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ON THE GALOIS GROUPS

OF THE EXPONENTIAL TAYLOR POLYNOMIALS

by Robert F. Coleman

Let

m 1 + x + ^ +... + ^
denote the nth Taylor polynomial of the Exponential Function.

In 1930, [S-2], Schur proved the following theorem about fn(x) :

Theorem (Schur). The Galois group, Gn, of fn is An, the alternating

group on n letters, if 4 divides n and is Sn, the symmetric group

on n letters, otherwise.

In this note we shall give a proof different from Schur's. Our ulterior
motive is to demonstrate the utility of Newton polygons.

We must :

A. Show that fn is irreducible.

B. Show that Gn contains a p-cycle for any prime number p between n/2

and n — 2.

C. Calculate the discriminant, Dn, of fn and determine when it is a square.

We need the following :

1. The main theorem about p-adic Newton polygons (see below).

2. Bertrand's Postulate [B], proven by Tschebyshev [T], which asserts that

for each integer ft, at least 8, there exists a prime number strictly between

n/2 and ft — 2. (See also [H-W] Chapter 22.)

3. The theorem of Jordan which asserts that if G is a transitive subgroup

of Sn which contains a p-cycle for some prime p strictly between n/2

and ft —2 then G contains An. (See [J-l], Note C and [J-2], Theorem 1

or [Ha], Theorems 5.6.2 and 5.7.2.)

4. The fact that the Galois group of a polynomial of degree n is contained

in An iff its discriminant is a square.
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We shall use 1 for A and B. This will imply Gn is transitive and

together with 2 and 3 will imply Gn contains An for n ^ 8. We shall use the

differential equation satisfied by the exponential function and 2 again to
perform C. Finally, we shall use 4 to complete the proof. (We shall also

require liberal doses of Galois theory.)

I. Review of the Newton Polygon

Let

g(x) a0 + axx + -P akxk

be a polynomial over Qp. Consider the points :

(/, ord(<2;)), 0 < i < k

in the Cartesian plane. The Newton polygon of g is defined to be the lower

convex hull of these points.

Example. The Newton Polygon of f7(x) considered over Q2, is

0 1 2 3 4 5 6 7

The main theorem about these polygons is :

Theorem NP. Let (x0, y0)> (xi > .Vi)* •••> (XP> yP) denote the successive

vertices of this polygon. Then over Qp, g factors as follows:

g(x)g1(x)g2(x)... gAx)
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where the degree of gt is xt — xt _ x
and all the roots of gfx) in

Example. The polynomial /7 has three factors over Q2, of degrees 4, 2

and 1, respectively, which have slopes — 3/4, —1/2 and 0.

Corollary. Let d be a positive integer. Suppose that d divides the

denominator of each slope (in lowest terms) of g. Then d divides the

degree of each factor of g over Qp.

Proof. It suffices to show that d divides the degree of each irreducible
factor of g. Let h be such a factor. Let a g Qp be a root of h. Since d

divides the denominator of the valuation of a (by Theorem NP), it follows
that d divides the index of ramification of the extension Qp(ol)/Qp which
divides the degree of the extension which equals the degree of h.

II. Application to the Exponential Taylor Polynomials

Fix a prime number p.

Lemma. Suppose k is a positive integer and

k a0 + app + asps

where 0 ^ at < p. Then

We call the rational numbers, the slopes of g.

ord(/c!)
k — (a0 + a1 + + as)

p - 1

This is easy and well known.
Now write

n bxpni + b2pn2 + + bspns

where n1 > n2 > > ns and Ö < bt < p. Let

xi biPni + - + biPni •
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Lemma. The vertices of the Newton polygon of fn are

(x;, — ordp(x; I < i < s

This follows easily from the previous lemmas.

It follows that the slopes of / are

m -ordp(x,-!)+ ordp (%;_!!) - (p"'-l)Xi-Xf.i
Corollary A. Suppose that pm divides n. Then pm divides the

degree of each factor of fn over Qp.

Proof Since pm divides n, m ^ ns < ns_x < Hence, it follows from (1)

that pm divides the denominator of each m. Therefore the corollary follows
from the corollary to Theorem NP.

