3. Si h est le nombre de points-doubles de C, on aura donc le

nombre correct

3n(n-2) - 6h

de tangentes d'inflexion (car il y en a deux « fausses » par point-double).
Supposons maintenant que 0 soit un point d'inflexion de la branche C2. Le

triplet 90 devra être compté deux fois dans T(C) : une fois comme « vraie » tangente
d'inflexion de C2 avec multiplicité 1 et une fois comme dans ce qui précède (et
avec multiplicité 3). Cela vient en effet de ce que le germe de Hilb3 C en 0O

est formé des deux composantes

Hilb3 C2 et Hilb2 C2 x Cj
où Cf est Ct — {0}, la barre désignant l'adhérence dans Hilb3?2 (la dernière
composante est formée des limites de triplets ayant deux points sur C2 et un
point sur Ci).

Exemple: Si C est la réunion de deux droites L± et L2, on a évidemment
T(C) 0 (en déformant en une conique lisse) ce qu'on voit aussi en écrivant

0 —3 —3 +3 +3,
car ce sont les contributions respectives de

Hilb3 L,, Hilb3 L2 Hilb2 L? x L°2, Hilb2 L\ x L?

(on a en effet T(droite) — 3 puisqu'ici n 1).
Donc dans le calcul de l'intervention parasite de 0O (qu'on va effectuer maintenant)

seule la composante Hilb2 C\ x C? doit intervenir dans son intersection avec
Bien sûr il n'y a qu'elle dans un cas générique, encore une fois.

Pour effectuer le calcul de la multiplicité de 0O dans ZT n Hilb2 C2 x C?
plaçons-nous dans des coordonnées locales (x, y) pour lesquelles

C2 a pour équation y f(x) / e C [[x]] val f> 2

Cl a pour équation y g(y) ; [[>]] val > 2

L'idéal de 90 est (x3, y) et une carte de Hilb3 P2 en 90 est donnée par les
coefficients de l'idéal voisin

7(0) — (x3 + 3ax2 + 3bx + c, y + a'x2 + b'x + c').
Dans cette carte, Al3 P2 s'exprime évidemment par
(1) a' 0

et sa sous-variété y par
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(Dans toute la suite on fait donc a' 0).
Si m est un point simple de C1, de coordonnées (g(v), v), il faut et il suffit

pour que m soit dans 0 que l'on ait

s fé^)3 + 3 ag(vf+ 3bg(v) + c 0
(*) <

(ï> + b'giv) + c' 0

Ces deux équations, vu (2) et (3) sont équivalentes à

(4)
f(a + 9W)3 0

\v + b'g(v) + c' 0

Par le théorème des fonctions implicites, la dernière équation donne v V(b\ c'),
la partie linéaire de V étant c'.

Exprimons maintenant que le doublet d, complémentaire du point simple m dans
0 est situé sur C2. On a, vu (*) :

x3 + 3ax2 + 3bx + c (x — g(v)) (x2 Jr(3a + g{v))x + 3b + 3ag{v) + (g(v))2).

Posons

3A 3a + g(v) 3a + gV(b\ c')

3B 3b + 3ag(v) + g(v)2 3b + 3agV(b', c') + (,gV(bc'))2

L'idéal de d est alors

J (x2 + 3Ax + 3B, y + b'x + c')

et dire que d est dans C2 revient à demander l'inclusion J ^ (y — f(x)\ soit demander:

(**) f(x) + b'x + c' multiple de x2 + 3^4x + 3B dans c [M].
Si on écrit f(x) f2x2 + /3x3 + il est facile de voir, par identification dans
C [[x]] qu'on obtient

b' 3f2A + 3 fzB + M2 (5)

c' f2B + BM (6)

où M est l'idéal maximal de C \_\_b', c\ A, £]]
Ainsi F idéal défini par les relations (1) à (6) est de multiplicité 3 : les équations

(1), (2), (3), (5), (6) définissent en effet une courbe non-singulière F dans les
coordonnées (a, b, c, a', b', c') et l'équation (4) définit un triplet curviligne sur T.

Le calcul analogue pour les points-doubles impropres d'une surface S de P4
est laissé au lecteur.

9°) Tangentes d'inflexion de S(2, 3) et S(2,4)

Soit une hypersurface de degré 3 ou 4 dans P4 et soit G G( 1,4). Soit
[F] e ^43(G) où F est l'ensemble des droites contenues dans une hyperquadrique Q
de P4.

Soit [XI e A2(G) où X est l'ensemble des droites coupant suivant un triplet
3 3

si deg XF 3 ou bien suivant un quadruplet -> • si deg XF — 4.
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Les calculs qui suivent ont lieu dans A (G) avec les notations de [21]. Tout

d'abord, on a

i[F]
(1, 3) 4 (nombre de droites dans une quadrique de P3

et coupant une droite fixe),

[F] (0, 4) 0 (un point générique de P4 n'est pas sur Q).

Il en résulte [F] 4(1, 3) par dualité.
Cherchons [F] [X] (2, 4) qui représentera donc le nombre m de droites tangentes

d'inflexion à S n Q recoupant un plan fixe. On a

m - [F] [X] (2, 4) 4 [X]. (2, 4). (1,3).

Or par la formule de Pieri, on a

(2, 4). (1,3) (1,2) + (0,3).

D'autre part, suivant que deg 3 ou 4, on a

[X] (1, 2) 9 ou 24 (tangentes d'inflexion d'une cubique ou quartique plane)

\ [X] (0, 3) 6 ou 24 (tangentes d'inflexion d'une surface cubique ou quar-
tique de P3 passant par un point fixe: [34], p. 199

et 203).

fm 4.9 + 4. 6 60 si deg 3
Donc <

[m 4.24 + 4.24 192 si deg jf 4

Désignant le nombre de tangentes d'inflexion d'une surface de P4 coupant un plan fixe

par F, on a donc T(S{2, 3)) 60 et T(S(2, 4)) 192. (Il faut vérifier que les

multiplicités sont bien 1).
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