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IV. CALCULATION OF THE DISCRIMINANT
1
Let f,(x) = ﬁ(x—ocl) .. (x—o0,). Then
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V. END ofF PROOF

Tschebyshev’s Theorem (2 above) implies that for each n > 1 there is a

prime number p such that
ord,(n!) =

Hence D, is not a square if n is odd. If n = 2(4) then D, < 0 so it is
not a square in this case either. Finally if 4 divides n then we see that
D, is a square. This completes the proof for n > 8. The remaining cases
can be handled individually using the above results and facts about §,
for small n. (See [S-2].)

VI. FiNAL REMARKS

1. Hilbert [H] proved that there exist extensions of Q with Galois group S, .
The splitting fields of the exponential polynomials provide explicit examples
of such extensions. Moreover, they provide examples of such extensions
ramified only at the primes dividing the order of the Galois group, a
property not predictable by Hilbert’s methods. (In fact, as can easily be
checked using the results of II above, they are ramified at all primes
dividing the order of the Galois group.) Schur also found A4, extensions of Q
for n odd unramified outside n! (see [S-2] and [S-37]). This raises the

question, given a simple group G, does there exist a G extension of Q
unramified outside the order of G?
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