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where the degree of ¢; is Xx;— x;_, and all the roots of g{x) in

(_)p have valuation — (w)

Xip— X1
We call the rational numbers, ui, the slopes of g.
Xi — Xi—1

Example. The polynomial f; has three factors over Q,, of degrees 4, 2
and 1, respectively, which have slopes —3/4, —1/2 and 0.

COROLLARY. Let d be a positive integer. Suppose that d divides the
denominator of each slope (in lowest terms) of g. Then d divides the
degree of each factor of g over Q,.

Proof. It suffices to show that d divides the degree of each irreducible
factor of g. Let h be such a factor. Let oce(_)p be a root of h. Since d
divides the denominator of the valuation of « (by Theorem NP), it follows
that d divides the index of ramification of the extension Q,(®)/Q, which
divides the degree of the extension which equals the degree of h.

II. APPLICATION TO THE EXPONENTIAL TAYLOR POLYNOMIALS
Fix a prime number p.

LEMMA. Suppose k is a positive integer and
k - ao + alp + ees asps
where 0 < a; < p. Then

k —(ap+a,+..+a)

ord(k!) =
p—1

This is easy and well known.
Now write

n=bip"™ + b,p"* + .. + bp"™
where n; > n, > .. > n;and 0 < b; < p. Let

xi — blpnl + + bipni B
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LEMMA. The vertices of the Newton polygon of f, are
(x;, —ord,(x;!)), l<i<s.

This follows easily from the previous lemmas.
It follows that the slopes of f are

— Ordp(xi N+ Ordp(x,-_l 3] - (p"i—1)
Xi — Xi—1 ph(p—1) .

m =

CoROLLARY A. Suppose that p™ divides n. Then p™ divides the
degree of each factor of f, over Q,.

Proof. Since p™ divides n,m < n; < n,_, < ... . Hence, it follows from (1)
that p™ divides the denominator of each m. Therefore the corollary follows
from the corollary to Theorem NP.

COROLLARY B. Suppose that p* < n. Then p* divides the degree of the
splitting field of f, over Q,.

" Proof. The hypotheses imply that k < n;. Hence p* divides the deno-
minator of m,. As above this implies that p* divides the degree of any
extension of Q, formed by adjoining a root of f, with valuation —m;,.
This yields the corollary.

ITI. GroBaL CoONCLUSIONS A AND B

A. f, is irreducible.
Suppose

n=[]p"
p

is the prime factorization of n. Corollary A implies that, for each prime
p, p"® divides the degree of each factor of f, over Q. The conclusion follows.

B. Suppose n/2 < p < n is a prime number. Then G contains a p-cycle.

By Corollary B, p divides the degree of the splitting field of f, over
Q, which divides the degree of the splitting field of f, over Q. Hence p
divides the order of G,. By Cauchy’s Theorem G contains an element of
order p. The conclusion follows since the only elements of order p in S,
are p-cycles if p > n/2.
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