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where the degree of gt is xt — xt _ x
and all the roots of gfx) in

Example. The polynomial /7 has three factors over Q2, of degrees 4, 2

and 1, respectively, which have slopes — 3/4, —1/2 and 0.

Corollary. Let d be a positive integer. Suppose that d divides the

denominator of each slope (in lowest terms) of g. Then d divides the

degree of each factor of g over Qp.

Proof. It suffices to show that d divides the degree of each irreducible
factor of g. Let h be such a factor. Let a g Qp be a root of h. Since d

divides the denominator of the valuation of a (by Theorem NP), it follows
that d divides the index of ramification of the extension Qp(ol)/Qp which
divides the degree of the extension which equals the degree of h.

II. Application to the Exponential Taylor Polynomials

Fix a prime number p.

Lemma. Suppose k is a positive integer and

k a0 + app + asps

where 0 ^ at < p. Then

We call the rational numbers, the slopes of g.

ord(/c!)
k — (a0 + a1 + + as)

p - 1

This is easy and well known.
Now write

n bxpni + b2pn2 + + bspns

where n1 > n2 > > ns and Ö < bt < p. Let

xi biPni + - + biPni •
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Lemma. The vertices of the Newton polygon of fn are

(x;, — ordp(x; I < i < s

This follows easily from the previous lemmas.

It follows that the slopes of / are

m -ordp(x,-!)+ ordp (%;_!!) - (p"'-l)Xi-Xf.i
Corollary A. Suppose that pm divides n. Then pm divides the

degree of each factor of fn over Qp.

Proof Since pm divides n, m ^ ns < ns_x < Hence, it follows from (1)

that pm divides the denominator of each m. Therefore the corollary follows
from the corollary to Theorem NP.

Corollary B. Suppose that pk ^ n. Then pk divides the degree of the

splitting field of fn over Qp.

Proof The hypotheses imply that k ^ n1. Hence pk divides the
denominator of m1. As above this implies that pk divides the degree of any
extension of Qp formed by adjoining a root of fn with valuation —m1.
This yields the corollary.

III. Global Conclusions A and B

A. fn is irreducible.

Suppose

n [] Pnp

p

is the prime factorization of n. Corollary A implies that, for each prime

p, pnp divides the degree of each factor of fn over Q. The conclusion follows.

B. Suppose n/2 < p < n is a prime number. Then G contains a p-cycle.

By Corollary B, p divides the degree of the splitting field of fn over

Qp which divides the degree of the splitting field of fn over Q. Hence p

divides the order of Gn. By Cauchy's Theorem G contains an element of
order p. The conclusion follows since the only elements of order p in Sn

are p-cycles if p > n/2.
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