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ON THE GALOIS GROUPS
OF THE EXPONENTIAL TAYLOR POLYNOMIALS

by Robert F. COLEMAN

Let
x? x"
fx) =1+ x+—~+ .. +—
2! n!
denote the n'* Taylor polynomial of the Exponential Function.
In 1930, [S-2], Schur proved the following theorem about f,(x):

THEOREM (Schur). The Galois group, G,, of f, is A,, the alternating
group on n letters, if 4 divides n and is S,, the symmetric group
on n letters, otherwise.

In this note we shall give a proof different from Schur’s. Our ulterior
motive is to demonstrate the utility of Newton polygons.
We must: ‘

A. Show that f, is irreducible.

B. Show that G, contains a p-cycle for any prime number p between n/2
and n—2.

C. Calculate the discriminant, D,, of f, and determine when it is a square.

We need the following:
1. The main theorem about p-adic Newton polygons (see below).

2. Bertrand’s Postulate [B], proven by Tschebyshev [T], which asserts that
for each integer n, at least 8, there exists a prime number strictly between
n/2 and n— 2. (See also [H-W] Chapter 22.)

3. The theorem of Jordan which asserts that if G is a transitive subgroup
of S, which contains a p-cycle for some prime p strictly between n/2
and n—2 then G contains A4,. (See [J-1], Note C and [J-2], Theorem 1
or [Ha], Theorems 5.6.2 and 5.7.2.)

4. The fact that the Galois group of a polynomial of degree n is contained
in A, iff its discriminant is a square.
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We shall use 1 for A and B. This will imply G, is transitive and
together with 2 and 3 will imply G, contains 4, for n > 8. We shall use the
differential equation satisfied by the exponential function and 2 again to
perform C. Finally, we shall use 4 to complete the proof. (We shall also
require liberal doses of Galois theory.)

I. ReviEw OF THE NEWTON POLYGON

Let
g(x) = ag + a;x + ... + ax*
be a polynomial over Q,. Consider the points:
(i, ord(a;)), 0<i<k,

in the Cartesian plane. The Newton polygon of g is defined to be the lower
convex hull of these points.

Example. The Newton Polygon of f,(x) considered over Q,, is

The main theorem about these polygons is:

THEOREM NP. Let (Xq, Yo), (X1, Y1), - (X, y,) denote the successive
vertices of this polygon. Then over Q,, g factors as follows :

9(x) = g1(x)g2(x) ... g(x)
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where the degree of ¢; is Xx;— x;_, and all the roots of g{x) in

(_)p have valuation — (w)

Xip— X1
We call the rational numbers, ui, the slopes of g.
Xi — Xi—1

Example. The polynomial f; has three factors over Q,, of degrees 4, 2
and 1, respectively, which have slopes —3/4, —1/2 and 0.

COROLLARY. Let d be a positive integer. Suppose that d divides the
denominator of each slope (in lowest terms) of g. Then d divides the
degree of each factor of g over Q,.

Proof. It suffices to show that d divides the degree of each irreducible
factor of g. Let h be such a factor. Let oce(_)p be a root of h. Since d
divides the denominator of the valuation of « (by Theorem NP), it follows
that d divides the index of ramification of the extension Q,(®)/Q, which
divides the degree of the extension which equals the degree of h.

II. APPLICATION TO THE EXPONENTIAL TAYLOR POLYNOMIALS
Fix a prime number p.

LEMMA. Suppose k is a positive integer and
k - ao + alp + ees asps
where 0 < a; < p. Then

k —(ap+a,+..+a)

ord(k!) =
p—1

This is easy and well known.
Now write

n=bip"™ + b,p"* + .. + bp"™
where n; > n, > .. > n;and 0 < b; < p. Let

xi — blpnl + + bipni B
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LEMMA. The vertices of the Newton polygon of f, are
(x;, —ord,(x;!)), l<i<s.

This follows easily from the previous lemmas.
It follows that the slopes of f are

— Ordp(xi N+ Ordp(x,-_l 3] - (p"i—1)
Xi — Xi—1 ph(p—1) .

m =

CoROLLARY A. Suppose that p™ divides n. Then p™ divides the
degree of each factor of f, over Q,.