Corollary B. Suppose that pk ^ n. Then pk divides the degree of the

splitting field of fn over Qp.

Proof The hypotheses imply that k ^ n1. Hence pk divides the
denominator of m1. As above this implies that pk divides the degree of any
extension of Qp formed by adjoining a root of fn with valuation —m1.
This yields the corollary.

III. Global Conclusions A and B

A. fn is irreducible.

Suppose

n [] Pnp

p

is the prime factorization of n. Corollary A implies that, for each prime

p, pnp divides the degree of each factor of fn over Q. The conclusion follows.

B. Suppose n/2 < p < n is a prime number. Then G contains a p-cycle.

By Corollary B, p divides the degree of the splitting field of fn over

Qp which divides the degree of the splitting field of fn over Q. Hence p

divides the order of Gn. By Cauchy's Theorem G contains an element of
order p. The conclusion follows since the only elements of order p in Sn

are p-cycles if p > n/2.
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IV. Calculation of the discriminant

Let /„(x) -Vx-aJ (x-a„). Then
n

DnJ I (a,—a,-} (—1)(2) 0 (a-i-U
i fj i<J

(-d("2) n («! fM nw!
i=1 i 1

(-!)(") fl (-a?) (since /--iW /»W ~ ^i 1 " *

(-l)("2)+"(fl «,)" (-l)("2)+"((-D"»!/„(0))"
i= 1

—1)(^) (n !)".

V. End of Proof

Tschebyshev's Theorem (2 above) implies that for each n > 1 there is a

prime number p such that
ordp(n 1

Hence Dn is not a square if n is odd. If n 2(4) then Dn < 0 so it is

not a square in this case either. Finally if 4 divides n then we see that

Dn is a square. This completes the proof for n ^ 8. The remaining cases

can be handled individually using the above results and facts about Sn

for small n. (See [S-2].)

VI. Final Remarks

1. Hilbert [H] proved that there exist extensions of Q with Galois group Sn.

The splitting fields of the exponential polynomials provide explicit examples
of such extensions. Moreover, they provide examples of such extensions

ramified only at the primes dividing the order of the Galois group, a

property not predictable by Hilbert's methods. (In fact, as can easily be

checked using the results of II above, they are ramified at all primes
dividing the order of the Galois group.) Schur also found An extensions of Q
for n odd unramified outside n\ (see [S-2] and [S-3]). This raises the

question, given a simple group G, does there exist a G extension of Q
unramified outside the order of G
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2. The original proof of Schur utilized the following result :

Theorem (Schur 1929 [S-l]). Let 1 ^ k < h be integers. Then there

exists a prime number p > k which divides one of the following integers :

h -f~ 1, h T 2,h ~h k

The proof uses Tschebyshev's method. Schur needed this result to
demonstrate the irreducibility of /„, which we were able to obtain by
elementary means. However, Schur obtained much more. He proved :

Theorem (Schur, 1929, [S-l]). Let a0, a1,an be integers such that

(a0, an, n 1. Then

a2x2 anxn
a0 + alX + —— +...+ —2 n\

is irreducible.

3. Exercises.

(a) Calculate the Galois Groups of the Following polynomials:

fn\ — X)k
(1) (Laguerre) L„(x) £

k 0

(2) JJLx) -X L„(t)dt

k\ '

1 dLn+i(x)
n + 1 dx

[ml2] A k

(3) (Hermite)Wra(x) N--
k=o V (m — 2k)\k\

K<°> (x2) H2n(x),(x2) -
X

(b) Calculate the discriminants of polynomials :

^ fn + cl\{-x)vZ î
1

:?
for ocgQ.

v o \n — vJ v\

(See [S-2] and [S-3].) Using either Schur's Criterion above or the

methods of this note, determine the irreducibility of as many of these

polynomials as you can.

(c) For each prime p, determine the inertia subgroups of Gn above p.

(Note, we have only done this when n is a power of p.)
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Added in proof. For some interesting new results^concerning the Galois theory
of the polynomials mentioned above see: W. Feit, Ä5 and An are Galois groups
over number fields,
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