Proof. Since p™ divides n,m < n; < n,_, < ... . Hence, it follows from (1)
that p™ divides the denominator of each m. Therefore the corollary follows
from the corollary to Theorem NP.

COROLLARY B. Suppose that p* < n. Then p* divides the degree of the
splitting field of f, over Q,.

" Proof. The hypotheses imply that k < n;. Hence p* divides the deno-
minator of m,. As above this implies that p* divides the degree of any
extension of Q, formed by adjoining a root of f, with valuation —m;,.
This yields the corollary.

ITI. GroBaL CoONCLUSIONS A AND B

A. f, is irreducible.
Suppose

n=[]p"
p

is the prime factorization of n. Corollary A implies that, for each prime
p, p"® divides the degree of each factor of f, over Q. The conclusion follows.

B. Suppose n/2 < p < n is a prime number. Then G contains a p-cycle.

By Corollary B, p divides the degree of the splitting field of f, over
Q, which divides the degree of the splitting field of f, over Q. Hence p
divides the order of G,. By Cauchy’s Theorem G contains an element of
order p. The conclusion follows since the only elements of order p in S,
are p-cycles if p > n/2.




GALOIS GROUPS 187

IV. CALCULATION OF THE DISCRIMINANT
1
Let f,(x) = ﬁ(x—ocl) .. (x—o0,). Then

T o) = (= D) [ =)

ifj i<j

= =0 [T 0t o) = -0 [Tt s

1=

-

n

_ o) [Tan ince S = S0 =)

i=1

)
)er (I ouy = (= 13) (= 1t £0)
)

— (-

i=1

V. END ofF PROOF

Tschebyshev’s Theorem (2 above) implies that for each n > 1 there is a

prime number p such that
ord,(n!) =

Hence D, is not a square if n is odd. If n = 2(4) then D, < 0 so it is
not a square in this case either. Finally if 4 divides n then we see that
D, is a square. This completes the proof for n > 8. The remaining cases
can be handled individually using the above results and facts about §,
for small n. (See [S-2].)

VI. FiNAL REMARKS

1. Hilbert [H] proved that there exist extensions of Q with Galois group S, .
The splitting fields of the exponential polynomials provide explicit examples
of such extensions. Moreover, they provide examples of such extensions
ramified only at the primes dividing the order of the Galois group, a
property not predictable by Hilbert’s methods. (In fact, as can easily be
checked using the results of II above, they are ramified at all primes
dividing the order of the Galois group.) Schur also found A4, extensions of Q
for n odd unramified outside n! (see [S-2] and [S-37]). This raises the

question, given a simple group G, does there exist a G extension of Q
unramified outside the order of G?
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2. The original proof of Schur utilized the following result:

THEOREM (Schur 1929 [S-1]). Let 1 < k < h be integers. Then there
exists a prime number p > k which divides one of the following integers:

h+1, h+2,.,h+ k.

The proof uses Tschebyshev’s method. Schur needed this result to
demonstrate the irreducibility of f,, which we were able to obtain by
elementary means. However, Schur obtained much more. He proved:

THEOREM (Schur, 1929, [S-1]). Let aqy,ay,..,a, be integers such that
(ag,a,,n!)y = 1. Then

2
a,X a,x
+ ... +

21! n!

apg + a;x +

is irreducible.

3. Exercises.

(a) Calculate the Galois Groups of the Following polynomials:

(1) (Laguerre) L(x) = i (Z)F}‘j) ’

k=0

X

@ 109 =~ J L0t =

0

1 dL,;(x)
n+1 dx °~

oV [m/2] 1\ * m! m— 2k
(3) (Hermite)H ,(x) = k;) ~3) o2k x ,
1
K;O) (XZ) = HZn(x) > Kfll) (XZ) = - H2n+ 1(X) .
X

(b) Calculate the discriminants of polynomials:

i (n—l—oc)(—x)”, for ae€Q.

v=o \n—uo v!

(See [S-2] and [S-3].) Using either Schur’s Criterion above or the
methods of this note, determine the irreducibility of as many of these
polynomials as you can.

 (¢) For each prime p, determine the inertia subgroups of G, above p.
(Note, we have only done this when n is a power of p.)
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ADDED IN PROOF. For some interesting new results_concerning the Galois theory
of the polynomials mentioned above see: W. FrEIT, A, and A, are Galois groups
over number fields. '
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